flatcam/flatcamTools/ToolPDF.py

840 lines
38 KiB
Python
Raw Normal View History

2019-04-19 14:12:10 +00:00
############################################################
# FlatCAM: 2D Post-processing for Manufacturing #
# http://flatcam.org #
# File Author: Marius Adrian Stanciu (c) #
# Date: 3/10/2019 #
# MIT Licence #
############################################################
from FlatCAMTool import FlatCAMTool
from shapely.geometry import Point, Polygon, LineString
from shapely.ops import cascaded_union, unary_union
2019-04-19 14:12:10 +00:00
from FlatCAMObj import *
2019-04-19 14:12:10 +00:00
import math
from copy import copy, deepcopy
2019-04-19 14:12:10 +00:00
import numpy as np
import zlib
import re
import gettext
import FlatCAMTranslation as fcTranslate
import builtins
2019-04-19 14:12:10 +00:00
fcTranslate.apply_language('strings')
if '_' not in builtins.__dict__:
_ = gettext.gettext
class ToolPDF(FlatCAMTool):
"""
2019-04-19 14:12:10 +00:00
Parse a PDF file.
Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
Return a list of geometries
"""
2019-04-19 14:12:10 +00:00
toolName = _("PDF Import Tool")
def __init__(self, app):
FlatCAMTool.__init__(self, app)
self.app = app
self.step_per_circles = self.app.defaults["gerber_circle_steps"]
self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
# detect color change; it means a new object to be created
self.color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
2019-04-19 14:12:10 +00:00
# detect 're' command
self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
2019-04-19 14:12:10 +00:00
# detect 'm' command
self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
2019-04-19 14:12:10 +00:00
# detect 'l' command
self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
2019-04-19 14:12:10 +00:00
# detect 'c' command
self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
r'\s(-?\d+\.?\d*)\s*c$')
2019-04-19 14:12:10 +00:00
# detect 'v' command
self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
2019-04-19 14:12:10 +00:00
# detect 'y' command
self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
2019-04-19 14:12:10 +00:00
# detect 'h' command
self.end_subpath_re = re.compile(r'^h$')
2019-04-19 14:12:10 +00:00
# detect 'w' command
self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
# detect 'S' command
self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
# detect 's' command
self.close_stroke_path__re = re.compile(r'^s$')
# detect 'f' or 'f*' command
self.fill_path_re = re.compile(r'^[f|F][*]?$')
# detect 'B' or 'B*' command
self.fill_stroke_path_re = re.compile(r'^B[*]?$')
# detect 'b' or 'b*' command
self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
# detect 'n'
self.no_op_re = re.compile(r'^n$')
# detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
# self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
# detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
# self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
# detect combined transformation. Should always be the last
self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
# detect clipping path
self.clip_path_re = re.compile(r'^W[*]? n?$')
# detect save graphic state in graphic stack
self.save_gs_re = re.compile(r'^q.*?$')
# detect restore graphic state from graphic stack
self.restore_gs_re = re.compile(r'^Q.*$')
# graphic stack where we save parameters like transformation, line_width
self.gs = dict()
# each element is a list composed of sublist elements
# (each sublist has 2 lists each having 2 elements: first is offset like:
# offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
self.gs['transform'] = []
self.gs['line_width'] = [] # each element is a float
self.geo_buffer = []
2019-04-19 14:12:10 +00:00
self.pdf_parsed = ''
# conversion factor to INCH
self.point_to_unit_factor = 0.01388888888
2019-04-19 14:12:10 +00:00
def run(self, toggle=True):
self.app.report_usage("ToolPDF()")
# init variables for reuse
self.geo_buffer = []
self.pdf_parsed = ''
# the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM':
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
self.point_to_unit_factor = 0.35277777778
else:
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
self.point_to_unit_factor = 0.01388888888
2019-04-19 14:12:10 +00:00
self.set_tool_ui()
self.on_open_pdf_click()
def install(self, icon=None, separator=None, **kwargs):
FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs)
def set_tool_ui(self):
pass
def on_open_pdf_click(self):
"""
File menu callback for opening an PDF file.
:return: None
"""
self.app.report_usage("ToolPDF.on_open_pdf_click()")
self.app.log.debug("ToolPDF.on_open_pdf_click()")
_filter_ = "Adobe PDF Files (*.pdf);;" \
"All Files (*.*)"
try:
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"),
directory=self.app.get_last_folder(),
filter=_filter_)
2019-04-19 14:12:10 +00:00
except TypeError:
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_)
if len(filenames) == 0:
self.app.inform.emit(_("[WARNING_NOTCL] Open PDF cancelled."))
else:
for filename in filenames:
if filename != '':
self.app.worker_task.emit({'fcn': self.open_pdf, 'params': [filename]})
2019-04-19 14:12:10 +00:00
def open_pdf(self, filename):
new_name = filename.split('/')[-1].split('\\')[-1]
2019-04-19 14:12:10 +00:00
with self.app.proc_container.new(_("Parsing PDF file ...")):
2019-04-19 14:12:10 +00:00
with open(filename, "rb") as f:
pdf = f.read()
stream_nr = 0
2019-04-19 14:12:10 +00:00
for s in re.findall(self.stream_re, pdf):
stream_nr += 1
log.debug(" PDF STREAM: %d\n" % stream_nr)
2019-04-19 14:12:10 +00:00
s = s.strip(b'\r\n')
try:
self.pdf_parsed += (zlib.decompress(s).decode('UTF-8') + '\r\n')
except Exception as e:
log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
obj_dict = self.parse_pdf(pdf_content=self.pdf_parsed)
for k in obj_dict:
ap_dict = obj_dict[k]
if ap_dict:
def obj_init(grb_obj, app_obj):
grb_obj.apertures = deepcopy(ap_dict)
poly_buff = []
for ap in grb_obj.apertures:
for k in grb_obj.apertures[ap]:
if k == 'solid_geometry':
poly_buff += ap_dict[ap][k]
2019-04-19 14:12:10 +00:00
poly_buff = unary_union(poly_buff)
poly_buff = poly_buff.buffer(0.0000001)
poly_buff = poly_buff.buffer(-0.0000001)
grb_obj.solid_geometry = deepcopy(poly_buff)
2019-04-19 14:12:10 +00:00
with self.app.proc_container.new(_("Opening PDF layer #%d ...") % (int(k) - 2)):
2019-04-19 14:12:10 +00:00
ret = self.app.new_object("gerber", new_name, obj_init, autoselected=False)
if ret == 'fail':
self.app.inform.emit(_('[ERROR_NOTCL] Open PDF file failed.'))
return
# Register recent file
self.app.file_opened.emit("gerber", filename)
# GUI feedback
self.app.inform.emit(_("[success] Opened: %s") % filename)
def parse_pdf(self, pdf_content):
path = dict()
path['lines'] = [] # it's a list of lines subpaths
path['bezier'] = [] # it's a list of bezier arcs subpaths
path['rectangle'] = [] # it's a list of rectangle subpaths
subpath = dict()
subpath['lines'] = [] # it's a list of points
subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
subpath['rectangle'] = [] # it's a list of sublists of points
# store the start point (when 'm' command is encountered)
current_subpath = None
# set True when 'h' command is encountered (close subpath)
close_subpath = False
start_point = None
current_point = None
size = 0
# initial values for the transformations, in case they are not encountered in the PDF file
offset_geo = [0, 0]
scale_geo = [1, 1]
# initial aperture
aperture = 10
# store the objects to be transformed into Gerbers
object_dict = {}
# will serve as key in the object_dict
object_nr = 1
# store the apertures here
apertures_dict = {}
# create first object
object_dict[object_nr] = apertures_dict
object_nr += 1
# on color change we create a new apertures dictionary and store the old one in a storage from where it will be
# transformed into Gerber object
old_color = [None, None ,None]
line_nr = 0
lines = pdf_content.splitlines()
for pline in lines:
line_nr += 1
# log.debug("line %d: %s" % (line_nr, pline))
# COLOR DETECTION / OBJECT DETECTION
match = self.color_re.search(pline)
if match:
color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
# same color, do nothing
continue
else:
object_dict[object_nr] = deepcopy(apertures_dict)
object_nr += 1
object_dict[object_nr] = {}
apertures_dict.clear()
old_color = copy(color)
# TRANSFORMATIONS DETECTION #
# Detect combined transformation.
match = self.combined_transform_re.search(pline)
if match:
# detect save graphic stack event
# sometimes they combine save_to_graphics_stack with the transformation on the same line
if match.group(1) == 'q':
log.debug(
"ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
(line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
self.gs['line_width'].append(deepcopy(size))
# transformation = TRANSLATION (OFFSET)
if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
(float(match.group(6)) != 0 or float(match.group(7)) != 0):
log.debug(
"ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
offset_geo[0] += float(match.group(6))
offset_geo[1] += float(match.group(7))
# log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
# transformation = SCALING
if float(match.group(2)) != 1 and float(match.group(5)) != 1:
log.debug(
"ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
scale_geo[0] *= float(match.group(2))
scale_geo[1] *= float(match.group(5))
# log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
continue
# detect save graphic stack event
match = self.save_gs_re.search(pline)
if match:
log.debug(
"ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
(line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
self.gs['line_width'].append(deepcopy(size))
# detect restore from graphic stack event
match = self.restore_gs_re.search(pline)
if match:
log.debug(
"ToolPDF.parse_pdf() --> Restore from GS found on line: %s --> %s" % (line_nr, pline))
try:
restored_transform = self.gs['transform'].pop(-1)
offset_geo = restored_transform[0]
scale_geo = restored_transform[1]
except IndexError:
# nothing to remove
log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
pass
try:
size = self.gs['line_width'].pop(-1)
except IndexError:
log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
# nothing to remove
pass
# log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
# log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
# PATH CONSTRUCTION #
# Start SUBPATH
match = self.start_subpath_re.search(pline)
if match:
# we just started a subpath so we mark it as not closed yet
close_subpath = False
# init subpaths
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
# detect start point to move to
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
start_point = pt
# add the start point to subpaths
subpath['lines'].append(start_point)
# subpath['bezier'].append(start_point)
subpath['rectangle'].append(start_point)
current_point = start_point
continue
# Draw Line
match = self.draw_line_re.search(pline)
if match:
current_subpath = 'lines'
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['lines'].append(pt)
current_point = pt
continue
# Draw Bezier 'c'
match = self.draw_arc_3pt_re.search(pline)
if match:
current_subpath = 'bezier'
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(5)) + offset_geo[0]
y = float(match.group(6)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, c1, c2, stop])
current_point = stop
continue
# Draw Bezier 'v'
match = self.draw_arc_2pt_c1start_re.search(pline)
if match:
current_subpath = 'bezier'
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, start, c2, stop])
current_point = stop
continue
# Draw Bezier 'y'
match = self.draw_arc_2pt_c2stop_re.search(pline)
if match:
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, c1, stop, stop])
print(subpath['bezier'])
current_point = stop
continue
# Draw Rectangle 're
match = self.rect_re.search(pline)
if match:
current_subpath = 'rectangle'
x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
width = (float(match.group(3)) + offset_geo[0]) * \
self.point_to_unit_factor * scale_geo[0]
height = (float(match.group(4)) + offset_geo[1]) * \
self.point_to_unit_factor * scale_geo[1]
pt1 = (x, y)
pt2 = (x+width, y)
pt3 = (x+width, y+height)
pt4 = (x, y+height)
# TODO: I'm not sure if rectangles are a type of subpath that close by itself
subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
current_point = pt1
continue
# Detect clipping path set
# ignore this and delete the current subpath
match = self.clip_path_re.search(pline)
if match:
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
# it measns that we've already added the subpath to path and we need to delete it
# clipping path is usually either rectangle or lines
if close_subpath is True:
close_subpath = False
if current_subpath == 'lines':
path['lines'].pop(-1)
if current_subpath == 'rectangle':
path['rectangle'].pop(-1)
continue
# Close SUBPATH
match = self.end_subpath_re.search(pline)
if match:
close_subpath = True
if current_subpath == 'lines':
subpath['lines'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['lines'].append(copy(subpath['lines']))
subpath['lines'] = []
elif current_subpath == 'bezier':
# subpath['bezier'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['bezier'].append(copy(subpath['bezier']))
subpath['bezier'] = []
elif current_subpath == 'rectangle':
subpath['rectangle'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['rectangle'].append(copy(subpath['rectangle']))
subpath['rectangle'] = []
continue
# PATH PAINTING #
# Detect Stroke width / aperture
match = self.strokewidth_re.search(pline)
if match:
size = float(match.group(1))
continue
# Detect No_Op command, ignore the current subpath
match = self.no_op_re.search(pline)
if match:
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
continue
# Stroke the path
match = self.stroke_path__re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = list()
if current_subpath == 'lines':
if path['lines']:
for subp in path['lines']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['lines'] = []
else:
geo = copy(subpath['lines'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['lines'] = []
if current_subpath == 'bezier':
if path['bezier']:
for subp in path['bezier']:
geo = []
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['bezier'] = []
else:
geo = []
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
for subp in path['rectangle']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['rectangle'] = []
else:
geo = copy(subpath['rectangle'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['rectangle'] = []
try:
apertures_dict[str(aperture)]['solid_geometry'] += path_geo
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict[str(aperture)] = {}
apertures_dict[str(aperture)]['size'] = applied_size
apertures_dict[str(aperture)]['type'] = 'C'
apertures_dict[str(aperture)]['solid_geometry'] = []
apertures_dict[str(aperture)]['solid_geometry'] += path_geo
continue
# Fill the path
match = self.fill_path_re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = list()
if current_subpath == 'lines':
if path['lines']:
for subp in path['lines']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# the path was painted therefore initialize it
path['lines'] = []
else:
geo = copy(subpath['lines'])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
subpath['lines'] = []
if current_subpath == 'bezier':
geo = []
if path['bezier']:
for subp in path['bezier']:
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# the path was painted therefore initialize it
path['bezier'] = []
else:
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
if close_subpath is False:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
for subp in path['rectangle']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# the path was painted therefore initialize it
path['rectangle'] = []
else:
geo = copy(subpath['rectangle'])
# close the subpath if it was not closed already
if close_subpath is False and start_point is not None:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
subpath['rectangle'] = []
# we finished painting and also closed the path if it was the case
close_subpath = True
try:
apertures_dict['0']['solid_geometry'] += path_geo
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['size'] = applied_size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['solid_geometry'] = []
apertures_dict['0']['solid_geometry'] += path_geo
continue
# fill and stroke the path
match = self.fill_stroke_path_re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = list()
if current_subpath == 'lines':
if path['lines']:
# fill
for subp in path['lines']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
for subp in path['lines']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['lines'] = []
else:
# fill
geo = copy(subpath['lines'])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
geo = copy(subpath['lines'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['lines'] = []
subpath['lines'] = []
if current_subpath == 'bezier':
geo = []
if path['bezier']:
# fill
for subp in path['bezier']:
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
for subp in path['bezier']:
geo = []
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['bezier'] = []
else:
# fill
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
if close_subpath is False:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
geo = []
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
# fill
for subp in path['rectangle']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
for subp in path['rectangle']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['rectangle'] = []
else:
# fill
geo = copy(subpath['rectangle'])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(start_point)
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
# stroke
geo = copy(subpath['rectangle'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['rectangle'] = []
# we finished painting and also closed the path if it was the case
close_subpath = True
try:
apertures_dict['0']['solid_geometry'] += path_geo
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['size'] = applied_size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['solid_geometry'] = []
apertures_dict['0']['solid_geometry'] += path_geo
continue
return object_dict
def bezier_to_points(self, start, c1, c2, stop):
"""
# Equation Bezier, page 184 PDF 1.4 reference
2019-04-19 14:12:10 +00:00
# https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
# Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
# in the following equation:
# R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
# When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
# with the final point P3. Intermediate values of t generate intermediate points along the curve.
# The curve does not, in general, pass through the two control points P1 and P2
2019-04-19 14:12:10 +00:00
:return: LineString geometry
"""
2019-04-19 14:12:10 +00:00
# here we store the geometric points
points = []
nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
for t in nr_points:
term_p0 = (1 - t) ** 3
term_p1 = 3 * t * (1 - t) ** 2
term_p2 = 3 * (1 - t) * t ** 2
term_p3 = t ** 3
x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
points.append([x, y])
return points
# def bezier_to_circle(self, path):
# lst = []
# for el in range(len(path)):
# if type(path) is list:
# for coord in path[el]:
# lst.append(coord)
# else:
# lst.append(el)
#
# if lst:
# minx = min(lst, key=lambda t: t[0])[0]
# miny = min(lst, key=lambda t: t[1])[1]
# maxx = max(lst, key=lambda t: t[0])[0]
# maxy = max(lst, key=lambda t: t[1])[1]
# center = (maxx-minx, maxy-miny)
# radius = (maxx-minx) / 2
# return [center, radius]
#
# def circle_to_points(self, center, radius):
# geo = Point(center).buffer(radius, resolution=self.step_per_circles)
# return LineString(list(geo.exterior.coords))
#