- finished adding the PDF import tool although it does not support all kinds of outputs from PDF printers. Microsoft PDF printer is not supported.

This commit is contained in:
Marius Stanciu 2019-04-21 04:43:49 +03:00
parent 52fceae054
commit 108f11eacf
3 changed files with 459 additions and 78 deletions

View File

@ -7606,6 +7606,7 @@ class App(QtCore.QObject):
openers = {
'gerber': lambda fname: self.worker_task.emit({'fcn': self.open_gerber, 'params': [fname]}),
'excellon': lambda fname: self.worker_task.emit({'fcn': self.open_excellon, 'params': [fname]}),
'geometry': lambda fname: self.worker_task.emit({'fcn': self.import_dxf, 'params': [fname]}),
'cncjob': lambda fname: self.worker_task.emit({'fcn': self.open_gcode, 'params': [fname]}),
'project': self.open_project,
'svg': self.import_svg,

View File

@ -9,6 +9,10 @@ CAD program, and create G-Code for Isolation routing.
=================================================
20.04.2019
- finished adding the PDF import tool although it does not support all kinds of outputs from PDF printers. Microsoft PDF printer is not supported.
19.04.2019
- started to work on PDF import tool

View File

@ -7,29 +7,33 @@
############################################################
from FlatCAMTool import FlatCAMTool
from shapely.geometry import Point, Polygon, LineString
from shapely.ops import cascaded_union, unary_union
from FlatCAMObj import *
import math
from copy import copy, deepcopy
import numpy as np
import scipy.interpolate
import zlib
import re
import gettext
import FlatCAMTranslation as fcTranslate
import builtins
fcTranslate.apply_language('strings')
import builtins
if '_' not in builtins.__dict__:
_ = gettext.gettext
class ToolPDF(FlatCAMTool):
'''
"""
Parse a PDF file.
Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
Return a list of geometries
'''
"""
toolName = _("PDF Import Tool")
def __init__(self, app):
@ -39,50 +43,72 @@ class ToolPDF(FlatCAMTool):
self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
# detect 're' command
self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
# detect 'm' command
self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
# detect 'l' command
self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
# detect 'c' command
self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
r'\s(-?\d+\.?\d*)\s*c$')
# detect 'v' command
self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
# detect 'y' command
self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
# detect 'h' command
self.end_subpath_re = re.compile(r'^h$')
# detect 'w' command
self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
# detect 're' command
self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sre$')
# detect 'm' command
self.start_path_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
# detect 'l' command
self.draw_line_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
# detect 'c' command
self.draw_arc_3pt_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sc$')
# detect 'v' command
self.draw_arc_2pt_23_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sv$')
# detect 'y' command
self.draw_arc_2pt_13_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sy$')
# detect 'h' command
self.end_path_re = re.compile(r'^h$')
# detect 'S' command
self.stroke_path__re = re.compile(r'^S$')
# detect 's' command
self.close_stroke_path__re = re.compile(r'^s$')
# detect 'f' or 'f*' command
self.fill_path_re = re.compile(r'^[f|F][*]?$')
# detect 'B' or 'B*' command
self.fill_stroke_path_re = re.compile(r'^B[*]?$')
# detect 'b' or 'b*' command
self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
# detect 'n'
self.no_op_re = re.compile(r'^n$')
# detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
# detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
# detect combined transformation. Should always be the last
self.combined_transform_re = re.compile(r'^q?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
# detect clipping path
self.clip_path_re = re.compile(r'^W[*]? n?$')
self.geo_buffer = []
self.pdf_parsed = ''
# conversion factor to INCH
self.point_to_unit_factor = 0.01388888888
def run(self, toggle=True):
self.app.report_usage("ToolPDF()")
# if toggle:
# # if the splitter is hidden, display it, else hide it but only if the current widget is the same
# if self.app.ui.splitter.sizes()[0] == 0:
# self.app.ui.splitter.setSizes([1, 1])
# else:
# try:
# if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName:
# self.app.ui.splitter.setSizes([0, 1])
# except AttributeError:
# pass
# else:
# if self.app.ui.splitter.sizes()[0] == 0:
# self.app.ui.splitter.setSizes([1, 1])
#
# FlatCAMTool.run(self)
# init variables for reuse
self.geo_buffer = []
self.pdf_parsed = ''
# the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM':
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
self.point_to_unit_factor = 0.35277777778
else:
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
self.point_to_unit_factor = 0.01388888888
self.set_tool_ui()
self.on_open_pdf_click()
# self.app.ui.notebook.setTabText(2, "PDF Tool")
def install(self, icon=None, separator=None, **kwargs):
FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs)
@ -104,75 +130,425 @@ class ToolPDF(FlatCAMTool):
try:
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"),
directory=self.app.get_last_folder(), filter=_filter_)
directory=self.app.get_last_folder(),
filter=_filter_)
except TypeError:
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_)
filenames = [str(filename) for filename in filenames]
if len(filenames) == 0:
self.app.inform.emit(_("[WARNING_NOTCL] Open PDF cancelled."))
else:
for filename in filenames:
if filename != '':
self.app.worker_task.emit({'fcn': self.open_pdf,
'params': [filename]})
self.app.worker_task.emit({'fcn': self.open_pdf, 'params': [filename]})
def open_pdf(self, filename):
new_name = filename.split('/')[-1].split('\\')[-1]
def obj_init(grb_obj, app_obj):
with open(filename, "rb") as f:
pdf = f.read()
stream_nr = 0
for s in re.findall(self.stream_re, pdf):
stream_nr += 1
print("STREAM:", stream_nr, '\n', '\n')
s = s.strip(b'\r\n')
try:
self.pdf_parsed += zlib.decompress(s).decode('UTF-8')
except:
pass
grb_obj.solid_geometry = [self.bezier_to_linestring(0, 0, 0, 0)]
self.pdf_parsed += (zlib.decompress(s).decode('UTF-8') + '\r\n')
except Exception as e:
app_obj.log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
ap_dict = self.parse_pdf(pdf_content=self.pdf_parsed)
grb_obj.apertures = deepcopy(ap_dict)
poly_buff = []
for ap in ap_dict:
for k in ap_dict[ap]:
if k == 'solid_geometry':
poly_buff += ap_dict[ap][k]
poly_buff = unary_union(poly_buff)
poly_buff = poly_buff.buffer(0.0000001)
poly_buff = poly_buff.buffer(-0.0000001)
grb_obj.solid_geometry = deepcopy(poly_buff)
with self.app.proc_container.new(_("Opening PDF.")):
# obj_init()
self.parse_pdf()
ret = self.app.new_object("geometry", "bla", obj_init, autoselected=False)
# Register recent file
self.app.file_opened.emit("geometry", "bla")
# # Object name
# name = outname or filename.split('/')[-1].split('\\')[-1]
#
# ret = self.new_object("excellon", name, obj_init, autoselected=False)
# if ret == 'fail':
# self.inform.emit(_('[ERROR_NOTCL] Open Excellon file failed. Probable not an Excellon file.'))
# return
#
# # Register recent file
# self.file_opened.emit("excellon", filename)
#
# # GUI feedback
# self.inform.emit(_("[success] Opened: %s") % filename)
# # self.progress.emit(100)
def parse_pdf(self):
for pline in self.pdf_parsed:
pass
ret = self.app.new_object("gerber", new_name, obj_init, autoselected=False)
if ret == 'fail':
self.app.inform.emit(_('[ERROR_NOTCL] Open PDF file failed.'))
return
def bezier_to_linestring(self, start, stop, c1, c2):
# Register recent file
self.app.file_opened.emit("gerber", new_name)
# GUI feedback
self.app.inform.emit(_("[success] Opened: %s") % filename)
def parse_pdf(self, pdf_content):
path = dict()
path['lines'] = [] # it's a list of points
path['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
path['rectangle'] = [] # it's a list of sublists of points
start_point = None
current_point = None
size = None
# signal that we have encountered a close path command
flag_close_path = False
# initial values for the transformations, in case they are not encountered in the PDF file
offset_geo = [0, 0]
scale_geo = [1, 1]
# initial aperture
aperture = 10
# store the apertures here
apertures_dict = {}
line_nr = 0
lines = pdf_content.splitlines()
for pline in lines:
line_nr += 1
log.debug("line %d: %s" % (line_nr, pline))
# TRANSFORMATIONS DETECTION #
# Detect Scale transform
match = self.scale_re.search(pline)
if match:
log.debug(
"ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
scale_geo = [float(match.group(1)), float(match.group(2))]
continue
# Detect Offset transform
match = self.offset_re.search(pline)
if match:
log.debug(
"ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
offset_geo = [float(match.group(1)), float(match.group(2))]
continue
# Detect combined transformation. Must be always the last from transformations to be checked.
# TODO: Perhaps it can replace the others transformation detections
match = self.combined_transform_re.search(pline)
if match:
# transformation = TRANSLATION (OFFSET)
if float(match.group(1)) == 1 and float(match.group(2)) == 0 and \
float(match.group(3)) == 0 and float(match.group(4)) == 1:
pass
# transformation = SCALING
elif float(match.group(2)) == 0 and float(match.group(3)) == 0 and \
float(match.group(5)) == 0 and float(match.group(6)) == 0:
pass
# transformation = ROTATION
elif float(match.group(1)) == float(match.group(4)) and \
float(match.group(2)) == - float(match.group(3)) and \
float(match.group(5)) == 0 and float(match.group(6)) == 0:
# rot_angle = math.acos(float(match.group(1)))
pass
# transformation = SKEW
elif float(match.group(1)) == 1 and float(match.group(4)) == 1 and \
float(match.group(5)) == 0 and float(match.group(6)) == 0:
# skew_x = math.atan(float(match.group(2)))
# skew_y = math.atan(float(match.group(3)))
pass
# transformation combined
else:
log.debug("ToolPDF.parse_pdf() --> COMBINED transformation found on line: %s --> %s" %
(line_nr, pline))
scale_geo = [float(match.group(1)), float(match.group(4))]
offset_geo = [float(match.group(5)), float(match.group(6))]
continue
# PATH CONSTRUCTION #
# Start SUBPATH
match = self.start_subpath_re.search(pline)
if match:
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
start_point = pt
current_point = pt
continue
# Draw Line
match = self.draw_line_re.search(pline)
if match:
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
path['lines'].append(pt)
current_point = pt
continue
# Draw Bezier 'c'
match = self.draw_arc_3pt_re.search(pline)
if match:
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(5)) + offset_geo[0]
y = float(match.group(6)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
path['bezier'].append([start, c1, c2, stop])
current_point = stop
continue
# Draw Bezier 'v'
match = self.draw_arc_2pt_c1start_re.search(pline)
if match:
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
path['bezier'].append([start, start, c2, stop])
current_point = stop
continue
# Draw Bezier 'y'
match = self.draw_arc_2pt_c2stop_re.search(pline)
if match:
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
path['bezier'].append([start, c1, stop, stop])
current_point = stop
continue
# Close SUBPATH
match = self.end_subpath_re.search(pline)
if match:
flag_close_path = True
continue
# Draw RECTANGLE
match = self.rect_re.search(pline)
if match:
x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
pt1 = (x, y)
pt2 = (x+width, y)
pt3 = (x+width, y+height)
pt4 = (x, y+height)
path['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
current_point = pt1
continue
# Detect clipping path set
# ignore this and delete the current subpath
match = self.clip_path_re.search(pline)
if match:
path['lines'] = []
path['bezier'] = []
path['rectangle'] = []
continue
# PATH PAINTING #
# Detect Stroke width / aperture
match = self.strokewidth_re.search(pline)
if match:
size = float(match.group(1)) * self.point_to_unit_factor * scale_geo[0]
flag = 0
if not apertures_dict:
apertures_dict[str(aperture)] = dict()
apertures_dict[str(aperture)]['size'] = size
apertures_dict[str(aperture)]['type'] = 'C'
apertures_dict[str(aperture)]['solid_geometry'] = []
else:
for k in apertures_dict:
if size == apertures_dict[k]['size']:
flag = 1
break
if flag == 0:
aperture += 1
apertures_dict[str(aperture)] = dict()
apertures_dict[str(aperture)]['size'] = size
apertures_dict[str(aperture)]['type'] = 'C'
apertures_dict[str(aperture)]['solid_geometry'] = []
continue
# Detect No_Op command, ignore the current subpath
match = self.no_op_re.search(pline)
if match:
path['lines'] = []
path['bezier'] = []
path['rectangle'] = []
continue
# Stroke the path
match = self.stroke_path__re.search(pline)
if match:
# path['lines'] = []
# path['bezier'] = []
# path['rectangle'] = []
# continue
geo = None
if path['lines']:
path['lines'].insert(0, start_point)
geo = copy(path['lines'])
if flag_close_path:
flag_close_path = False
geo.append(start_point)
path['lines'] = []
if path['bezier']:
geo = list()
geo.append(start_point)
for b in path['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
if flag_close_path:
flag_close_path = False
geo.append(start_point)
path['bezier'] = []
if path['rectangle']:
geo = copy(path['rectangle'])
# if flag_close_path:
# flag_close_path = False
# geo.append(start_point)
path['rectangle'] = []
ext_geo = LineString(geo)
ext_geo = ext_geo.buffer((float(size) / 2), resolution=self.step_per_circles)
# ext_geo = affinity.scale(ext_geo, scale_geo[0], scale_geo[1])
# off_x = offset_geo[0]
# off_y = offset_geo[1]
#
# ext_geo = affinity.translate(ext_geo, off_x, off_y)
try:
apertures_dict[str(aperture)]['solid_geometry'].append(deepcopy(ext_geo))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['solid_geometry'] = []
apertures_dict['0']['size'] = size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['solid_geometry'].append(deepcopy(ext_geo))
continue
# Fill the path
match = self.fill_path_re.search(pline)
match2 = self.fill_stroke_path_re.search(pline)
if match or match2:
geo = None
if path['lines']:
path['lines'].insert(0, start_point)
geo = copy(path['lines'])
geo.append(start_point)
path['lines'] = []
elif path['bezier']:
geo = []
for b in path['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo.append(start_point)
path['bezier'] = []
elif path['rectangle']:
# path['rectangle'].append(start_point)
geo = copy(path['rectangle'])
path['rectangle'] = []
ext_geo = Polygon(geo)
ext_geo = ext_geo.buffer(0.000001, resolution=self.step_per_circles)
# ext_geo = affinity.scale(ext_geo, scale_geo[0], scale_geo[1])
# off_x = offset_geo[0]
# off_y = offset_geo[1]
#
# ext_geo = affinity.translate(ext_geo, off_x, off_y)
try:
apertures_dict[str(aperture)]['solid_geometry'].append(deepcopy(ext_geo))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['solid_geometry'] = []
apertures_dict['0']['size'] = size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['solid_geometry'].append(deepcopy(ext_geo))
continue
return apertures_dict
def bezier_to_points(self, start, c1, c2, stop):
"""
From here: https://gis.stackexchange.com/questions/106937/python-library-or-algorithm-to-generate-arc-geometry-from-three-coordinate-pairs
# Equation Bezier, page 184 PDF 1.4 reference
# https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
# Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
# in the following equation:
# R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
# When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
# with the final point P3. Intermediate values of t generate intermediate points along the curve.
# The curve does not, in general, pass through the two control points P1 and P2
:return: LineString geometry
"""
coords = np.array([[0, 0], [25, 10], [33, 39], [53, 53]])
# equation Bezier, page 184 PDF 1.4 reference
# https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
# R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - 5) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
# here we store the geometric points
points = []
domain = []
i = 0
while i <=1:
domain.append(i)
for i in domain:
nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
for t in nr_points:
term_p0 = (1 - t) ** 3
term_p1 = 3 * t * (1 - t) ** 2
term_p2 = 3 * (1 - t) * t ** 2
term_p3 = t ** 3
return even_line
x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
points.append([x, y])
return points
# def bezier_to_circle(self, path):
# lst = []
# for el in range(len(path)):
# if type(path) is list:
# for coord in path[el]:
# lst.append(coord)
# else:
# lst.append(el)
#
# if lst:
# minx = min(lst, key=lambda t: t[0])[0]
# miny = min(lst, key=lambda t: t[1])[1]
# maxx = max(lst, key=lambda t: t[0])[0]
# maxy = max(lst, key=lambda t: t[1])[1]
# center = (maxx-minx, maxy-miny)
# radius = (maxx-minx) / 2
# return [center, radius]
#
# def circle_to_points(self, center, radius):
# geo = Point(center).buffer(radius, resolution=self.step_per_circles)
# return LineString(list(geo.exterior.coords))
#