flatcam/appEditors/AppGerberEditor.py

6479 lines
267 KiB
Python

# ##########################################################
# FlatCAM: 2D Post-processing for Manufacturing #
# File Author: Marius Adrian Stanciu (c) #
# Date: 8/17/2019 #
# MIT Licence #
# ##########################################################
from PyQt5 import QtGui, QtCore, QtWidgets
from PyQt5.QtCore import Qt
from shapely.geometry import LineString, LinearRing, MultiLineString, Point, Polygon, MultiPolygon, box
from shapely.ops import unary_union
import shapely.affinity as affinity
from vispy.geometry import Rect
from copy import copy, deepcopy
import logging
from camlib import distance, arc, three_point_circle
from appGUI.GUIElements import FCEntry, FCComboBox, FCTable, FCDoubleSpinner, FCSpinner, RadioSet, EvalEntry2, \
FCInputDialog, FCButton, OptionalInputSection, FCCheckBox, NumericalEvalTupleEntry, FCComboBox2, FCLabel
from appTool import AppTool
import numpy as np
from numpy.linalg import norm as numpy_norm
import math
# from vispy.io import read_png
# import pngcanvas
import traceback
import gettext
import appTranslation as fcTranslate
import builtins
fcTranslate.apply_language('strings')
if '_' not in builtins.__dict__:
_ = gettext.gettext
log = logging.getLogger('base')
class DrawToolShape(object):
"""
Encapsulates "shapes" under a common class.
"""
tolerance = None
@staticmethod
def get_pts(o):
"""
Returns a list of all points in the object, where
the object can be a Polygon, Not a polygon, or a list
of such. Search is done recursively.
:param: geometric object
:return: List of points
:rtype: list
"""
pts = []
# ## Iterable: descend into each item.
try:
for sub_o in o:
pts += DrawToolShape.get_pts(sub_o)
# Non-iterable
except TypeError:
if o is not None:
# DrawToolShape: descend into .geo.
if isinstance(o, DrawToolShape):
pts += DrawToolShape.get_pts(o.geo)
# ## Descend into .exerior and .interiors
elif type(o) == Polygon:
pts += DrawToolShape.get_pts(o.exterior)
for i in o.interiors:
pts += DrawToolShape.get_pts(i)
elif type(o) == MultiLineString:
for line in o:
pts += DrawToolShape.get_pts(line)
# ## Has .coords: list them.
else:
if DrawToolShape.tolerance is not None:
pts += list(o.simplify(DrawToolShape.tolerance).coords)
else:
pts += list(o.coords)
else:
return
return pts
def __init__(self, geo=None):
# Shapely type or list of such
self.geo = geo
self.utility = False
class DrawToolUtilityShape(DrawToolShape):
"""
Utility shapes are temporary geometry in the editor
to assist in the creation of shapes. For example it
will show the outline of a rectangle from the first
point to the current mouse pointer before the second
point is clicked and the final geometry is created.
"""
def __init__(self, geo=None):
super(DrawToolUtilityShape, self).__init__(geo=geo)
self.utility = True
class DrawTool(object):
"""
Abstract Class representing a tool in the drawing
program. Can generate geometry, including temporary
utility geometry that is updated on user clicks
and mouse motion.
"""
def __init__(self, draw_app):
self.draw_app = draw_app
self.complete = False
self.points = []
self.geometry = None # DrawToolShape or None
def click(self, point):
"""
:param point: [x, y] Coordinate pair.
"""
return ""
def click_release(self, point):
"""
:param point: [x, y] Coordinate pair.
"""
return ""
def on_key(self, key):
# Jump to coords
if key == QtCore.Qt.Key_J or key == 'J':
self.draw_app.app.on_jump_to()
def utility_geometry(self, data=None):
return None
@staticmethod
def bounds(obj):
def bounds_rec(o):
if type(o) is list:
minx = np.Inf
miny = np.Inf
maxx = -np.Inf
maxy = -np.Inf
for k in o:
try:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
except Exception as e:
log.debug("camlib.Gerber.bounds() --> %s" % str(e))
return
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
if 'solid' in o.geo:
return o.geo['solid'].bounds
return bounds_rec(obj)
class ShapeToolEditorGrb(DrawTool):
"""
Abstract class for tools that create a shape.
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = None
def make(self):
pass
class PadEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'pad'
self.draw_app = draw_app
self.dont_execute = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_circle.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
try:
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.dont_execute = True
self.draw_app.in_action = False
self.complete = True
self.draw_app.select_tool('select')
return
if self.radius == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size is zero. It needs to be greater than zero."))
self.dont_execute = True
return
else:
self.dont_execute = False
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
if isinstance(geo, DrawToolShape) and geo.geo is not None:
self.draw_app.draw_utility_geometry(geo=geo)
self.draw_app.app.inform.emit(_("Click to place ..."))
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
# Switch notebook to Properties page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.properties_tab)
self.start_msg = _("Click to place ...")
def click(self, point):
self.make()
return "Done."
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
self.points = data
geo_data = self.util_shape(data)
if geo_data:
return DrawToolUtilityShape(geo_data)
else:
return None
def util_shape(self, point):
# updating values here allows us to change the aperture on the fly, after the Tool has been started
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
if point[0] is None and point[1] is None:
point_x = self.draw_app.x
point_y = self.draw_app.y
else:
point_x = point[0]
point_y = point[1]
ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type']
if ap_type == 'C':
new_geo_el = {}
center = Point([point_x, point_y])
new_geo_el['solid'] = center.buffer(self.radius)
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'R':
new_geo_el = {}
p1 = (point_x - self.half_width, point_y - self.half_height)
p2 = (point_x + self.half_width, point_y - self.half_height)
p3 = (point_x + self.half_width, point_y + self.half_height)
p4 = (point_x - self.half_width, point_y + self.half_height)
center = Point([point_x, point_y])
new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1])
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'O':
geo = []
new_geo_el = {}
if self.half_height > self.half_width:
p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width)
p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width)
p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width)
p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width)
down_center = [point_x, point_y - self.half_height + self.half_width]
d_start_angle = np.pi
d_stop_angle = 0.0
down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
up_center = [point_x, point_y + self.half_height - self.half_width]
u_start_angle = 0.0
u_stop_angle = np.pi
up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
for pt in down_arc:
geo.append(pt)
geo.append(p2)
geo.append(p3)
for pt in up_arc:
geo.append(pt)
geo.append(p4)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height)
p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height)
p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height)
p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height)
left_center = [point_x - self.half_width + self.half_height, point_y]
d_start_angle = np.pi / 2
d_stop_angle = 1.5 * np.pi
left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
right_center = [point_x + self.half_width - self.half_height, point_y]
u_start_angle = 1.5 * np.pi
u_stop_angle = np.pi / 2
right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
geo.append(p2)
for pt in right_arc:
geo.append(pt)
geo.append(p3)
geo.append(p4)
for pt in left_arc:
geo.append(pt)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
self.draw_app.app.inform.emit(_(
"Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'."))
return None
def make(self):
self.draw_app.current_storage = self.storage_obj
try:
self.geometry = DrawToolShape(self.util_shape(self.points))
except Exception as e:
log.debug("PadEditorGrb.make() --> %s" % str(e))
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
self.draw_app.app.jump_signal.disconnect()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class PadArrayEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: MultiPolygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'array'
self.draw_app = draw_app
self.dont_execute = False
try:
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
self.complete = True
self.dont_execute = True
self.draw_app.in_action = False
self.draw_app.ui.array_frame.hide()
self.draw_app.select_tool('select')
return
if self.radius == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size is zero. It needs to be greater than zero."))
self.dont_execute = True
return
else:
self.dont_execute = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_array.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
self.draw_app.ui.array_frame.show()
self.selected_size = None
self.pad_axis = 'X'
self.pad_array = 0 # 'linear'
self.pad_array_size = None
self.pad_pitch = None
self.pad_linear_angle = None
self.pad_angle = None
self.pad_direction = None
self.pad_radius = None
self.origin = None
self.destination = None
self.flag_for_circ_array = None
self.last_dx = 0
self.last_dy = 0
self.pt = []
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y), static=True)
if isinstance(geo, DrawToolShape) and geo.geo is not None:
self.draw_app.draw_utility_geometry(geo=geo)
self.draw_app.app.inform.emit(_("Click on target location ..."))
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
# Switch notebook to Properties page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.properties_tab)
def click(self, point):
if self.draw_app.ui.array_type_combo.get_value() == 0: # 'Linear'
self.make()
return
else:
if self.flag_for_circ_array is None:
self.draw_app.in_action = True
self.pt.append(point)
self.flag_for_circ_array = True
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click on the Pad Circular Array Start position"))
else:
self.destination = point
self.make()
self.flag_for_circ_array = None
return
def set_origin(self, origin):
self.origin = origin
def utility_geometry(self, data=None, static=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
self.pad_axis = self.draw_app.ui.pad_axis_radio.get_value()
self.pad_direction = self.draw_app.ui.pad_direction_radio.get_value()
self.pad_array = self.draw_app.ui.array_type_combo.get_value()
try:
self.pad_array_size = int(self.draw_app.ui.pad_array_size_entry.get_value())
try:
self.pad_pitch = float(self.draw_app.ui.pad_pitch_entry.get_value())
self.pad_linear_angle = float(self.draw_app.ui.linear_angle_spinner.get_value())
self.pad_angle = float(self.draw_app.ui.pad_angle_entry.get_value())
except TypeError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("The value is not Float. Check for comma instead of dot separator."))
return
except Exception:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' % _("The value is mistyped. Check the value."))
return
if self.pad_array == 0: # 'Linear'
if data[0] is None and data[1] is None:
dx = self.draw_app.x
dy = self.draw_app.y
else:
dx = data[0]
dy = data[1]
geo_el_list = []
geo_el = []
self.points = [dx, dy]
for item in range(self.pad_array_size):
if self.pad_axis == 'X':
geo_el = self.util_shape(((dx + (self.pad_pitch * item)), dy))
if self.pad_axis == 'Y':
geo_el = self.util_shape((dx, (dy + (self.pad_pitch * item))))
if self.pad_axis == 'A':
x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle))
y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle))
geo_el = self.util_shape(
((dx + (x_adj * item)), (dy + (y_adj * item)))
)
if static is None or static is False:
new_geo_el = {}
if 'solid' in geo_el:
new_geo_el['solid'] = affinity.translate(
geo_el['solid'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy)
)
if 'follow' in geo_el:
new_geo_el['follow'] = affinity.translate(
geo_el['follow'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy)
)
geo_el_list.append(new_geo_el)
else:
geo_el_list.append(geo_el)
# self.origin = data
self.last_dx = dx
self.last_dy = dy
return DrawToolUtilityShape(geo_el_list)
else: # 'Circular'
if data[0] is None and data[1] is None:
cdx = self.draw_app.x
cdy = self.draw_app.y
else:
cdx = data[0]
cdy = data[1]
if len(self.pt) > 0:
temp_points = [x for x in self.pt]
temp_points.append([cdx, cdy])
return DrawToolUtilityShape(LineString(temp_points))
def util_shape(self, point):
# updating values here allows us to change the aperture on the fly, after the Tool has been started
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
if point[0] is None and point[1] is None:
point_x = self.draw_app.x
point_y = self.draw_app.y
else:
point_x = point[0]
point_y = point[1]
ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type']
if ap_type == 'C':
new_geo_el = {}
center = Point([point_x, point_y])
new_geo_el['solid'] = center.buffer(self.radius)
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'R':
new_geo_el = {}
p1 = (point_x - self.half_width, point_y - self.half_height)
p2 = (point_x + self.half_width, point_y - self.half_height)
p3 = (point_x + self.half_width, point_y + self.half_height)
p4 = (point_x - self.half_width, point_y + self.half_height)
new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1])
new_geo_el['follow'] = Point([point_x, point_y])
return new_geo_el
elif ap_type == 'O':
geo = []
new_geo_el = {}
if self.half_height > self.half_width:
p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width)
p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width)
p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width)
p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width)
down_center = [point_x, point_y - self.half_height + self.half_width]
d_start_angle = np.pi
d_stop_angle = 0.0
down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
up_center = [point_x, point_y + self.half_height - self.half_width]
u_start_angle = 0.0
u_stop_angle = np.pi
up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
for pt in down_arc:
geo.append(pt)
geo.append(p2)
geo.append(p3)
for pt in up_arc:
geo.append(pt)
geo.append(p4)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height)
p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height)
p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height)
p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height)
left_center = [point_x - self.half_width + self.half_height, point_y]
d_start_angle = np.pi / 2
d_stop_angle = 1.5 * np.pi
left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
right_center = [point_x + self.half_width - self.half_height, point_y]
u_start_angle = 1.5 * np.pi
u_stop_angle = np.pi / 2
right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
geo.append(p2)
for pt in right_arc:
geo.append(pt)
geo.append(p3)
geo.append(p4)
for pt in left_arc:
geo.append(pt)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
self.draw_app.app.inform.emit(_(
"Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'."))
return None
def make(self):
self.geometry = []
geo = None
self.draw_app.current_storage = self.storage_obj
if self.pad_array == 0: # 'Linear'
for item in range(self.pad_array_size):
if self.pad_axis == 'X':
geo = self.util_shape(((self.points[0] + (self.pad_pitch * item)), self.points[1]))
if self.pad_axis == 'Y':
geo = self.util_shape((self.points[0], (self.points[1] + (self.pad_pitch * item))))
if self.pad_axis == 'A':
x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle))
y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle))
geo = self.util_shape(
((self.points[0] + (x_adj * item)), (self.points[1] + (y_adj * item)))
)
self.geometry.append(DrawToolShape(geo))
else: # 'Circular'
if (self.pad_angle * self.pad_array_size) > 360:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Too many items for the selected spacing angle."))
return
radius = distance(self.destination, self.origin)
initial_angle = math.asin((self.destination[1] - self.origin[1]) / radius)
for i in range(self.pad_array_size):
angle_radians = math.radians(self.pad_angle * i)
if self.pad_direction == 'CW':
x = self.origin[0] + radius * math.cos(-angle_radians + initial_angle)
y = self.origin[1] + radius * math.sin(-angle_radians + initial_angle)
else:
x = self.origin[0] + radius * math.cos(angle_radians + initial_angle)
y = self.origin[1] + radius * math.sin(angle_radians + initial_angle)
geo = self.util_shape((x, y))
if self.pad_direction == 'CW':
geo = affinity.rotate(geo, angle=(math.pi - angle_radians), use_radians=True)
else:
geo = affinity.rotate(geo, angle=(angle_radians - math.pi), use_radians=True)
self.geometry.append(DrawToolShape(geo))
self.complete = True
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
self.draw_app.in_action = False
self.draw_app.ui.array_frame.hide()
self.draw_app.app.jump_signal.disconnect()
def on_key(self, key):
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if key_modifier == QtCore.Qt.ShiftModifier:
mod_key = 'Shift'
elif key_modifier == QtCore.Qt.ControlModifier:
mod_key = 'Control'
else:
mod_key = None
if mod_key == 'Control':
pass
elif mod_key is None:
# Toggle Drill Array Direction
if key == QtCore.Qt.Key_Space:
if self.draw_app.ui.pad_axis_radio.get_value() == 'X':
self.draw_app.ui.pad_axis_radio.set_value('Y')
elif self.draw_app.ui.pad_axis_radio.get_value() == 'Y':
self.draw_app.ui.pad_axis_radio.set_value('A')
elif self.draw_app.ui.pad_axis_radio.get_value() == 'A':
self.draw_app.ui.pad_axis_radio.set_value('X')
# ## Utility geometry (animated)
self.draw_app.update_utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class PoligonizeEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'poligonize'
self.draw_app = draw_app
self.draw_app.app.inform.emit(_("Select shape(s) and then click ..."))
self.draw_app.in_action = True
self.make()
def click(self, point):
return ""
def make(self):
if not self.draw_app.selected:
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed. Nothing selected."))
self.draw_app.select_tool("select")
return
apcode_set = set()
for elem in self.draw_app.selected:
for apcode in self.draw_app.storage_dict:
if 'geometry' in self.draw_app.storage_dict[apcode]:
if elem in self.draw_app.storage_dict[apcode]['geometry']:
apcode_set.add(apcode)
break
if len(apcode_set) > 1:
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Failed. Poligonize works only on geometries belonging "
"to the same aperture."))
self.draw_app.select_tool("select")
return
# exterior_geo = [Polygon(sh.geo.exterior) for sh in self.draw_app.selected]
exterior_geo = []
for geo_shape in self.draw_app.selected:
geometric_data = geo_shape.geo
if 'solid' in geometric_data:
exterior_geo.append(Polygon(geometric_data['solid'].exterior))
fused_geo = MultiPolygon(exterior_geo)
fused_geo = fused_geo.buffer(0.0000001)
current_storage = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
if isinstance(fused_geo, MultiPolygon):
for geo in fused_geo:
# clean-up the geo
geo = geo.buffer(0)
if len(geo.interiors) == 0:
try:
current_storage = self.draw_app.storage_dict['0']['geometry']
except KeyError:
self.draw_app.on_aperture_add(apcode='0')
current_storage = self.draw_app.storage_dict['0']['geometry']
new_el = {'solid': geo, 'follow': geo.exterior}
self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el)))
else:
# clean-up the geo
fused_geo = fused_geo.buffer(0)
if len(fused_geo.interiors) == 0 and len(exterior_geo) == 1:
try:
current_storage = self.draw_app.storage_dict['0']['geometry']
except KeyError:
self.draw_app.on_aperture_add(apcode='0')
current_storage = self.draw_app.storage_dict['0']['geometry']
new_el = {'solid': fused_geo, 'follow': fused_geo.exterior}
self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el)))
self.draw_app.delete_selected()
self.draw_app.plot_all()
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.draw_app.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
# if modifier key is pressed then we add to the selected list the current shape but if it's already
# in the selected list, we removed it. Therefore first click selects, second deselects.
if key_modifier == modifier_to_use:
self.draw_app.select_tool(self.draw_app.active_tool.name)
else:
self.draw_app.select_tool("select")
return
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
class RegionEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'region'
self.draw_app = draw_app
self.dont_execute = False
self.steps_per_circle = self.draw_app.app.defaults["gerber_circle_steps"]
try:
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.dont_execute = True
self.draw_app.in_action = False
self.complete = True
self.draw_app.select_tool('select')
return
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
self.temp_points = []
# this will store the inflexion point in the geometry
self.inter_point = None
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.RegionEditorGrb --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
self.draw_app.app.inform.emit(_('Corner Mode 1: 45 degrees ...'))
self.start_msg = _("Click on 1st point ...")
def click(self, point):
self.draw_app.in_action = True
if self.inter_point is not None:
self.points.append(self.inter_point)
self.points.append(point)
if len(self.points) > 0:
self.draw_app.app.inform.emit(_("Click on next Point or click right mouse button to complete ..."))
return "Click on next point or hit ENTER to complete ..."
return ""
def update_grid_info(self):
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
new_geo_el = {}
x = data[0]
y = data[1]
if len(self.points) == 0:
new_geo_el['solid'] = Point(data).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
if len(self.points) == 1:
self.temp_points = [x for x in self.points]
old_x = self.points[0][0]
old_y = self.points[0][1]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if mx and my:
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode != 5:
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
elif self.draw_app.bend_mode == 3:
self.inter_point = (x, old_y)
elif self.draw_app.bend_mode == 4:
self.inter_point = (old_x, y)
if self.inter_point is not None:
self.temp_points.append(self.inter_point)
else:
self.inter_point = data
else:
self.inter_point = data
self.temp_points.append(data)
new_geo_el = {}
if len(self.temp_points) > 1:
try:
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=1)
return DrawToolUtilityShape(new_geo_el)
except Exception as e:
log.debug("AppGerberEditor.RegionEditorGrb.utility_geometry() --> %s" % str(e))
else:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
if len(self.points) > 2:
self.temp_points = [x for x in self.points]
old_x = self.points[-1][0]
old_y = self.points[-1][1]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if mx and my:
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode != 5:
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
elif self.draw_app.bend_mode == 3:
self.inter_point = (x, old_y)
elif self.draw_app.bend_mode == 4:
self.inter_point = (old_x, y)
self.temp_points.append(self.inter_point)
self.temp_points.append(data)
new_geo_el = {
'solid': LinearRing(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=1),
'follow': LinearRing(self.temp_points)}
return DrawToolUtilityShape(new_geo_el)
return None
def make(self):
# self.geometry = LinearRing(self.points)
if len(self.points) > 2:
# regions are added always in the '0' aperture
if '0' not in self.draw_app.storage_dict:
self.draw_app.on_aperture_add(apcode='0')
else:
self.draw_app.last_aperture_selected = '0'
new_geo_el = {
'solid': Polygon(self.points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=2), 'follow': Polygon(self.points).exterior
}
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.jump_signal.disconnect()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
def on_key(self, key):
# Jump to coords
if key == QtCore.Qt.Key_J or key == 'J':
self.draw_app.app.on_jump_to()
if key == 'Backspace' or key == QtCore.Qt.Key_Backspace:
if len(self.points) > 0:
if self.draw_app.bend_mode == 5:
self.points = self.points[0:-1]
else:
self.points = self.points[0:-2]
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return _("Backtracked one point ...")
if key == 'T' or key == QtCore.Qt.Key_T:
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 2
msg = _('Corner Mode 2: Reverse 45 degrees ...')
elif self.draw_app.bend_mode == 2:
self.draw_app.bend_mode = 3
msg = _('Corner Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 4
msg = _('Corner Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 5
msg = _('Corner Mode 5: Free angle ...')
else:
self.draw_app.bend_mode = 1
msg = _('Corner Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
if key == 'R' or key == QtCore.Qt.Key_R:
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 5
msg = _('Corner Mode 5: Free angle ...')
elif self.draw_app.bend_mode == 5:
self.draw_app.bend_mode = 4
msg = _('Corner Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 3
msg = _('Corner Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 2
msg = _('Corner Mode 2: Reverse 45 degrees ...')
else:
self.draw_app.bend_mode = 1
msg = _('Corner Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class TrackEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'track'
self.draw_app = draw_app
self.dont_execute = False
self.steps_per_circle = self.draw_app.app.defaults["gerber_circle_steps"]
try:
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.dont_execute = True
self.draw_app.in_action = False
self.complete = True
self.draw_app.select_tool('select')
return
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
self.temp_points = []
self.final_click = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.TrackEditorGrb.__init__() --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location +
'/aero_path%s.png' % self.draw_app.bend_mode))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
self.draw_app.app.inform.emit(_('Track Mode 1: 45 degrees ...'))
def click(self, point):
self.draw_app.in_action = True
if not self.points:
self.points.append(point)
elif point != self.points[-1]:
self.points.append(point)
else:
return
new_geo_el = {}
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
new_geo_el['follow'] = Point(self.temp_points)
else:
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
new_geo_el['follow'] = LineString(self.temp_points)
self.draw_app.add_gerber_shape(DrawToolShape(new_geo_el),
self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'])
self.draw_app.plot_all()
if len(self.points) > 0:
self.draw_app.app.inform.emit(_("Click on next Point or click right mouse button to complete ..."))
return "Click on next point or hit ENTER to complete ..."
return ""
def update_grid_info(self):
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
self.update_grid_info()
new_geo_el = {}
if not self.points:
new_geo_el['solid'] = Point(data).buffer(self.buf_val, int(self.steps_per_circle))
return DrawToolUtilityShape(new_geo_el)
else:
old_x = self.points[-1][0]
old_y = self.points[-1][1]
x = data[0]
y = data[1]
self.temp_points = [self.points[-1]]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.temp_points.append((old_x + self.gridx_size*(mx-my), old_y))
if mx < my:
if y < old_y:
self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx)))
else:
self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my)))
if x < old_x:
if mx > my:
self.temp_points.append((old_x - self.gridx_size*(mx-my), old_y))
if mx < my:
if y < old_y:
self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx)))
else:
self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my)))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.temp_points.append((old_x + self.gridx_size*my, y))
if mx < my:
if y < old_y:
self.temp_points.append((x, old_y - self.gridy_size * mx))
else:
self.temp_points.append((x, old_y + self.gridy_size * mx))
if x < old_x:
if mx > my:
self.temp_points.append((old_x - self.gridx_size * my, y))
if mx < my:
if y < old_y:
self.temp_points.append((x, old_y - self.gridy_size * mx))
else:
self.temp_points.append((x, old_y + self.gridy_size * mx))
elif self.draw_app.bend_mode == 3:
self.temp_points.append((x, old_y))
elif self.draw_app.bend_mode == 4:
self.temp_points.append((old_x, y))
else:
pass
self.temp_points.append(data)
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
return DrawToolUtilityShape(new_geo_el)
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
return DrawToolUtilityShape(new_geo_el)
def make(self):
new_geo_el = {}
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
new_geo_el['follow'] = Point(self.temp_points)
else:
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, int(self.steps_per_circle))
new_geo_el['solid'] = new_geo_el['solid'].buffer(0) # try to clean the geometry
new_geo_el['follow'] = LineString(self.temp_points)
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.jump_signal.disconnect()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
def on_key(self, key):
if key == 'Backspace' or key == QtCore.Qt.Key_Backspace:
if len(self.points) > 0:
self.temp_points = self.points[0:-1]
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return _("Backtracked one point ...")
# Jump to coords
if key == QtCore.Qt.Key_J or key == 'J':
self.draw_app.app.on_jump_to()
if key == 'T' or key == QtCore.Qt.Key_T:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.TrackEditorGrb.on_key() --> %s" % str(e))
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 2
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path2.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 2: Reverse 45 degrees ...')
elif self.draw_app.bend_mode == 2:
self.draw_app.bend_mode = 3
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path3.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 4
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path4.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 5
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path5.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 5: Free angle ...')
else:
self.draw_app.bend_mode = 1
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path1.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
if key == 'R' or key == QtCore.Qt.Key_R:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.TrackEditorGrb.on_key() --> %s" % str(e))
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 5
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path5.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 5: Free angle ...')
elif self.draw_app.bend_mode == 5:
self.draw_app.bend_mode = 4
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path4.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 3
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path3.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 2
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path2.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 2: Reverse 45 degrees ...')
else:
self.draw_app.bend_mode = 1
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path1.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class DiscEditorGrb(ShapeToolEditorGrb):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'disc'
self.dont_execute = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_disc.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
try:
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.dont_execute = True
self.draw_app.in_action = False
self.complete = True
self.draw_app.select_tool('select')
return
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
if '0' in self.draw_app.storage_dict:
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
else:
self.draw_app.storage_dict['0'] = {
'type': 'C',
'size': 0.0,
'geometry': []
}
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
self.draw_app.app.inform.emit(_("Click on Center point ..."))
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"]
def click(self, point):
self.points.append(point)
if len(self.points) == 1:
self.draw_app.app.inform.emit(_("Click on Perimeter point to complete ..."))
return "Click on Perimeter to complete ..."
if len(self.points) == 2:
self.make()
return "Done."
return ""
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
new_geo_el = {}
if len(self.points) == 1:
p1 = self.points[0]
p2 = data
radius = math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4))
return DrawToolUtilityShape(new_geo_el)
return None
def make(self):
new_geo_el = {}
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.DiscEditorGrb --> %s" % str(e))
self.draw_app.current_storage = self.storage_obj
p1 = self.points[0]
p2 = self.points[1]
radius = distance(p1, p2)
new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4))
new_geo_el['follow'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4)).exterior
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.jump_signal.disconnect()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class DiscSemiEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'semidisc'
self.dont_execute = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.DiscSemiEditorGrb --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_semidisc.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.inform.emit(_("Click on Center point ..."))
# Direction of rotation between point 1 and 2.
# 'cw' or 'ccw'. Switch direction by hitting the
# 'o' key.
self.direction = "cw"
# Mode
# C12 = Center, p1, p2
# 12C = p1, p2, Center
# 132 = p1, p3, p2
self.mode = "c12" # Center, p1, p2
try:
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
except KeyError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("You need to preselect a aperture in the Aperture Table that has a size."))
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception:
pass
self.dont_execute = True
self.draw_app.in_action = False
self.complete = True
self.draw_app.select_tool('select')
return
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
if '0' in self.draw_app.storage_dict:
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
else:
self.draw_app.storage_dict['0'] = {
'type': 'C',
'size': 0.0,
'geometry': []
}
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"]
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
def click(self, point):
self.points.append(point)
if len(self.points) == 1:
if self.mode == 'c12':
self.draw_app.app.inform.emit(_("Click on Start point ..."))
elif self.mode == '132':
self.draw_app.app.inform.emit(_("Click on Point3 ..."))
else:
self.draw_app.app.inform.emit(_("Click on Stop point ..."))
return "Click on 1st point ..."
if len(self.points) == 2:
if self.mode == 'c12':
self.draw_app.app.inform.emit(_("Click on Stop point to complete ..."))
elif self.mode == '132':
self.draw_app.app.inform.emit(_("Click on Point2 to complete ..."))
else:
self.draw_app.app.inform.emit(_("Click on Center point to complete ..."))
return "Click on 2nd point to complete ..."
if len(self.points) == 3:
self.make()
return "Done."
return ""
def on_key(self, key):
if key == 'D' or key == QtCore.Qt.Key_D:
self.direction = 'cw' if self.direction == 'ccw' else 'ccw'
return '%s: %s' % (_('Direction'), self.direction.upper())
# Jump to coords
if key == QtCore.Qt.Key_J or key == 'J':
self.draw_app.app.on_jump_to()
if key == 'M' or key == QtCore.Qt.Key_M:
# delete the possible points made before this action; we want to start anew
self.points = []
# and delete the utility geometry made up until this point
self.draw_app.delete_utility_geometry()
if self.mode == 'c12':
self.mode = '12c'
return _('Mode: Start -> Stop -> Center. Click on Start point ...')
elif self.mode == '12c':
self.mode = '132'
return _('Mode: Point1 -> Point3 -> Point2. Click on Point1 ...')
else:
self.mode = 'c12'
return _('Mode: Center -> Start -> Stop. Click on Center point ...')
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
new_geo_el = {}
new_geo_el_pt1 = {}
new_geo_el_pt2 = {}
new_geo_el_pt3 = {}
if len(self.points) == 1: # Show the radius
center = self.points[0]
p1 = data
new_geo_el['solid'] = LineString([center, p1])
return DrawToolUtilityShape(new_geo_el)
if len(self.points) == 2: # Show the arc
if self.mode == 'c12':
center = self.points[0]
p1 = self.points[1]
p2 = data
radius = np.sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2) + (self.buf_val / 2)
startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = np.arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ))
new_geo_el_pt1['solid'] = Point(center)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt1])
elif self.mode == '132':
p1 = np.array(self.points[0])
p3 = np.array(self.points[1])
p2 = np.array(data)
try:
center, radius, t = three_point_circle(p1, p2, p3)
except TypeError:
return
direction = 'cw' if np.sign(t) > 0 else 'ccw'
radius += (self.buf_val / 2)
startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = np.arctan2(p3[1] - center[1], p3[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, direction, self.steps_per_circ))
new_geo_el_pt2['solid'] = Point(center)
new_geo_el_pt1['solid'] = Point(p1)
new_geo_el_pt3['solid'] = Point(p3)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2, new_geo_el_pt1, new_geo_el_pt3])
else: # '12c'
p1 = np.array(self.points[0])
p2 = np.array(self.points[1])
# Midpoint
a = (p1 + p2) / 2.0
# Parallel vector
c = p2 - p1
# Perpendicular vector
b = np.dot(c, np.array([[0, -1], [1, 0]], dtype=np.float32))
b /= numpy_norm(b)
# Distance
t = distance(data, a)
# Which side? Cross product with c.
# cross(M-A, B-A), where line is AB and M is test point.
side = (data[0] - p1[0]) * c[1] - (data[1] - p1[1]) * c[0]
t *= np.sign(side)
# Center = a + bt
center = a + b * t
radius = numpy_norm(center - p1) + (self.buf_val / 2)
startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = np.arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ))
new_geo_el_pt2['solid'] = Point(center)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2])
return None
def make(self):
self.draw_app.current_storage = self.storage_obj
new_geo_el = {}
if self.mode == 'c12':
center = self.points[0]
p1 = self.points[1]
p2 = self.points[2]
radius = distance(center, p1) + (self.buf_val / 2)
start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = np.arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
elif self.mode == '132':
p1 = np.array(self.points[0])
p3 = np.array(self.points[1])
p2 = np.array(self.points[2])
center, radius, t = three_point_circle(p1, p2, p3)
direction = 'cw' if np.sign(t) > 0 else 'ccw'
radius += (self.buf_val / 2)
start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = np.arctan2(p3[1] - center[1], p3[0] - center[0])
new_geo_el['solid'] = Polygon(arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
else: # self.mode == '12c'
p1 = np.array(self.points[0])
p2 = np.array(self.points[1])
pc = np.array(self.points[2])
# Midpoint
a = (p1 + p2) / 2.0
# Parallel vector
c = p2 - p1
# Perpendicular vector
b = np.dot(c, np.array([[0, -1], [1, 0]], dtype=np.float32))
b /= numpy_norm(b)
# Distance
t = distance(pc, a)
# Which side? Cross product with c.
# cross(M-A, B-A), where line is AB and M is test point.
side = (pc[0] - p1[0]) * c[1] - (pc[1] - p1[1]) * c[0]
t *= np.sign(side)
# Center = a + bt
center = a + b * t
radius = numpy_norm(center - p1) + (self.buf_val / 2)
start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = np.arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.jump_signal.disconnect()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
class ScaleEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
ShapeToolEditorGrb.__init__(self, draw_app)
self.name = 'scale'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Scale the selected Gerber apertures ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_scale()
def activate_scale(self):
self.draw_app.hide_tool('all')
self.draw_app.ui.scale_tool_frame.show()
try:
self.draw_app.ui.scale_button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.ui.scale_button.clicked.connect(self.on_scale_click)
def deactivate_scale(self):
self.draw_app.ui.scale_button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_scale_click(self):
self.draw_app.on_scale()
self.deactivate_scale()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
class BufferEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
ShapeToolEditorGrb.__init__(self, draw_app)
self.name = 'buffer'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Buffer the selected apertures ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_buffer()
def activate_buffer(self):
self.draw_app.hide_tool('all')
self.draw_app.ui.buffer_tool_frame.show()
try:
self.draw_app.ui.buffer_button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.ui.buffer_button.clicked.connect(self.on_buffer_click)
def deactivate_buffer(self):
self.draw_app.ui.buffer_button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_buffer_click(self):
self.draw_app.on_buffer()
self.deactivate_buffer()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
class MarkEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
ShapeToolEditorGrb.__init__(self, draw_app)
self.name = 'markarea'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Mark polygon areas in the edited Gerber ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_markarea()
def activate_markarea(self):
self.draw_app.ui.ma_tool_frame.show()
# clear previous marking
self.draw_app.ui.ma_annotation.clear(update=True)
try:
self.draw_app.ui.ma_threshold_button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.ui.ma_threshold_button.clicked.connect(self.on_markarea_click)
try:
self.draw_app.ui.ma_delete_button.clicked.disconnect()
except TypeError:
pass
self.draw_app.ui.ma_delete_button.clicked.connect(self.on_markarea_delete)
try:
self.draw_app.ui.ma_clear_button.clicked.disconnect()
except TypeError:
pass
self.draw_app.ui.ma_clear_button.clicked.connect(self.on_markarea_clear)
def deactivate_markarea(self):
self.draw_app.ui.ma_threshold_button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_markarea_click(self):
self.draw_app.on_markarea()
def on_markarea_clear(self):
self.draw_app.ma_annotation.clear(update=True)
self.deactivate_markarea()
def on_markarea_delete(self):
self.draw_app.delete_marked_polygons()
self.on_markarea_clear()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
class MoveEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'move'
# self.shape_buffer = self.draw_app.shape_buffer
self.origin = None
self.destination = None
self.selected_apertures = []
if len(self.draw_app.get_selected()) == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Nothing selected to move"))
self.complete = True
self.draw_app.select_tool("select")
return
if self.draw_app.launched_from_shortcuts is True:
self.draw_app.launched_from_shortcuts = False
self.draw_app.app.inform.emit(_("Click on target location ..."))
else:
self.draw_app.app.inform.emit(_("Click on reference location ..."))
self.current_storage = None
self.geometry = []
for index in self.draw_app.ui.apertures_table.selectedIndexes():
row = index.row()
# on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings
aperture_on_row = self.draw_app.ui.apertures_table.item(row, 1).text()
self.selected_apertures.append(aperture_on_row)
# Switch notebook to Properties page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.properties_tab)
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"]
self.selection_shape = self.selection_bbox()
def set_origin(self, origin):
self.origin = origin
def click(self, point):
if len(self.draw_app.get_selected()) == 0:
return "Nothing to move."
if self.origin is None:
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click on target location ..."))
return
else:
self.destination = point
self.make()
# MS: always return to the Select Tool
self.draw_app.select_tool("select")
return
# def create_png(self):
# """
# Create a PNG file out of a list of Shapely polygons
# :return:
# """
# if len(self.draw_app.get_selected()) == 0:
# return None
#
# geo_list = [geoms.geo for geoms in self.draw_app.get_selected()]
# xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list)
#
# iwidth = (xmax - xmin)
# iwidth = int(round(iwidth))
# iheight = (ymax - ymin)
# iheight = int(round(iheight))
# c = pngcanvas.PNGCanvas(iwidth, iheight)
#
# pixels = []
# for geom in self.draw_app.get_selected():
# m = mapping(geom.geo.exterior)
# pixels += [[coord[0], coord[1]] for coord in m['coordinates']]
# for g in geom.geo.interiors:
# m = mapping(g)
# pixels += [[coord[0], coord[1]] for coord in m['coordinates']]
# c.polyline(pixels)
# pixels = []
#
# f = open("%s.png" % 'D:\\shapely_image', "wb")
# f.write(c.dump())
# f.close()
def selection_bbox(self):
geo_list = []
for select_shape in self.draw_app.get_selected():
geometric_data = select_shape.geo
geo_list.append(geometric_data['solid'])
xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list)
pt1 = (xmin, ymin)
pt2 = (xmax, ymin)
pt3 = (xmax, ymax)
pt4 = (xmin, ymax)
return Polygon([pt1, pt2, pt3, pt4])
def make(self):
# Create new geometry
dx = self.destination[0] - self.origin[0]
dy = self.destination[1] - self.origin[1]
sel_shapes_to_be_deleted = []
for sel_dia in self.selected_apertures:
self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry']
for select_shape in self.draw_app.get_selected():
if select_shape in self.current_storage:
geometric_data = select_shape.geo
new_geo_el = {}
if 'solid' in geometric_data:
new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy)
if 'follow' in geometric_data:
new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy)
if 'clear' in geometric_data:
new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy)
self.geometry.append(DrawToolShape(new_geo_el))
self.current_storage.remove(select_shape)
sel_shapes_to_be_deleted.append(select_shape)
self.draw_app.on_grb_shape_complete(self.current_storage, no_plot=True)
self.geometry = []
for shp in sel_shapes_to_be_deleted:
self.draw_app.selected.remove(shp)
sel_shapes_to_be_deleted = []
self.draw_app.plot_all()
self.draw_app.build_ui()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
self.draw_app.app.jump_signal.disconnect()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
def utility_geometry(self, data=None):
"""
Temporary geometry on screen while using this tool.
:param data:
:return:
"""
geo_list = []
if self.origin is None:
return None
if len(self.draw_app.get_selected()) == 0:
return None
dx = data[0] - self.origin[0]
dy = data[1] - self.origin[1]
if len(self.draw_app.get_selected()) <= self.sel_limit:
for geom in self.draw_app.get_selected():
new_geo_el = {}
if 'solid' in geom.geo:
new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy)
if 'follow' in geom.geo:
new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy)
if 'clear' in geom.geo:
new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy)
geo_list.append(deepcopy(new_geo_el))
return DrawToolUtilityShape(geo_list)
else:
ss_el = {'solid': affinity.translate(self.selection_shape, xoff=dx, yoff=dy)}
return DrawToolUtilityShape(ss_el)
class CopyEditorGrb(MoveEditorGrb):
def __init__(self, draw_app):
MoveEditorGrb.__init__(self, draw_app)
self.name = 'copy'
def make(self):
# Create new geometry
dx = self.destination[0] - self.origin[0]
dy = self.destination[1] - self.origin[1]
sel_shapes_to_be_deleted = []
for sel_dia in self.selected_apertures:
self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry']
for select_shape in self.draw_app.get_selected():
if select_shape in self.current_storage:
geometric_data = select_shape.geo
new_geo_el = {}
if 'solid' in geometric_data:
new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy)
if 'follow' in geometric_data:
new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy)
if 'clear' in geometric_data:
new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy)
self.geometry.append(DrawToolShape(new_geo_el))
sel_shapes_to_be_deleted.append(select_shape)
self.draw_app.on_grb_shape_complete(self.current_storage)
self.geometry = []
for shp in sel_shapes_to_be_deleted:
self.draw_app.selected.remove(shp)
sel_shapes_to_be_deleted = []
self.draw_app.build_ui()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
self.draw_app.app.jump_signal.disconnect()
class EraserEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'eraser'
self.origin = None
self.destination = None
self.selected_apertures = []
if len(self.draw_app.get_selected()) == 0:
if self.draw_app.launched_from_shortcuts is True:
self.draw_app.launched_from_shortcuts = False
self.draw_app.app.inform.emit(_("Select a shape to act as deletion area ..."))
else:
self.draw_app.app.inform.emit(_("Click to pick-up the erase shape..."))
self.current_storage = None
self.geometry = []
for index in self.draw_app.ui.apertures_table.selectedIndexes():
row = index.row()
# on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings
aperture_on_row = self.draw_app.ui.apertures_table.item(row, 1).text()
self.selected_apertures.append(aperture_on_row)
# Switch notebook to Properties page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.properties_tab)
self.draw_app.app.jump_signal.connect(lambda x: self.draw_app.update_utility_geometry(data=x))
self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"]
def set_origin(self, origin):
self.origin = origin
def click(self, point):
if len(self.draw_app.get_selected()) == 0:
self.draw_app.ui.apertures_table.clearSelection()
sel_aperture = set()
for storage in self.draw_app.storage_dict:
try:
for geo_el in self.draw_app.storage_dict[storage]['geometry']:
if 'solid' in geo_el.geo:
geometric_data = geo_el.geo['solid']
if Point(point).within(geometric_data):
self.draw_app.selected = []
self.draw_app.selected.append(geo_el)
sel_aperture.add(storage)
except KeyError:
pass
# select the aperture in the Apertures Table that is associated with the selected shape
try:
self.draw_app.ui.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("AppGerberEditor.EraserEditorGrb.click_release() --> %s" % str(e))
self.draw_app.ui.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
for aper in sel_aperture:
for row in range(self.draw_app.ui.apertures_table.rowCount()):
if str(aper) == self.draw_app.ui.apertures_table.item(row, 1).text():
self.draw_app.ui.apertures_table.selectRow(row)
self.draw_app.last_aperture_selected = aper
self.draw_app.ui.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self.draw_app.ui.apertures_table.cellPressed.connect(self.draw_app.on_row_selected)
if len(self.draw_app.get_selected()) == 0:
return "Nothing to ersase."
if self.origin is None:
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click to erase ..."))
return
else:
self.destination = point
self.make()
# self.draw_app.select_tool("select")
return
def make(self):
eraser_sel_shapes = []
# create the eraser shape from selection
for eraser_shape in self.utility_geometry(data=self.destination).geo:
temp_shape = eraser_shape['solid'].buffer(0.0000001)
temp_shape = Polygon(temp_shape.exterior)
eraser_sel_shapes.append(temp_shape)
eraser_sel_shapes = unary_union(eraser_sel_shapes)
for storage in self.draw_app.storage_dict:
try:
for geo_el in self.draw_app.storage_dict[storage]['geometry']:
if 'solid' in geo_el.geo:
geometric_data = geo_el.geo['solid']
if eraser_sel_shapes.within(geometric_data) or eraser_sel_shapes.intersects(geometric_data):
geos = geometric_data.difference(eraser_sel_shapes)
geos = geos.buffer(0)
geo_el.geo['solid'] = deepcopy(geos)
except KeyError:
pass
self.draw_app.delete_utility_geometry()
self.draw_app.plot_all()
self.draw_app.app.inform.emit('[success] %s' % _("Done."))
self.draw_app.app.jump_signal.disconnect()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.ui.apertures_table.clearSelection()
self.draw_app.plot_all()
try:
self.draw_app.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
def utility_geometry(self, data=None):
"""
Temporary geometry on screen while using this tool.
:param data:
:return:
"""
geo_list = []
if self.origin is None:
return None
if len(self.draw_app.get_selected()) == 0:
return None
dx = data[0] - self.origin[0]
dy = data[1] - self.origin[1]
for geom in self.draw_app.get_selected():
new_geo_el = {}
if 'solid' in geom.geo:
new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy)
if 'follow' in geom.geo:
new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy)
if 'clear' in geom.geo:
new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy)
geo_list.append(deepcopy(new_geo_el))
return DrawToolUtilityShape(geo_list)
class SelectEditorGrb(DrawTool):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'select'
self.origin = None
self.draw_app = draw_app
self.storage = self.draw_app.storage_dict
# self.selected = self.draw_app.selected
# here we store all shapes that were selected
self.sel_storage = []
# since SelectEditorGrb tool is activated whenever a tool is exited I place here the reinitialization of the
# bending modes using in RegionEditorGrb and TrackEditorGrb
self.draw_app.bend_mode = 1
# here store the selected apertures
self.sel_aperture = []
try:
self.draw_app.ui.apertures_table.clearSelection()
except Exception as e:
log.error("FlatCAMGerbEditor.SelectEditorGrb.__init__() --> %s" % str(e))
self.draw_app.hide_tool('all')
self.draw_app.hide_tool('select')
self.draw_app.ui.array_frame.hide()
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.SelectEditorGrb --> %s" % str(e))
try:
self.draw_app.selection_triggered.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.selection_triggered.connect(self.selection_worker)
try:
self.draw_app.plot_object.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.plot_object.connect(self.clean_up)
def set_origin(self, origin):
self.origin = origin
def click(self, point):
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if key_modifier == QtCore.Qt.ShiftModifier:
mod_key = 'Shift'
elif key_modifier == QtCore.Qt.ControlModifier:
mod_key = 'Control'
else:
mod_key = None
if mod_key == self.draw_app.app.defaults["global_mselect_key"]:
pass
else:
self.draw_app.selected = []
def click_release(self, point):
self.draw_app.ui.apertures_table.clearSelection()
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if key_modifier == QtCore.Qt.ShiftModifier:
mod_key = 'Shift'
elif key_modifier == QtCore.Qt.ControlModifier:
mod_key = 'Control'
else:
mod_key = None
if mod_key != self.draw_app.app.defaults["global_mselect_key"]:
self.draw_app.selected.clear()
self.sel_aperture.clear()
self.draw_app.selection_triggered.emit(point)
def selection_worker(self, point):
def job_thread(editor_obj):
with editor_obj.app.proc_container.new('%s' % _("Working ...")):
brake_flag = False
for storage_key, storage_val in editor_obj.storage_dict.items():
for shape_stored in storage_val['geometry']:
if 'solid' in shape_stored.geo:
geometric_data = shape_stored.geo['solid']
if Point(point).intersects(geometric_data):
if shape_stored in editor_obj.selected:
editor_obj.selected.remove(shape_stored)
else:
# add the object to the selected shapes
editor_obj.selected.append(shape_stored)
brake_flag = True
break
if brake_flag is True:
break
# ######################################################################################################
# select the aperture in the Apertures Table that is associated with the selected shape
# ######################################################################################################
self.sel_aperture.clear()
editor_obj.ui.apertures_table.clearSelection()
# disconnect signal when clicking in the table
try:
editor_obj.ui.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("AppGerberEditor.SelectEditorGrb.click_release() --> %s" % str(e))
brake_flag = False
for shape_s in editor_obj.selected:
for storage in editor_obj.storage_dict:
if shape_s in editor_obj.storage_dict[storage]['geometry']:
self.sel_aperture.append(storage)
brake_flag = True
break
if brake_flag is True:
break
# actual row selection is done here
for aper in self.sel_aperture:
for row in range(editor_obj.ui.apertures_table.rowCount()):
if str(aper) == editor_obj.ui.apertures_table.item(row, 1).text():
if not editor_obj.ui.apertures_table.item(row, 0).isSelected():
editor_obj.ui.apertures_table.selectRow(row)
editor_obj.last_aperture_selected = aper
# reconnect signal when clicking in the table
editor_obj.ui.apertures_table.cellPressed.connect(editor_obj.on_row_selected)
editor_obj.plot_object.emit(None)
self.draw_app.app.worker_task.emit({'fcn': job_thread, 'params': [self.draw_app]})
def clean_up(self):
self.draw_app.plot_all()
class TransformEditorGrb(ShapeToolEditorGrb):
def __init__(self, draw_app):
ShapeToolEditorGrb.__init__(self, draw_app)
self.name = 'transformation'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.start_msg = _("Shape transformations ...")
self.origin = (0, 0)
self.draw_app.transform_tool.run()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class AppGerberEditor(QtCore.QObject):
draw_shape_idx = -1
# plot_finished = QtCore.pyqtSignal()
mp_finished = QtCore.pyqtSignal(list)
selection_triggered = QtCore.pyqtSignal(object)
plot_object = QtCore.pyqtSignal(object)
def __init__(self, app):
# assert isinstance(app, FlatCAMApp.App), \
# "Expected the app to be a FlatCAMApp.App, got %s" % type(app)
super(AppGerberEditor, self).__init__()
self.app = app
self.canvas = self.app.plotcanvas
self.decimals = self.app.decimals
# Current application units in Upper Case
self.units = self.app.defaults['units'].upper()
self.ui = AppGerberEditorUI(self.app)
# Toolbar events and properties
self.tools_gerber = {}
# # ## Data
self.active_tool = None
self.storage_dict = {}
self.current_storage = []
self.sorted_apcode = []
self.new_apertures = {}
self.new_aperture_macros = {}
# store here the plot promises, if empty the delayed plot will be activated
self.grb_plot_promises = []
# dictionary to store the tool_row and aperture codes in Tool_table
# it will be updated everytime self.build_ui() is called
self.oldapcode_newapcode = {}
self.tid2apcode = {}
# this will store the value for the last selected tool, for use after clicking on canvas when the selection
# is cleared but as a side effect also the selected tool is cleared
self.last_aperture_selected = None
self.utility = []
# this will store the polygons marked by mark are to be perhaps deleted
self.geo_to_delete = []
# this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False)
self.launched_from_shortcuts = False
# this var will store the state of the toolbar before starting the editor
self.toolbar_old_state = False
# #############################################################################################################
# ######################### Init appGUI #######################################################################
# #############################################################################################################
self.ui.apdim_lbl.hide()
self.ui.apdim_entry.hide()
self.gerber_obj = None
self.gerber_obj_options = {}
# VisPy Visuals
if self.app.is_legacy is False:
self.shapes = self.canvas.new_shape_collection(layers=1)
self.tool_shape = self.canvas.new_shape_collection(layers=1)
self.ma_annotation = self.canvas.new_text_group()
else:
from appGUI.PlotCanvasLegacy import ShapeCollectionLegacy
self.shapes = ShapeCollectionLegacy(obj=self, app=self.app, name='shapes_grb_editor')
self.tool_shape = ShapeCollectionLegacy(obj=self, app=self.app, name='tool_shapes_grb_editor')
self.ma_annotation = ShapeCollectionLegacy(
obj=self,
app=self.app,
name='ma_anno_grb_editor',
annotation_job=True)
# Event signals disconnect id holders
self.mp = None
self.mm = None
self.mr = None
# Remove from scene
self.shapes.enabled = False
self.tool_shape.enabled = False
# List of selected geometric elements.
self.selected = []
self.key = None # Currently pressed key
self.modifiers = None
self.x = None # Current mouse cursor pos
self.y = None
# Current snapped mouse pos
self.snap_x = None
self.snap_y = None
self.pos = None
# used in RegionEditorGrb and TrackEditorGrb. Will store the bending mode
self.bend_mode = 1
# signal that there is an action active like polygon or path
self.in_action = False
# this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False)
self.launched_from_shortcuts = False
def_tol_val = float(self.app.defaults["global_tolerance"])
self.tolerance = def_tol_val if self.units == 'MM'else def_tol_val / 20
# options of this widget (AppGerberEditor class is a widget)
self.options = {
"global_gridx": 0.1,
"global_gridy": 0.1,
"snap_max": 0.05,
"grid_snap": True,
"corner_snap": False,
"grid_gap_link": True
}
# fill it with the application options (application preferences)
self.options.update(self.app.options)
for option in self.options:
if option in self.app.options:
self.options[option] = self.app.options[option]
# flag to show if the object was modified
self.is_modified = False
self.edited_obj_name = ""
self.tool_row = 0
# Multiprocessing pool
self.pool = self.app.pool
# Multiprocessing results
self.results = []
# A QTimer
self.plot_thread = None
# a QThread for the edit process
self.thread = QtCore.QThread()
# def entry2option(option, entry):
# self.options[option] = float(entry.text())
self.transform_tool = TransformEditorTool(self.app, self)
# #############################################################################################################
# ######################### Gerber Editor Signals #############################################################
# #############################################################################################################
self.app.pool_recreated.connect(self.pool_recreated)
self.mp_finished.connect(self.on_multiprocessing_finished)
# connect the toolbar signals
self.connect_grb_toolbar_signals()
self.app.ui.grb_add_pad_menuitem.triggered.connect(self.on_pad_add)
self.app.ui.grb_add_pad_array_menuitem.triggered.connect(self.on_pad_add_array)
self.app.ui.grb_add_track_menuitem.triggered.connect(self.on_track_add)
self.app.ui.grb_add_region_menuitem.triggered.connect(self.on_region_add)
self.app.ui.grb_convert_poly_menuitem.triggered.connect(self.on_poligonize)
self.app.ui.grb_add_semidisc_menuitem.triggered.connect(self.on_add_semidisc)
self.app.ui.grb_add_disc_menuitem.triggered.connect(self.on_disc_add)
self.app.ui.grb_add_buffer_menuitem.triggered.connect(self.on_buffer)
self.app.ui.grb_add_scale_menuitem.triggered.connect(self.on_scale)
self.app.ui.grb_add_eraser_menuitem.triggered.connect(self.on_eraser)
self.app.ui.grb_add_markarea_menuitem.triggered.connect(self.on_markarea)
self.app.ui.grb_transform_menuitem.triggered.connect(self.transform_tool.run)
self.app.ui.grb_copy_menuitem.triggered.connect(self.on_copy_button)
self.app.ui.grb_delete_menuitem.triggered.connect(self.on_delete_btn)
self.app.ui.grb_move_menuitem.triggered.connect(self.on_move_button)
self.ui.buffer_button.clicked.connect(self.on_buffer)
self.ui.scale_button.clicked.connect(self.on_scale)
self.app.ui.aperture_delete_btn.triggered.connect(self.on_delete_btn)
self.ui.name_entry.returnPressed.connect(self.on_name_activate)
self.ui.aptype_cb.currentIndexChanged[str].connect(self.on_aptype_changed)
self.ui.addaperture_btn.clicked.connect(self.on_aperture_add)
self.ui.apsize_entry.returnPressed.connect(self.on_aperture_add)
self.ui.apdim_entry.returnPressed.connect(self.on_aperture_add)
self.ui.delaperture_btn.clicked.connect(self.on_aperture_delete)
self.ui.apertures_table.cellPressed.connect(self.on_row_selected)
self.ui.array_type_combo.currentIndexChanged.connect(self.on_array_type_combo)
self.ui.pad_axis_radio.activated_custom.connect(self.on_linear_angle_radio)
self.ui.exit_editor_button.clicked.connect(lambda: self.app.editor2object())
self.conversion_factor = 1
self.apertures_row = 0
self.complete = True
self.set_ui()
log.debug("Initialization of the Gerber Editor is finished ...")
def make_callback(self, the_tool):
def f():
self.on_tool_select(the_tool)
return f
def connect_grb_toolbar_signals(self):
self.tools_gerber.update({
"select": {"button": self.app.ui.grb_select_btn, "constructor": SelectEditorGrb},
"pad": {"button": self.app.ui.grb_add_pad_btn, "constructor": PadEditorGrb},
"array": {"button": self.app.ui.add_pad_ar_btn, "constructor": PadArrayEditorGrb},
"track": {"button": self.app.ui.grb_add_track_btn, "constructor": TrackEditorGrb},
"region": {"button": self.app.ui.grb_add_region_btn, "constructor": RegionEditorGrb},
"poligonize": {"button": self.app.ui.grb_convert_poly_btn, "constructor": PoligonizeEditorGrb},
"semidisc": {"button": self.app.ui.grb_add_semidisc_btn, "constructor": DiscSemiEditorGrb},
"disc": {"button": self.app.ui.grb_add_disc_btn, "constructor": DiscEditorGrb},
"buffer": {"button": self.app.ui.aperture_buffer_btn, "constructor": BufferEditorGrb},
"scale": {"button": self.app.ui.aperture_scale_btn, "constructor": ScaleEditorGrb},
"markarea": {"button": self.app.ui.aperture_markarea_btn, "constructor": MarkEditorGrb},
"eraser": {"button": self.app.ui.aperture_eraser_btn, "constructor": EraserEditorGrb},
"copy": {"button": self.app.ui.aperture_copy_btn, "constructor": CopyEditorGrb},
"transform": {"button": self.app.ui.grb_transform_btn, "constructor": TransformEditorGrb},
"move": {"button": self.app.ui.aperture_move_btn, "constructor": MoveEditorGrb},
})
for tool in self.tools_gerber:
self.tools_gerber[tool]["button"].triggered.connect(self.make_callback(tool)) # Events
self.tools_gerber[tool]["button"].setCheckable(True)
def pool_recreated(self, pool):
self.shapes.pool = pool
self.tool_shape.pool = pool
self.pool = pool
def set_ui(self):
# updated units
self.units = self.app.defaults['units'].upper()
self.decimals = self.app.decimals
self.oldapcode_newapcode.clear()
self.tid2apcode.clear()
# update the oldapcode_newapcode dict to make sure we have an updated state of the tool_table
for key in self.storage_dict:
self.oldapcode_newapcode[key] = key
sort_temp = []
for aperture in self.oldapcode_newapcode:
sort_temp.append(int(aperture))
self.sorted_apcode = sorted(sort_temp)
# populate self.intial_table_rows dict with the tool number as keys and aperture codes as values
for i in range(len(self.sorted_apcode)):
tt_aperture = self.sorted_apcode[i]
self.tid2apcode[i + 1] = tt_aperture
# #############################################################################################################
# Init appGUI
# #############################################################################################################
self.ui.buffer_distance_entry.set_value(self.app.defaults["gerber_editor_buff_f"])
self.ui.scale_factor_entry.set_value(self.app.defaults["gerber_editor_scale_f"])
self.ui.ma_upper_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_high"])
self.ui.ma_lower_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_low"])
self.ui.apsize_entry.set_value(self.app.defaults["gerber_editor_newsize"])
self.ui.aptype_cb.set_value(self.app.defaults["gerber_editor_newtype"])
self.ui.apdim_entry.set_value(self.app.defaults["gerber_editor_newdim"])
self.ui.pad_array_size_entry.set_value(int(self.app.defaults["gerber_editor_array_size"]))
# linear array
self.ui.pad_axis_radio.set_value(self.app.defaults["gerber_editor_lin_axis"])
self.ui.pad_pitch_entry.set_value(float(self.app.defaults["gerber_editor_lin_pitch"]))
self.ui.linear_angle_spinner.set_value(self.app.defaults["gerber_editor_lin_angle"])
# circular array
self.ui.pad_direction_radio.set_value(self.app.defaults["gerber_editor_circ_dir"])
self.ui.pad_angle_entry.set_value(float(self.app.defaults["gerber_editor_circ_angle"]))
def build_ui(self, first_run=None):
try:
# if connected, disconnect the signal from the slot on item_changed as it creates issues
self.ui.apertures_table.itemChanged.disconnect()
except (TypeError, AttributeError):
pass
try:
self.ui.apertures_table.cellPressed.disconnect()
except (TypeError, AttributeError):
pass
# updated units
self.units = self.app.defaults['units'].upper()
# make a new name for the new Excellon object (the one with edited content)
self.edited_obj_name = self.gerber_obj.options['name']
self.ui.name_entry.set_value(self.edited_obj_name)
self.apertures_row = 0
# aper_no = self.apertures_row + 1
sort = []
for k, v in list(self.storage_dict.items()):
sort.append(int(k))
sorted_apertures = sorted(sort)
# sort = []
# for k, v in list(self.gerber_obj.aperture_macros.items()):
# sort.append(k)
# sorted_macros = sorted(sort)
# n = len(sorted_apertures) + len(sorted_macros)
n = len(sorted_apertures)
self.ui.apertures_table.setRowCount(n)
for ap_code in sorted_apertures:
ap_code = str(ap_code)
ap_code_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1))
ap_code_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
self.ui.apertures_table.setItem(self.apertures_row, 0, ap_code_item) # Tool name/id
ap_code_item = QtWidgets.QTableWidgetItem(ap_code)
ap_code_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
ap_type_item = QtWidgets.QTableWidgetItem(str(self.storage_dict[ap_code]['type']))
ap_type_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
if str(self.storage_dict[ap_code]['type']) == 'R' or str(self.storage_dict[ap_code]['type']) == 'O':
ap_dim_item = QtWidgets.QTableWidgetItem(
'%.*f, %.*f' % (self.decimals, self.storage_dict[ap_code]['width'],
self.decimals, self.storage_dict[ap_code]['height']
)
)
ap_dim_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsEditable)
elif str(self.storage_dict[ap_code]['type']) == 'P':
ap_dim_item = QtWidgets.QTableWidgetItem(
'%.*f, %.*f' % (self.decimals, self.storage_dict[ap_code]['diam'],
self.decimals, self.storage_dict[ap_code]['nVertices'])
)
ap_dim_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsEditable)
else:
ap_dim_item = QtWidgets.QTableWidgetItem('')
ap_dim_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
try:
if self.storage_dict[ap_code]['size'] is not None:
ap_size_item = QtWidgets.QTableWidgetItem('%.*f' % (self.decimals,
float(self.storage_dict[ap_code]['size'])))
else:
ap_size_item = QtWidgets.QTableWidgetItem('')
except KeyError:
ap_size_item = QtWidgets.QTableWidgetItem('')
if str(self.storage_dict[ap_code]['type']) == 'C':
ap_size_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled | QtCore.Qt.ItemIsEditable)
else:
ap_size_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
self.ui.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code
self.ui.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type
self.ui.apertures_table.setItem(self.apertures_row, 3, ap_size_item) # Aperture Size
self.ui.apertures_table.setItem(self.apertures_row, 4, ap_dim_item) # Aperture Dimensions
self.apertures_row += 1
if first_run is True:
# set now the last aperture selected
self.last_aperture_selected = ap_code
# for ap_code in sorted_macros:
# ap_code = str(ap_code)
#
# ap_code_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1))
# ap_code_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
# self.ui.apertures_table.setItem(self.apertures_row, 0, ap_code_item) # Tool name/id
#
# ap_code_item = QtWidgets.QTableWidgetItem(ap_code)
#
# ap_type_item = QtWidgets.QTableWidgetItem('AM')
# ap_type_item.setFlags(QtCore.Qt.ItemIsEnabled)
#
# self.ui.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code
# self.ui.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type
#
# self.apertures_row += 1
# if first_run is True:
# # set now the last aperture selected
# self.last_aperture_selected = ap_code
self.ui.apertures_table.selectColumn(0)
self.ui.apertures_table.resizeColumnsToContents()
self.ui.apertures_table.resizeRowsToContents()
vertical_header = self.ui.apertures_table.verticalHeader()
# vertical_header.setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents)
vertical_header.hide()
self.ui.apertures_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
horizontal_header = self.ui.apertures_table.horizontalHeader()
horizontal_header.setMinimumSectionSize(10)
horizontal_header.setDefaultSectionSize(70)
horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed)
horizontal_header.resizeSection(0, 27)
horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(2, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(4, QtWidgets.QHeaderView.Stretch)
self.ui.apertures_table.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
self.ui.apertures_table.setSortingEnabled(False)
self.ui.apertures_table.setMinimumHeight(self.ui.apertures_table.getHeight())
self.ui.apertures_table.setMaximumHeight(self.ui.apertures_table.getHeight())
# make sure no rows are selected so the user have to click the correct row, meaning selecting the correct tool
self.ui.apertures_table.clearSelection()
# Remove anything else in the GUI Properties Tab
self.app.ui.properties_scroll_area.takeWidget()
# Put ourselves in the GUI Properties Tab
self.app.ui.properties_scroll_area.setWidget(self.ui.grb_edit_widget)
# Switch notebook to Properties page
self.app.ui.notebook.setCurrentWidget(self.app.ui.properties_tab)
# we reactivate the signals after the after the tool adding as we don't need to see the tool been populated
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
self.ui.apertures_table.cellPressed.connect(self.on_row_selected)
# for convenience set the next aperture code in the apcode field
try:
self.ui.apcode_entry.set_value(max(self.tid2apcode.values()) + 1)
except ValueError:
# this means that the edited object has no apertures so we start with 10 (Gerber specifications)
self.ui.apcode_entry.set_value(self.app.defaults["gerber_editor_newcode"])
def on_aperture_add(self, apcode=None):
self.is_modified = True
if apcode:
ap_code = apcode
else:
try:
ap_code = str(self.ui.apcode_entry.get_value())
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture code value is missing or wrong format. Add it and retry."))
return
if ap_code == '':
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture code value is missing or wrong format. Add it and retry."))
return
if ap_code == '0':
if ap_code not in self.tid2apcode:
self.storage_dict[ap_code] = {}
self.storage_dict[ap_code]['type'] = 'REG'
size_val = 0
self.ui.apsize_entry.set_value(size_val)
self.storage_dict[ap_code]['size'] = size_val
self.storage_dict[ap_code]['geometry'] = []
# self.oldapcode_newapcode dict keeps the evidence on current aperture codes as keys and
# gets updated on values each time a aperture code is edited or added
self.oldapcode_newapcode[ap_code] = ap_code
else:
if ap_code not in self.oldapcode_newapcode:
self.storage_dict[ap_code] = {}
type_val = self.ui.aptype_cb.currentText()
self.storage_dict[ap_code]['type'] = type_val
if type_val == 'R' or type_val == 'O':
try:
dims = self.ui.apdim_entry.get_value()
self.storage_dict[ap_code]['width'] = dims[0]
self.storage_dict[ap_code]['height'] = dims[1]
size_val = np.sqrt((dims[0] ** 2) + (dims[1] ** 2))
self.ui.apsize_entry.set_value(size_val)
except Exception as e:
log.error("AppGerberEditor.on_aperture_add() --> the R or O aperture dims has to be in a "
"tuple format (x,y)\nError: %s" % str(e))
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture dimensions value is missing or wrong format. "
"Add it in format (width, height) and retry."))
return
else:
try:
size_val = float(self.ui.apsize_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
size_val = float(self.ui.apsize_entry.get_value().replace(',', '.'))
self.ui.apsize_entry.set_value(size_val)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size value is missing or wrong format. Add it and retry."))
return
self.storage_dict[ap_code]['size'] = size_val
self.storage_dict[ap_code]['geometry'] = []
# self.oldapcode_newapcode dict keeps the evidence on current aperture codes as keys and gets updated on
# values each time a aperture code is edited or added
self.oldapcode_newapcode[ap_code] = ap_code
else:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture already in the aperture table."))
return
# since we add a new tool, we update also the initial state of the tool_table through it's dictionary
# we add a new entry in the tid2apcode dict
self.tid2apcode[len(self.oldapcode_newapcode)] = int(ap_code)
self.app.inform.emit('[success] %s: %s' % (_("Added new aperture with code"), str(ap_code)))
self.build_ui()
self.last_aperture_selected = ap_code
# make a quick sort through the tid2apcode dict so we find which row to select
row_to_be_selected = None
for key in sorted(self.tid2apcode):
if self.tid2apcode[key] == int(ap_code):
row_to_be_selected = int(key) - 1
break
self.ui.apertures_table.selectRow(row_to_be_selected)
def on_aperture_delete(self, ap_code=None):
"""
Called for aperture deletion.
:param ap_code: An Aperture code; String
:return:
"""
self.is_modified = True
try:
if ap_code:
try:
deleted_apcode_list = [dd for dd in ap_code]
except TypeError:
deleted_apcode_list = [ap_code]
else:
# deleted_tool_dia = float(self.ui.apertures_table.item(self.ui.apertures_table.currentRow(), 1).text())
if len(self.ui.apertures_table.selectionModel().selectedRows()) == 0:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Select an aperture in Aperture Table"))
return
deleted_apcode_list = []
for index in self.ui.apertures_table.selectionModel().selectedRows():
row = index.row()
deleted_apcode_list.append(self.ui.apertures_table.item(row, 1).text())
except Exception as exc:
self.app.inform.emit('[WARNING_NOTCL] %s %s' % (_("Select an aperture in Aperture Table -->", str(exc))))
return
if deleted_apcode_list:
for deleted_aperture in deleted_apcode_list:
# delete the storage used for that tool
self.storage_dict.pop(deleted_aperture, None)
for deleted_tool in list(self.tid2apcode.keys()):
if self.tid2apcode[deleted_tool] == deleted_aperture:
# delete the tool
self.tid2apcode.pop(deleted_tool, None)
self.oldapcode_newapcode.pop(deleted_aperture, None)
self.app.inform.emit('[success] %s: %s' % (_("Deleted aperture with code"), str(deleted_aperture)))
self.plot_all()
self.build_ui()
# if last aperture selected was in the apertures deleted than make sure to select a
# 'new' last aperture selected because there are tools who depend on it.
# if there is no aperture left, then add a default one :)
if self.last_aperture_selected in deleted_apcode_list:
if self.ui.apertures_table.rowCount() == 0:
self.on_aperture_add('10')
self.last_aperture_selected = '10'
else:
self.last_aperture_selected = self.ui.apertures_table.item(0, 1).text()
def on_tool_edit(self):
if self.ui.apertures_table.currentItem() is None:
return
# if connected, disconnect the signal from the slot on item_changed as it creates issues
self.ui.apertures_table.itemChanged.disconnect()
# self.ui.apertures_table.cellPressed.disconnect()
self.is_modified = True
val_edited = None
row_of_item_changed = self.ui.apertures_table.currentRow()
col_of_item_changed = self.ui.apertures_table.currentColumn()
# rows start with 0, tools start with 1 so we adjust the value by 1
key_in_tid2apcode = row_of_item_changed + 1
ap_code_old = str(self.tid2apcode[key_in_tid2apcode])
ap_code_new = self.ui.apertures_table.item(row_of_item_changed, 1).text()
if col_of_item_changed == 1:
# we edited the Aperture Code column (int)
try:
val_edited = int(self.ui.apertures_table.currentItem().text())
except ValueError as e:
log.debug("AppGerberEditor.on_tool_edit() --> %s" % str(e))
# self.ui.apertures_table.setCurrentItem(None)
# we reactivate the signals after the after the tool editing
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
return
elif col_of_item_changed == 3:
# we edited the Size column (float)
try:
val_edited = float(self.ui.apertures_table.currentItem().text())
except ValueError as e:
log.debug("AppGerberEditor.on_tool_edit() --> %s" % str(e))
# self.ui.apertures_table.setCurrentItem(None)
# we reactivate the signals after the after the tool editing
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
return
elif col_of_item_changed == 4:
# we edit the Dimensions column (tuple)
try:
val_edited = [
float(x.strip()) for x in self.ui.apertures_table.currentItem().text().split(",") if x != ''
]
except ValueError as e:
log.debug("AppGerberEditor.on_tool_edit() --> %s" % str(e))
# we reactivate the signals after the after the tool editing
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
return
if len(val_edited) != 2:
self.app.inform.emit("[WARNING_NOTCL] %s" % _("Dimensions need two float values separated by comma."))
old_dims_txt = '%s, %s' % (str(self.storage_dict[ap_code_new]['width']),
str(self.storage_dict[ap_code_new]['height']))
self.ui.apertures_table.currentItem().setText(old_dims_txt)
# we reactivate the signals after the after the tool editing
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
return
else:
self.app.inform.emit("[success] %s" % _("Dimensions edited."))
# In case we edited the Aperture Code therefore the val_edited holds a new Aperture Code
# TODO Edit of the Aperture Code is not active yet
if col_of_item_changed == 1:
# aperture code is not used so we create a new Aperture with the desired Aperture Code
if val_edited not in self.oldapcode_newapcode.values():
# update the dict that holds as keys old Aperture Codes and as values the new Aperture Codes
self.oldapcode_newapcode[ap_code_old] = val_edited
# update the dict that holds tool_no as key and tool_dia as value
self.tid2apcode[key_in_tid2apcode] = val_edited
old_aperture_val = self.storage_dict.pop(ap_code_old)
self.storage_dict[val_edited] = old_aperture_val
else:
# aperture code is already in use so we move the pads from the prior tool to the new tool
# but only if they are of the same type
if self.storage_dict[ap_code_old]['type'] == self.storage_dict[ap_code_new]['type']:
# TODO I have to work here; if type == 'R' or 'O' have t otake care of all attributes ...
factor = val_edited / float(ap_code_old)
geometry = []
for geo_el in self.storage_dict[ap_code_old]:
geometric_data = geo_el.geo
new_geo_el = {}
if 'solid' in geometric_data:
new_geo_el['solid'] = deepcopy(affinity.scale(geometric_data['solid'],
xfact=factor, yfact=factor))
if 'follow' in geometric_data:
new_geo_el['follow'] = deepcopy(affinity.scale(geometric_data['follow'],
xfact=factor, yfact=factor))
if 'clear' in geometric_data:
new_geo_el['clear'] = deepcopy(affinity.scale(geometric_data['clear'],
xfact=factor, yfact=factor))
geometry.append(new_geo_el)
self.add_gerber_shape(geometry, self.storage_dict[val_edited])
self.on_aperture_delete(apcode=ap_code_old)
# In case we edited the Size of the Aperture therefore the val_edited holds the new Aperture Size
# It will happen only for the Aperture Type == 'C' - I make sure of that in the self.build_ui()
elif col_of_item_changed == 3:
old_size = float(self.storage_dict[ap_code_old]['size'])
new_size = float(val_edited)
adjust_size = (new_size - old_size) / 2
geometry = []
for geo_el in self.storage_dict[ap_code_old]['geometry']:
g_data = geo_el.geo
new_geo_el = {}
if 'solid' in g_data:
if 'follow' in g_data:
if isinstance(g_data['follow'], Point):
new_geo_el['solid'] = deepcopy(g_data['solid'].buffer(adjust_size))
else:
new_geo_el['solid'] = deepcopy(g_data['solid'].buffer(adjust_size, join_style=2))
if 'follow' in g_data:
new_geo_el['follow'] = deepcopy(g_data['follow'])
if 'clear' in g_data:
new_geo_el['clear'] = deepcopy(g_data['clear'].buffer(adjust_size, join_style=2))
geometry.append(DrawToolShape(new_geo_el))
self.storage_dict[ap_code_old]['geometry'].clear()
self.add_gerber_shape(geometry, self.storage_dict[ap_code_old]['geometry'])
# self.storage_dict[ap_code_old]['geometry'] = geometry
# In case we edited the Dims of the Aperture therefore the val_edited holds a list with the dimensions
# in the format [width, height]
# It will happen only for the Aperture Type in ['R', 'O'] - I make sure of that in the self.build_ui()
# and below
elif col_of_item_changed == 4:
if str(self.storage_dict[ap_code_old]['type']) == 'R' or str(self.storage_dict[ap_code_old]['type']) == 'O':
# use the biggest from them
buff_val_lines = max(val_edited)
new_width = val_edited[0]
new_height = val_edited[1]
geometry = []
for geo_el in self.storage_dict[ap_code_old]['geometry']:
g_data = geo_el.geo
new_geo_el = {}
if 'solid' in g_data:
if 'follow' in g_data:
if isinstance(g_data['follow'], Point):
x = g_data['follow'].x
y = g_data['follow'].y
minx = x - (new_width / 2)
miny = y - (new_height / 2)
maxx = x + (new_width / 2)
maxy = y + (new_height / 2)
geo = box(minx=minx, miny=miny, maxx=maxx, maxy=maxy)
new_geo_el['solid'] = deepcopy(geo)
else:
new_geo_el['solid'] = deepcopy(g_data['solid'].buffer(buff_val_lines))
if 'follow' in g_data:
new_geo_el['follow'] = deepcopy(g_data['follow'])
if 'clear' in g_data:
if 'follow' in g_data:
if isinstance(g_data['follow'], Point):
x = g_data['follow'].x
y = g_data['follow'].y
minx = x - (new_width / 2)
miny = y - (new_height / 2)
maxx = x + (new_width / 2)
maxy = y + (new_height / 2)
geo = box(minx=minx, miny=miny, maxx=maxx, maxy=maxy)
new_geo_el['clear'] = deepcopy(geo)
else:
new_geo_el['clear'] = deepcopy(g_data['clear'].buffer(buff_val_lines, join_style=2))
geometry.append(DrawToolShape(new_geo_el))
self.storage_dict[ap_code_old]['geometry'].clear()
self.add_gerber_shape(geometry, self.storage_dict[ap_code_old]['geometry'])
self.plot_all()
# we reactivate the signals after the after the tool editing
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
# self.ui.apertures_table.cellPressed.connect(self.on_row_selected)
def on_name_activate(self):
self.edited_obj_name = self.ui.name_entry.get_value()
def on_aptype_changed(self, current_text):
# 'O' is letter O not zero.
if current_text == 'R' or current_text == 'O':
self.ui.apdim_lbl.show()
self.ui.apdim_entry.show()
self.ui.apsize_entry.setDisabled(True)
else:
self.ui.apdim_lbl.hide()
self.ui.apdim_entry.hide()
self.ui.apsize_entry.setDisabled(False)
def activate_grb_editor(self):
# adjust the status of the menu entries related to the editor
self.app.ui.menueditedit.setDisabled(True)
self.app.ui.menueditok.setDisabled(False)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(False)
self.app.ui.popmenu_save.setVisible(True)
self.connect_canvas_event_handlers()
# init working objects
self.storage_dict = {}
self.current_storage = []
self.sorted_apcode = []
self.new_apertures = {}
self.new_aperture_macros = {}
self.grb_plot_promises = []
self.oldapcode_newapcode = {}
self.tid2apcode = {}
self.shapes.enabled = True
self.tool_shape.enabled = True
self.app.ui.corner_snap_btn.setVisible(True)
self.app.ui.snap_magnet.setVisible(True)
self.app.ui.grb_editor_menu.setDisabled(False)
self.app.ui.grb_editor_menu.menuAction().setVisible(True)
self.app.ui.update_obj_btn.setEnabled(True)
self.app.ui.grb_editor_cmenu.setEnabled(True)
self.app.ui.grb_edit_toolbar.setDisabled(False)
self.app.ui.grb_edit_toolbar.setVisible(True)
# self.app.ui.grid_toolbar.setDisabled(False)
# start with GRID toolbar activated
if self.app.ui.grid_snap_btn.isChecked() is False:
self.app.ui.grid_snap_btn.trigger()
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(False)
self.app.ui.popmenu_save.setVisible(True)
self.app.ui.popmenu_disable.setVisible(False)
self.app.ui.cmenu_newmenu.menuAction().setVisible(False)
self.app.ui.popmenu_properties.setVisible(False)
self.app.ui.grb_editor_cmenu.menuAction().setVisible(True)
def deactivate_grb_editor(self):
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.deactivate_grb_editor() --> %s" % str(e))
self.clear()
# adjust the status of the menu entries related to the editor
self.app.ui.menueditedit.setDisabled(False)
self.app.ui.menueditok.setDisabled(True)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(True)
self.app.ui.popmenu_save.setVisible(False)
self.disconnect_canvas_event_handlers()
self.app.ui.grb_edit_toolbar.setDisabled(True)
self.app.ui.corner_snap_btn.setVisible(False)
self.app.ui.snap_magnet.setVisible(False)
# set the Editor Toolbar visibility to what was before entering in the Editor
self.app.ui.grb_edit_toolbar.setVisible(False) if self.toolbar_old_state is False \
else self.app.ui.grb_edit_toolbar.setVisible(True)
# Disable visuals
self.shapes.enabled = False
self.tool_shape.enabled = False
# self.app.app_cursor.enabled = False
self.app.ui.grb_editor_menu.setDisabled(True)
self.app.ui.grb_editor_menu.menuAction().setVisible(False)
self.app.ui.update_obj_btn.setEnabled(False)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(True)
self.app.ui.popmenu_save.setVisible(False)
self.app.ui.popmenu_disable.setVisible(True)
self.app.ui.cmenu_newmenu.menuAction().setVisible(True)
self.app.ui.popmenu_properties.setVisible(True)
self.app.ui.g_editor_cmenu.menuAction().setVisible(False)
self.app.ui.e_editor_cmenu.menuAction().setVisible(False)
self.app.ui.grb_editor_cmenu.menuAction().setVisible(False)
# Show original geometry
if self.gerber_obj:
self.gerber_obj.visible = True
def connect_canvas_event_handlers(self):
# Canvas events
# make sure that the shortcuts key and mouse events will no longer be linked to the methods from FlatCAMApp
# but those from AppGeoEditor
# first connect to new, then disconnect the old handlers
# don't ask why but if there is nothing connected I've seen issues
self.mp = self.canvas.graph_event_connect('mouse_press', self.on_canvas_click)
self.mm = self.canvas.graph_event_connect('mouse_move', self.on_canvas_move)
self.mr = self.canvas.graph_event_connect('mouse_release', self.on_grb_click_release)
if self.app.is_legacy is False:
self.canvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot)
self.canvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot)
self.canvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot)
self.canvas.graph_event_disconnect('mouse_double_click', self.app.on_mouse_double_click_over_plot)
else:
self.canvas.graph_event_disconnect(self.app.mp)
self.canvas.graph_event_disconnect(self.app.mm)
self.canvas.graph_event_disconnect(self.app.mr)
self.canvas.graph_event_disconnect(self.app.mdc)
self.app.collection.view.clicked.disconnect()
self.app.ui.popmenu_copy.triggered.disconnect()
self.app.ui.popmenu_delete.triggered.disconnect()
self.app.ui.popmenu_move.triggered.disconnect()
self.app.ui.popmenu_copy.triggered.connect(self.on_copy_button)
self.app.ui.popmenu_delete.triggered.connect(self.on_delete_btn)
self.app.ui.popmenu_move.triggered.connect(self.on_move_button)
# Gerber Editor
self.app.ui.grb_draw_pad.triggered.connect(self.on_pad_add)
self.app.ui.grb_draw_pad_array.triggered.connect(self.on_pad_add_array)
self.app.ui.grb_draw_track.triggered.connect(self.on_track_add)
self.app.ui.grb_draw_region.triggered.connect(self.on_region_add)
self.app.ui.grb_draw_poligonize.triggered.connect(self.on_poligonize)
self.app.ui.grb_draw_semidisc.triggered.connect(self.on_add_semidisc)
self.app.ui.grb_draw_disc.triggered.connect(self.on_disc_add)
self.app.ui.grb_draw_buffer.triggered.connect(lambda: self.select_tool("buffer"))
self.app.ui.grb_draw_scale.triggered.connect(lambda: self.select_tool("scale"))
self.app.ui.grb_draw_markarea.triggered.connect(lambda: self.select_tool("markarea"))
self.app.ui.grb_draw_eraser.triggered.connect(self.on_eraser)
self.app.ui.grb_draw_transformations.triggered.connect(self.on_transform)
def disconnect_canvas_event_handlers(self):
# we restore the key and mouse control to FlatCAMApp method
# first connect to new, then disconnect the old handlers
# don't ask why but if there is nothing connected I've seen issues
self.app.mp = self.canvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot)
self.app.mm = self.canvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot)
self.app.mr = self.canvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot)
self.app.mdc = self.canvas.graph_event_connect('mouse_double_click', self.app.on_mouse_double_click_over_plot)
self.app.collection.view.clicked.connect(self.app.collection.on_mouse_down)
if self.app.is_legacy is False:
self.canvas.graph_event_disconnect('mouse_press', self.on_canvas_click)
self.canvas.graph_event_disconnect('mouse_move', self.on_canvas_move)
self.canvas.graph_event_disconnect('mouse_release', self.on_grb_click_release)
else:
self.canvas.graph_event_disconnect(self.mp)
self.canvas.graph_event_disconnect(self.mm)
self.canvas.graph_event_disconnect(self.mr)
try:
self.app.ui.popmenu_copy.triggered.disconnect(self.on_copy_button)
except (TypeError, AttributeError):
pass
try:
self.app.ui.popmenu_delete.triggered.disconnect(self.on_delete_btn)
except (TypeError, AttributeError):
pass
try:
self.app.ui.popmenu_move.triggered.disconnect(self.on_move_button)
except (TypeError, AttributeError):
pass
self.app.ui.popmenu_copy.triggered.connect(self.app.on_copy_command)
self.app.ui.popmenu_delete.triggered.connect(self.app.on_delete)
self.app.ui.popmenu_move.triggered.connect(self.app.obj_move)
# Gerber Editor
try:
self.app.ui.grb_draw_pad.triggered.disconnect(self.on_pad_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_pad_array.triggered.disconnect(self.on_pad_add_array)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_track.triggered.disconnect(self.on_track_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_region.triggered.disconnect(self.on_region_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_poligonize.triggered.disconnect(self.on_poligonize)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_semidisc.triggered.diconnect(self.on_add_semidisc)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_disc.triggered.disconnect(self.on_disc_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_buffer.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_scale.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_markarea.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_eraser.triggered.disconnect(self.on_eraser)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_transformations.triggered.disconnect(self.on_transform)
except (TypeError, AttributeError):
pass
try:
self.app.jump_signal.disconnect()
except (TypeError, AttributeError):
pass
def clear(self):
self.thread.quit()
self.active_tool = None
self.selected = []
self.storage_dict.clear()
self.results.clear()
self.shapes.clear(update=True)
self.tool_shape.clear(update=True)
self.ma_annotation.clear(update=True)
def edit_fcgerber(self, orig_grb_obj):
"""
Imports the geometry found in self.apertures from the given FlatCAM Gerber object
into the editor.
:param orig_grb_obj: ExcellonObject
:return: None
"""
self.deactivate_grb_editor()
self.activate_grb_editor()
# reset the tool table
self.ui.apertures_table.clear()
self.ui.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')])
self.last_aperture_selected = None
# create a reference to the source object
self.gerber_obj = orig_grb_obj
self.gerber_obj_options = orig_grb_obj.options
file_units = self.gerber_obj.units if self.gerber_obj.units else 'IN'
app_units = self.app.defaults['units']
# self.conversion_factor = 25.4 if file_units == 'IN' else (1 / 25.4) if file_units != app_units else 1
if file_units == app_units:
self.conversion_factor = 1
else:
if file_units == 'IN':
self.conversion_factor = 25.4
else:
self.conversion_factor = 0.0393700787401575
# Hide original geometry
orig_grb_obj.visible = False
# Set selection tolerance
# DrawToolShape.tolerance = fc_excellon.drawing_tolerance * 10
self.select_tool("select")
try:
# we activate this after the initial build as we don't need to see the tool been populated
self.ui.apertures_table.itemChanged.connect(self.on_tool_edit)
except Exception as e:
log.debug("AppGerberEditor.edit_fcgerber() --> %s" % str(e))
# apply the conversion factor on the obj.apertures
conv_apertures = deepcopy(self.gerber_obj.apertures)
for apcode in self.gerber_obj.apertures:
for key in self.gerber_obj.apertures[apcode]:
if key == 'width':
conv_apertures[apcode]['width'] = self.gerber_obj.apertures[apcode]['width'] * \
self.conversion_factor
elif key == 'height':
conv_apertures[apcode]['height'] = self.gerber_obj.apertures[apcode]['height'] * \
self.conversion_factor
elif key == 'diam':
conv_apertures[apcode]['diam'] = self.gerber_obj.apertures[apcode]['diam'] * self.conversion_factor
elif key == 'size':
conv_apertures[apcode]['size'] = self.gerber_obj.apertures[apcode]['size'] * self.conversion_factor
else:
conv_apertures[apcode][key] = self.gerber_obj.apertures[apcode][key]
self.gerber_obj.apertures = conv_apertures
self.gerber_obj.units = app_units
# # and then add it to the storage elements (each storage elements is a member of a list
# def job_thread(aperture_id):
# with self.app.proc_container.new('%s: %s ...' %
# (_("Adding geometry for aperture"), str(aperture_id))):
# storage_elem = []
# self.storage_dict[aperture_id] = {}
#
# # add the Gerber geometry to editor storage
# for k, v in self.gerber_obj.apertures[aperture_id].items():
# try:
# if k == 'geometry':
# for geo_el in v:
# if geo_el:
# self.add_gerber_shape(DrawToolShape(geo_el), storage_elem)
# self.storage_dict[aperture_id][k] = storage_elem
# else:
# self.storage_dict[aperture_id][k] = self.gerber_obj.apertures[aperture_id][k]
# except Exception as e:
# log.debug("AppGerberEditor.edit_fcgerber().job_thread() --> %s" % str(e))
#
# # Check promises and clear if exists
# while True:
# try:
# self.grb_plot_promises.remove(aperture_id)
# time.sleep(0.5)
# except ValueError:
# break
#
# # we create a job work each aperture, job that work in a threaded way to store the geometry in local storage
# # as DrawToolShapes
# for ap_code in self.gerber_obj.apertures:
# self.grb_plot_promises.append(ap_code)
# self.app.worker_task.emit({'fcn': job_thread, 'params': [ap_code]})
#
# self.set_ui()
#
# # do the delayed plot only if there is something to plot (the gerber is not empty)
# try:
# if bool(self.gerber_obj.apertures):
# self.start_delayed_plot(check_period=1000)
# else:
# raise AttributeError
# except AttributeError:
# # now that we have data (empty data actually), create the GUI interface and add it to the Tool Tab
# self.build_ui(first_run=True)
# # and add the first aperture to have something to play with
# self.on_aperture_add('10')
# self.app.worker_task.emit({'fcn': worker_job, 'params': [self]})
class Execute_Edit(QtCore.QObject):
start = QtCore.pyqtSignal(str)
def __init__(self, app):
super(Execute_Edit, self).__init__()
self.app = app
self.start.connect(self.run)
@staticmethod
def worker_job(app_obj):
with app_obj.app.proc_container.new('%s ...' % _("Loading")):
# ###############################################################
# APPLY CLEAR_GEOMETRY on the SOLID_GEOMETRY
# ###############################################################
# list of clear geos that are to be applied to the entire file
global_clear_geo = []
# create one big geometry made out of all 'negative' (clear) polygons
for aper_id in app_obj.gerber_obj.apertures:
# first check if we have any clear_geometry (LPC) and if yes added it to the global_clear_geo
if 'geometry' in app_obj.gerber_obj.apertures[aper_id]:
for elem in app_obj.gerber_obj.apertures[aper_id]['geometry']:
if 'clear' in elem:
global_clear_geo.append(elem['clear'])
log.warning("Found %d clear polygons." % len(global_clear_geo))
if global_clear_geo:
global_clear_geo = unary_union(global_clear_geo)
if isinstance(global_clear_geo, Polygon):
global_clear_geo = [global_clear_geo]
# we subtract the big "negative" (clear) geometry from each solid polygon but only the part of
# clear geometry that fits inside the solid. otherwise we may loose the solid
for ap_code in app_obj.gerber_obj.apertures:
temp_solid_geometry = []
if 'geometry' in app_obj.gerber_obj.apertures[ap_code]:
# for elem in self.gerber_obj.apertures[apcode]['geometry']:
# if 'solid' in elem:
# solid_geo = elem['solid']
# for clear_geo in global_clear_geo:
# # Make sure that the clear_geo is within the solid_geo otherwise we loose
# # the solid_geometry. We want for clear_geometry just to cut
# # into solid_geometry not to delete it
# if clear_geo.within(solid_geo):
# solid_geo = solid_geo.difference(clear_geo)
# try:
# for poly in solid_geo:
# new_elem = {}
#
# new_elem['solid'] = poly
# if 'clear' in elem:
# new_elem['clear'] = poly
# if 'follow' in elem:
# new_elem['follow'] = poly
# temp_elem.append(deepcopy(new_elem))
# except TypeError:
# new_elem = {}
# new_elem['solid'] = solid_geo
# if 'clear' in elem:
# new_elem['clear'] = solid_geo
# if 'follow' in elem:
# new_elem['follow'] = solid_geo
# temp_elem.append(deepcopy(new_elem))
for elem in app_obj.gerber_obj.apertures[ap_code]['geometry']:
new_elem = {}
if 'solid' in elem:
solid_geo = elem['solid']
if not global_clear_geo or global_clear_geo.is_empty:
pass
else:
for clear_geo in global_clear_geo:
# Make sure that the clear_geo is within the solid_geo otherwise we loose
# the solid_geometry. We want for clear_geometry just to cut into
# solid_geometry not to delete it
if clear_geo.within(solid_geo):
solid_geo = solid_geo.difference(clear_geo)
new_elem['solid'] = solid_geo
if 'clear' in elem:
new_elem['clear'] = elem['clear']
if 'follow' in elem:
new_elem['follow'] = elem['follow']
temp_solid_geometry.append(deepcopy(new_elem))
app_obj.gerber_obj.apertures[ap_code]['geometry'] = deepcopy(temp_solid_geometry)
log.warning("Polygon difference done for %d apertures." % len(app_obj.gerber_obj.apertures))
try:
# Loading the Geometry into Editor Storage
for ap_code, ap_dict in app_obj.gerber_obj.apertures.items():
app_obj.results.append(
app_obj.pool.apply_async(app_obj.add_apertures, args=(ap_code, ap_dict))
)
except Exception as ee:
log.debug(
"AppGerberEditor.edit_fcgerber.worker_job() Adding processes to pool --> %s" % str(ee))
traceback.print_exc()
output = []
for p in app_obj.results:
output.append(p.get())
for elem in output:
app_obj.storage_dict[elem[0]] = deepcopy(elem[1])
app_obj.mp_finished.emit(output)
def run(self):
self.worker_job(self.app)
# self.thread.start(QtCore.QThread.NormalPriority)
executable_edit = Execute_Edit(app=self)
# executable_edit.moveToThread(self.thread)
# executable_edit.start.emit("Started")
self.app.worker_task.emit({'fcn': executable_edit.run, 'params': []})
@staticmethod
def add_apertures(aperture_id, aperture_dict):
storage_elem = []
storage_dict = {}
for k, v in list(aperture_dict.items()):
try:
if k == 'geometry':
for geo_el in v:
if geo_el:
storage_elem.append(DrawToolShape(geo_el))
storage_dict[k] = storage_elem
else:
storage_dict[k] = aperture_dict[k]
except Exception as e:
log.debug("AppGerberEditor.edit_fcgerber().job_thread() --> %s" % str(e))
return [aperture_id, storage_dict]
def on_multiprocessing_finished(self):
self.app.proc_container.update_view_text(' %s' % _("Setting up the UI"))
self.app.inform.emit('[success] %s.' % _("Adding geometry finished. Preparing the GUI"))
self.set_ui()
self.build_ui(first_run=True)
self.plot_all()
# HACK: enabling/disabling the cursor seams to somehow update the shapes making them more 'solid'
# - perhaps is a bug in VisPy implementation
self.app.app_cursor.enabled = False
self.app.app_cursor.enabled = True
self.app.inform.emit('[success] %s' % _("Finished loading the Gerber object into the editor."))
def update_fcgerber(self):
"""
Create a new Gerber object that contain the edited content of the source Gerber object
:return: None
"""
new_grb_name = self.edited_obj_name
# if the 'delayed plot' malfunctioned stop the QTimer
try:
self.plot_thread.stop()
except Exception as e:
log.debug("AppGerberEditor.update_fcgerber() --> %s" % str(e))
if "_edit" in self.edited_obj_name:
try:
_id = int(self.edited_obj_name[-1]) + 1
new_grb_name = self.edited_obj_name[:-1] + str(_id)
except ValueError:
new_grb_name += "_1"
else:
new_grb_name = self.edited_obj_name + "_edit"
self.app.worker_task.emit({'fcn': self.new_edited_gerber, 'params': [new_grb_name, self.storage_dict]})
# self.new_edited_gerber(new_grb_name, self.storage_dict)
@staticmethod
def update_options(obj):
try:
if not obj.options:
obj.options = {'xmin': 0, 'ymin': 0, 'xmax': 0, 'ymax': 0}
return True
else:
return False
except AttributeError:
obj.options = {}
return True
def new_edited_gerber(self, outname, aperture_storage):
"""
Creates a new Gerber object for the edited Gerber. Thread-safe.
:param outname: Name of the resulting object. None causes the name to be that of the file.
:type outname: str
:param aperture_storage: a dictionary that holds all the objects geometry
:type aperture_storage: dict
:return: None
"""
self.app.log.debug("Update the Gerber object with edited content. Source is: %s" %
self.gerber_obj.options['name'].upper())
out_name = outname
storage_dict = aperture_storage
local_storage_dict = {}
for aperture in storage_dict:
if 'geometry' in storage_dict[aperture]:
# add aperture only if it has geometry
if len(storage_dict[aperture]['geometry']) > 0:
local_storage_dict[aperture] = deepcopy(storage_dict[aperture])
# How the object should be initialized
def obj_init(grb_obj, app_obj):
poly_buffer = []
follow_buffer = []
for storage_apcode, storage_val in local_storage_dict.items():
grb_obj.apertures[storage_apcode] = {}
for k, val in storage_val.items():
if k == 'geometry':
grb_obj.apertures[storage_apcode][k] = []
for geo_el in val:
geometric_data = geo_el.geo
new_geo_el = {}
if 'solid' in geometric_data:
new_geo_el['solid'] = geometric_data['solid']
poly_buffer.append(deepcopy(new_geo_el['solid']))
if 'follow' in geometric_data:
# if isinstance(geometric_data['follow'], Polygon):
# buff_val = -(int(storage_val['size']) / 2)
# geo_f = (geometric_data['follow'].buffer(buff_val)).exterior
# new_geo_el['follow'] = geo_f
# else:
# new_geo_el['follow'] = geometric_data['follow']
new_geo_el['follow'] = geometric_data['follow']
follow_buffer.append(deepcopy(new_geo_el['follow']))
else:
if 'solid' in geometric_data:
geo_f = geometric_data['solid'].exterior
new_geo_el['follow'] = geo_f
follow_buffer.append(deepcopy(new_geo_el['follow']))
if 'clear' in geometric_data:
new_geo_el['clear'] = geometric_data['clear']
if new_geo_el:
grb_obj.apertures[storage_apcode][k].append(deepcopy(new_geo_el))
else:
grb_obj.apertures[storage_apcode][k] = val
grb_obj.aperture_macros = deepcopy(self.gerber_obj.aperture_macros)
new_poly = MultiPolygon(poly_buffer)
new_poly = new_poly.buffer(0.00000001)
new_poly = new_poly.buffer(-0.00000001)
# for ad in grb_obj.apertures:
# print(ad, grb_obj.apertures[ad])
try:
__ = iter(new_poly)
except TypeError:
new_poly = [new_poly]
grb_obj.solid_geometry = deepcopy(new_poly)
grb_obj.follow_geometry = deepcopy(follow_buffer)
for k, v in self.gerber_obj_options.items():
if k == 'name':
grb_obj.options[k] = out_name
else:
grb_obj.options[k] = deepcopy(v)
grb_obj.multigeo = False
grb_obj.follow = False
grb_obj.units = app_obj.defaults['units']
try:
grb_obj.create_geometry()
except KeyError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("There are no Aperture definitions in the file. Aborting Gerber creation."))
except Exception:
msg = '[ERROR] %s' % _("An internal error has occurred. See shell.\n")
msg += traceback.format_exc()
app_obj.inform.emit(msg)
raise
grb_obj.source_file = self.app.f_handlers.export_gerber(obj_name=out_name, filename=None,
local_use=grb_obj, use_thread=False)
with self.app.proc_container.new(_("Working ...")):
try:
self.app.app_obj.new_object("gerber", outname, obj_init)
except Exception as e:
log.error("Error on Edited object creation: %s" % str(e))
# make sure to clean the previous results
self.results = []
return
# make sure to clean the previous results
self.results = []
self.deactivate_grb_editor()
self.app.inform.emit('[success] %s' % _("Done."))
def on_tool_select(self, tool):
"""
Behavior of the toolbar. Tool initialization.
:rtype : None
"""
current_tool = tool
self.app.log.debug("on_tool_select('%s')" % tool)
if self.last_aperture_selected is None and current_tool != 'select':
# self.draw_app.select_tool('select')
self.complete = True
current_tool = 'select'
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled. No aperture is selected"))
# This is to make the group behave as radio group
if current_tool in self.tools_gerber:
if self.tools_gerber[current_tool]["button"].isChecked():
self.app.log.debug("%s is checked." % current_tool)
for t in self.tools_gerber:
if t != current_tool:
self.tools_gerber[t]["button"].setChecked(False)
# this is where the Editor toolbar classes (button's) are instantiated
self.active_tool = self.tools_gerber[current_tool]["constructor"](self)
# self.app.inform.emit(self.active_tool.start_msg)
else:
self.app.log.debug("%s is NOT checked." % current_tool)
for t in self.tools_gerber:
self.tools_gerber[t]["button"].setChecked(False)
self.select_tool('select')
self.active_tool = SelectEditorGrb(self)
def on_row_selected(self, row, col):
# if col == 0:
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
if key_modifier == modifier_to_use:
pass
else:
self.selected = []
try:
selected_ap_code = self.ui.apertures_table.item(row, 1).text()
self.last_aperture_selected = copy(selected_ap_code)
for obj in self.storage_dict[selected_ap_code]['geometry']:
self.selected.append(obj)
except Exception as e:
self.app.log.debug(str(e))
self.plot_all()
# def toolbar_tool_toggle(self, key):
# """
#
# :param key: key to update in self.options dictionary
# :return:
# """
# self.options[key] = self.sender().isChecked()
# return self.options[key]
def on_grb_shape_complete(self, storage=None, specific_shape=None, no_plot=False):
"""
:param storage: where to store the shape
:param specific_shape: optional, the shape to be stored
:param no_plot: use this if you want the added shape not plotted
:return:
"""
self.app.log.debug("on_grb_shape_complete()")
if specific_shape:
geo = specific_shape
else:
geo = deepcopy(self.active_tool.geometry)
if geo is None:
return
if storage is not None:
# Add shape
self.add_gerber_shape(geo, storage)
else:
stora = self.storage_dict[self.last_aperture_selected]['geometry']
self.add_gerber_shape(geo, storage=stora)
# Remove any utility shapes
self.delete_utility_geometry()
self.tool_shape.clear(update=True)
if no_plot is False:
# Re-plot and reset tool.
self.plot_all()
def add_gerber_shape(self, shape_element, storage):
"""
Adds a shape to the shape storage.
:param shape_element: Shape to be added.
:type shape_element: DrawToolShape or DrawToolUtilityShape Geometry is stored as a dict with keys: solid,
follow, clear, each value being a list of Shapely objects. The dict can have at least one of the mentioned keys
:param storage: Where to store the shape
:return: None
"""
# List of DrawToolShape?
if isinstance(shape_element, list):
for subshape in shape_element:
self.add_gerber_shape(subshape, storage)
return
assert isinstance(shape_element, DrawToolShape), \
"Expected a DrawToolShape, got %s" % str(type(shape_element))
assert shape_element.geo is not None, \
"Shape object has empty geometry (None)"
assert(isinstance(shape_element.geo, list) and len(shape_element.geo) > 0) or not \
isinstance(shape_element.geo, list), "Shape objects has empty geometry ([])"
if isinstance(shape_element, DrawToolUtilityShape):
self.utility.append(shape_element)
else:
storage.append(shape_element)
def on_canvas_click(self, event):
"""
event.x and .y have canvas coordinates
event.xdata and .ydata have plot coordinates
:param event: Event object dispatched by VisPy
:return: None
"""
if self.app.is_legacy is False:
event_pos = event.pos
# event_is_dragging = event.is_dragging
# right_button = 2
else:
event_pos = (event.xdata, event.ydata)
# event_is_dragging = self.app.plotcanvas.is_dragging
# right_button = 3
self.pos = self.canvas.translate_coords(event_pos)
if self.app.grid_status():
self.pos = self.app.geo_editor.snap(self.pos[0], self.pos[1])
else:
self.pos = (self.pos[0], self.pos[1])
if event.button == 1:
self.app.ui.rel_position_label.setText("<b>Dx</b>: %.4f&nbsp;&nbsp; <b>Dy</b>: "
"%.4f&nbsp;&nbsp;&nbsp;&nbsp;" % (0, 0))
# Selection with left mouse button
if self.active_tool is not None:
modifiers = QtWidgets.QApplication.keyboardModifiers()
# If the SHIFT key is pressed when LMB is clicked then the coordinates are copied to clipboard
if modifiers == QtCore.Qt.ShiftModifier:
self.app.clipboard.setText(
self.app.defaults["global_point_clipboard_format"] %
(self.decimals, self.pos[0], self.decimals, self.pos[1])
)
self.app.inform.emit('[success] %s' % _("Coordinates copied to clipboard."))
return
# Dispatch event to active_tool
self.active_tool.click(self.app.geo_editor.snap(self.pos[0], self.pos[1]))
# If it is a shape generating tool
if isinstance(self.active_tool, ShapeToolEditorGrb) and self.active_tool.complete:
if self.current_storage is not None:
self.on_grb_shape_complete(self.current_storage)
self.build_ui()
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
# if modifier key is pressed then we add to the selected list the current shape but if it's already
# in the selected list, we removed it. Therefore first click selects, second deselects.
if key_modifier == modifier_to_use:
self.select_tool(self.active_tool.name)
else:
# return to Select tool but not for PadEditorGrb
if isinstance(self.active_tool, PadEditorGrb):
self.select_tool(self.active_tool.name)
else:
self.select_tool("select")
return
# if isinstance(self.active_tool, SelectEditorGrb):
# self.plot_all()
else:
self.app.log.debug("No active tool to respond to click!")
def on_grb_click_release(self, event):
self.modifiers = QtWidgets.QApplication.keyboardModifiers()
if self.app.is_legacy is False:
event_pos = event.pos
# event_is_dragging = event.is_dragging
right_button = 2
else:
event_pos = (event.xdata, event.ydata)
# event_is_dragging = self.app.plotcanvas.is_dragging
right_button = 3
pos_canvas = self.canvas.translate_coords(event_pos)
if self.app.grid_status():
pos = self.app.geo_editor.snap(pos_canvas[0], pos_canvas[1])
else:
pos = (pos_canvas[0], pos_canvas[1])
# if the released mouse button was RMB then test if it was a panning motion or not, if not it was a context
# canvas menu
try:
if event.button == right_button: # right click
if self.app.ui.popMenu.mouse_is_panning is False:
if self.in_action is False:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("AppGerberEditor.on_grb_click_release() --> %s" % str(e))
if self.active_tool.complete is False and not isinstance(self.active_tool, SelectEditorGrb):
self.active_tool.complete = True
self.in_action = False
self.delete_utility_geometry()
self.app.inform.emit('[success] %s' %
_("Done."))
self.select_tool('select')
else:
self.app.cursor = QtGui.QCursor()
self.app.populate_cmenu_grids()
self.app.ui.popMenu.popup(self.app.cursor.pos())
else:
# if right click on canvas and the active tool need to be finished (like Path or Polygon)
# right mouse click will finish the action
if isinstance(self.active_tool, ShapeToolEditorGrb):
if isinstance(self.active_tool, TrackEditorGrb):
self.active_tool.make()
else:
self.active_tool.click(self.app.geo_editor.snap(self.x, self.y))
self.active_tool.make()
if self.active_tool.complete:
self.on_grb_shape_complete()
self.app.inform.emit('[success] %s' % _("Done."))
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool but not for TrackEditorGrb
if isinstance(self.active_tool, TrackEditorGrb):
self.select_tool(self.active_tool.name)
else:
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if (self.app.defaults["global_mselect_key"] == 'Control' and
key_modifier == Qt.ControlModifier) or \
(self.app.defaults["global_mselect_key"] == 'Shift' and
key_modifier == Qt.ShiftModifier):
self.select_tool(self.active_tool.name)
else:
self.select_tool("select")
except Exception as e:
log.warning("AppGerberEditor.on_grb_click_release() RMB click --> Error: %s" % str(e))
raise
# if the released mouse button was LMB then test if we had a right-to-left selection or a left-to-right
# selection and then select a type of selection ("enclosing" or "touching")
try:
if event.button == 1: # left click
if self.app.selection_type is not None:
self.draw_selection_area_handler(self.pos, pos, self.app.selection_type)
self.app.selection_type = None
elif isinstance(self.active_tool, SelectEditorGrb):
self.active_tool.click_release((self.pos[0], self.pos[1]))
# # if there are selected objects then plot them
# if self.selected:
# self.plot_all()
except Exception as e:
log.warning("AppGerberEditor.on_grb_click_release() LMB click --> Error: %s" % str(e))
raise
def draw_selection_area_handler(self, start_pos, end_pos, sel_type):
"""
:param start_pos: mouse position when the selection LMB click was done
:param end_pos: mouse position when the left mouse button is released
:param sel_type: if True it's a left to right selection (enclosure), if False it's a 'touch' selection
:return:
"""
poly_selection = Polygon([start_pos, (end_pos[0], start_pos[1]), end_pos, (start_pos[0], end_pos[1])])
sel_aperture = set()
self.ui.apertures_table.clearSelection()
self.app.delete_selection_shape()
for storage in self.storage_dict:
for obj in self.storage_dict[storage]['geometry']:
if 'solid' in obj.geo:
geometric_data = obj.geo['solid']
if (sel_type is True and poly_selection.contains(geometric_data)) or \
(sel_type is False and poly_selection.intersects(geometric_data)):
if self.key == self.app.defaults["global_mselect_key"]:
if obj in self.selected:
self.selected.remove(obj)
else:
# add the object to the selected shapes
self.selected.append(obj)
sel_aperture.add(storage)
else:
self.selected.append(obj)
sel_aperture.add(storage)
try:
self.ui.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("AppGerberEditor.draw_selection_Area_handler() --> %s" % str(e))
# select the aperture code of the selected geometry, in the tool table
self.ui.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
for aper in sel_aperture:
for row_to_sel in range(self.ui.apertures_table.rowCount()):
if str(aper) == self.ui.apertures_table.item(row_to_sel, 1).text():
if row_to_sel not in set(index.row() for index in self.ui.apertures_table.selectedIndexes()):
self.ui.apertures_table.selectRow(row_to_sel)
self.last_aperture_selected = aper
self.ui.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self.ui.apertures_table.cellPressed.connect(self.on_row_selected)
self.plot_all()
def on_canvas_move(self, event):
"""
Called on 'mouse_move' event
event.pos have canvas screen coordinates
:param event: Event object dispatched by VisPy SceneCavas
:return: None
"""
if not self.app.plotcanvas.native.hasFocus():
self.app.plotcanvas.native.setFocus()
if self.app.is_legacy is False:
event_pos = event.pos
event_is_dragging = event.is_dragging
right_button = 2
else:
event_pos = (event.xdata, event.ydata)
event_is_dragging = self.app.plotcanvas.is_dragging
right_button = 3
pos_canvas = self.canvas.translate_coords(event_pos)
event.xdata, event.ydata = pos_canvas[0], pos_canvas[1]
self.x = event.xdata
self.y = event.ydata
self.app.ui.popMenu.mouse_is_panning = False
# if the RMB is clicked and mouse is moving over plot then 'panning_action' is True
if event.button == right_button and event_is_dragging == 1:
self.app.ui.popMenu.mouse_is_panning = True
return
try:
x = float(event.xdata)
y = float(event.ydata)
except TypeError:
return
if self.active_tool is None:
return
# # ## Snap coordinates
if self.app.grid_status():
x, y = self.app.geo_editor.snap(x, y)
# Update cursor
self.app.app_cursor.set_data(np.asarray([(x, y)]), symbol='++', edge_color=self.app.cursor_color_3D,
edge_width=self.app.defaults["global_cursor_width"],
size=self.app.defaults["global_cursor_size"])
self.snap_x = x
self.snap_y = y
self.app.mouse = [x, y]
if self.pos is None:
self.pos = (0, 0)
self.app.dx = x - self.pos[0]
self.app.dy = y - self.pos[1]
# # update the position label in the infobar since the APP mouse event handlers are disconnected
self.app.ui.position_label.setText("&nbsp;<b>X</b>: %.4f&nbsp;&nbsp; "
"<b>Y</b>: %.4f&nbsp;" % (x, y))
# update the reference position label in the infobar since the APP mouse event handlers are disconnected
self.app.ui.rel_position_label.setText("<b>Dx</b>: %.4f&nbsp;&nbsp; <b>Dy</b>: "
"%.4f&nbsp;&nbsp;&nbsp;&nbsp;" % (self.app.dx, self.app.dy))
units = self.app.defaults["units"].lower()
self.app.plotcanvas.text_hud.text = \
'Dx:\t{:<.4f} [{:s}]\nDy:\t{:<.4f} [{:s}]\n\nX: \t{:<.4f} [{:s}]\nY: \t{:<.4f} [{:s}]'.format(
self.app.dx, units, self.app.dy, units, x, units, y, units)
self.update_utility_geometry(data=(x, y))
# # ## Selection area on canvas section # ##
if event_is_dragging == 1 and event.button == 1:
# I make an exception for RegionEditorGrb and TrackEditorGrb because clicking and dragging while making
# regions can create strange issues like missing a point in a track/region
if isinstance(self.active_tool, RegionEditorGrb) or isinstance(self.active_tool, TrackEditorGrb):
pass
else:
dx = pos_canvas[0] - self.pos[0]
self.app.delete_selection_shape()
if dx < 0:
self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y),
color=self.app.defaults["global_alt_sel_line"],
face_color=self.app.defaults['global_alt_sel_fill'])
self.app.selection_type = False
else:
self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y))
self.app.selection_type = True
else:
self.app.selection_type = None
def update_utility_geometry(self, data):
# # ## Utility geometry (animated)
geo = self.active_tool.utility_geometry(data=data)
if isinstance(geo, DrawToolShape) and geo.geo is not None:
# Remove any previous utility shape
self.tool_shape.clear(update=True)
self.draw_utility_geometry(geo=geo)
def draw_utility_geometry(self, geo):
if type(geo.geo) == list:
for el in geo.geo:
geometric_data = el['solid']
# Add the new utility shape
self.tool_shape.add(
shape=geometric_data, color=(self.app.defaults["global_draw_color"] + '80'),
# face_color=self.app.defaults['global_alt_sel_fill'],
update=False, layer=0, tolerance=None
)
else:
geometric_data = geo.geo['solid']
# Add the new utility shape
self.tool_shape.add(
shape=geometric_data,
color=(self.app.defaults["global_draw_color"] + '80'),
# face_color=self.app.defaults['global_alt_sel_fill'],
update=False, layer=0, tolerance=None
)
self.tool_shape.redraw()
def plot_all(self):
"""
Plots all shapes in the editor.
:return: None
:rtype: None
"""
with self.app.proc_container.new('%s ...' % _("Plotting")):
self.shapes.clear(update=True)
for storage in self.storage_dict:
# fix for apertures with no geometry inside
if 'geometry' in self.storage_dict[storage]:
for elem in self.storage_dict[storage]['geometry']:
if 'solid' in elem.geo:
geometric_data = elem.geo['solid']
if geometric_data is None:
continue
if elem in self.selected:
self.plot_shape(geometry=geometric_data,
color=self.app.defaults['global_sel_draw_color'] + 'FF',
linewidth=2)
else:
self.plot_shape(geometry=geometric_data,
color=self.app.defaults['global_draw_color'] + 'FF')
if self.utility:
for elem in self.utility:
geometric_data = elem.geo['solid']
self.plot_shape(geometry=geometric_data, linewidth=1)
continue
self.shapes.redraw()
def plot_shape(self, geometry=None, color='#000000FF', linewidth=1):
"""
Plots a geometric object or list of objects without rendering. Plotted objects
are returned as a list. This allows for efficient/animated rendering.
:param geometry: Geometry to be plotted (Any Shapely.geom kind or list of such)
:param color: Shape color
:param linewidth: Width of lines in # of pixels.
:return: List of plotted elements.
"""
if geometry is None:
geometry = self.active_tool.geometry
try:
self.shapes.add(shape=geometry.geo, color=color, face_color=color, layer=0, tolerance=self.tolerance)
except AttributeError:
if type(geometry) == Point:
return
if len(color) == 9:
color = color[:7] + 'AF'
self.shapes.add(shape=geometry, color=color, face_color=color, layer=0, tolerance=self.tolerance)
# def start_delayed_plot(self, check_period):
# """
# This function starts an QTImer and it will periodically check if all the workers finish the plotting functions
#
# :param check_period: time at which to check periodically if all plots finished to be plotted
# :return:
# """
#
# # self.plot_thread = threading.Thread(target=lambda: self.check_plot_finished(check_period))
# # self.plot_thread.start()
# log.debug("AppGerberEditor --> Delayed Plot started.")
# self.plot_thread = QtCore.QTimer()
# self.plot_thread.setInterval(check_period)
# self.plot_finished.connect(self.setup_ui_after_delayed_plot)
# self.plot_thread.timeout.connect(self.check_plot_finished)
# self.plot_thread.start()
#
# def check_plot_finished(self):
# """
# If all the promises made are finished then all the shapes are in shapes_storage and can be plotted safely and
# then the UI is rebuilt accordingly.
# :return:
# """
#
# try:
# if not self.grb_plot_promises:
# self.plot_thread.stop()
# self.plot_finished.emit()
# log.debug("AppGerberEditor --> delayed_plot finished")
# except Exception as e:
# traceback.print_exc()
#
# def setup_ui_after_delayed_plot(self):
# self.plot_finished.disconnect()
#
# # now that we have data, create the GUI interface and add it to the Tool Tab
# self.build_ui(first_run=True)
# self.plot_all()
#
# # HACK: enabling/disabling the cursor seams to somehow update the shapes making them more 'solid'
# # - perhaps is a bug in VisPy implementation
# self.app.app_cursor.enabled = False
# self.app.app_cursor.enabled = True
def on_zoom_fit(self):
"""
Callback for zoom-fit request in Gerber Editor
:return: None
"""
log.debug("AppGerberEditor.on_zoom_fit()")
# calculate all the geometry in the edited Gerber object
edit_geo = []
for ap_code in self.storage_dict:
for geo_el in self.storage_dict[ap_code]['geometry']:
actual_geo = geo_el.geo
if 'solid' in actual_geo:
edit_geo.append(actual_geo['solid'])
all_geo = unary_union(edit_geo)
# calculate the bounds values for the edited Gerber object
xmin, ymin, xmax, ymax = all_geo.bounds
if self.app.is_legacy is False:
new_rect = Rect(xmin, ymin, xmax, ymax)
self.app.plotcanvas.fit_view(rect=new_rect)
else:
width = xmax - xmin
height = ymax - ymin
xmin -= 0.05 * width
xmax += 0.05 * width
ymin -= 0.05 * height
ymax += 0.05 * height
self.app.plotcanvas.adjust_axes(xmin, ymin, xmax, ymax)
def get_selected(self):
"""
Returns list of shapes that are selected in the editor.
:return: List of shapes.
"""
# return [shape for shape in self.shape_buffer if shape["selected"]]
return self.selected
def delete_selected(self):
temp_ref = [s for s in self.selected]
if len(temp_ref) == 0:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed. No aperture geometry is selected."))
return
for shape_sel in temp_ref:
self.delete_shape(shape_sel)
self.selected = []
self.build_ui()
self.app.inform.emit('[success] %s' % _("Done."))
def delete_shape(self, geo_el):
self.is_modified = True
if geo_el in self.utility:
self.utility.remove(geo_el)
return
for storage in self.storage_dict:
try:
if geo_el in self.storage_dict[storage]['geometry']:
self.storage_dict[storage]['geometry'].remove(geo_el)
except KeyError:
pass
if geo_el in self.selected:
self.selected.remove(geo_el) # TODO: Check performance
def delete_utility_geometry(self):
# for_deletion = [shape for shape in self.shape_buffer if shape.utility]
# for_deletion = [shape for shape in self.storage.get_objects() if shape.utility]
for_deletion = [geo_el for geo_el in self.utility]
for geo_el in for_deletion:
self.delete_shape(geo_el)
self.tool_shape.clear(update=True)
self.tool_shape.redraw()
def on_delete_btn(self):
self.delete_selected()
self.plot_all()
def select_tool(self, toolname):
"""
Selects a drawing tool. Impacts the object and appGUI.
:param toolname: Name of the tool.
:return: None
"""
self.tools_gerber[toolname]["button"].setChecked(True)
self.on_tool_select(toolname)
def set_selected(self, geo_el):
# Remove and add to the end.
if geo_el in self.selected:
self.selected.remove(geo_el)
self.selected.append(geo_el)
def set_unselected(self, geo_el):
if geo_el in self.selected:
self.selected.remove(geo_el)
def on_array_type_combo(self):
if self.ui.array_type_combo.currentIndex() == 0:
self.ui.array_circular_frame.hide()
self.ui.array_linear_frame.show()
else:
self.delete_utility_geometry()
self.ui.array_circular_frame.show()
self.ui.array_linear_frame.hide()
self.app.inform.emit(_("Click on the circular array Center position"))
def on_linear_angle_radio(self):
val = self.ui.pad_axis_radio.get_value()
if val == 'A':
self.ui.linear_angle_spinner.show()
self.ui.linear_angle_label.show()
else:
self.ui.linear_angle_spinner.hide()
self.ui.linear_angle_label.hide()
def on_copy_button(self):
self.select_tool('copy')
return
def on_move_button(self):
self.select_tool('move')
return
def on_pad_add(self):
self.select_tool('pad')
def on_pad_add_array(self):
self.select_tool('array')
def on_track_add(self):
self.select_tool('track')
def on_region_add(self):
self.select_tool('region')
def on_poligonize(self):
self.select_tool('poligonize')
def on_disc_add(self):
self.select_tool('disc')
def on_add_semidisc(self):
self.select_tool('semidisc')
def on_buffer(self):
buff_value = 0.01
log.debug("AppGerberEditor.on_buffer()")
try:
buff_value = float(self.ui.buffer_distance_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
buff_value = float(self.ui.buffer_distance_entry.get_value().replace(',', '.'))
self.ui.buffer_distance_entry.set_value(buff_value)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Buffer distance value is missing or wrong format. Add it and retry."))
return
# the cb index start from 0 but the join styles for the buffer start from 1 therefore the adjustment
# I populated the combobox such that the index coincide with the join styles value (which is really an INT)
join_style = self.ui.buffer_corner_cb.currentIndex() + 1
def buffer_recursion(geom_el, selection):
if type(geom_el) == list:
geoms = []
for local_geom in geom_el:
geoms.append(buffer_recursion(local_geom, selection=selection))
return geoms
else:
if geom_el in selection:
geometric_data = geom_el.geo
buffered_geom_el = {}
if 'solid' in geometric_data:
buffered_geom_el['solid'] = geometric_data['solid'].buffer(buff_value, join_style=join_style)
if 'follow' in geometric_data:
buffered_geom_el['follow'] = geometric_data['follow'].buffer(buff_value, join_style=join_style)
if 'clear' in geometric_data:
buffered_geom_el['clear'] = geometric_data['clear'].buffer(buff_value, join_style=join_style)
return DrawToolShape(buffered_geom_el)
else:
return geom_el
if not self.ui.apertures_table.selectedItems():
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No aperture to buffer. Select at least one aperture and try again."))
return
for x in self.ui.apertures_table.selectedItems():
try:
apcode = self.ui.apertures_table.item(x.row(), 1).text()
temp_storage = deepcopy(buffer_recursion(self.storage_dict[apcode]['geometry'], self.selected))
self.storage_dict[apcode]['geometry'] = []
self.storage_dict[apcode]['geometry'] = temp_storage
except Exception as e:
log.debug("AppGerberEditor.buffer() --> %s" % str(e))
self.app.inform.emit('[ERROR_NOTCL] %s\n%s' % (_("Failed."), str(traceback.print_exc())))
return
self.plot_all()
self.app.inform.emit('[success] %s' % _("Done."))
def on_scale(self):
scale_factor = 1.0
log.debug("AppGerberEditor.on_scale()")
try:
scale_factor = float(self.ui.scale_factor_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
scale_factor = float(self.ui.scale_factor_entry.get_value().replace(',', '.'))
self.ui.scale_factor_entry.set_value(scale_factor)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Scale factor value is missing or wrong format. Add it and retry."))
return
def scale_recursion(geom_el, selection):
if type(geom_el) == list:
geoms = []
for local_geom in geom_el:
geoms.append(scale_recursion(local_geom, selection=selection))
return geoms
else:
if geom_el in selection:
geometric_data = geom_el.geo
scaled_geom_el = {}
if 'solid' in geometric_data:
scaled_geom_el['solid'] = affinity.scale(
geometric_data['solid'], scale_factor, scale_factor, origin='center'
)
if 'follow' in geometric_data:
scaled_geom_el['follow'] = affinity.scale(
geometric_data['follow'], scale_factor, scale_factor, origin='center'
)
if 'clear' in geometric_data:
scaled_geom_el['clear'] = affinity.scale(
geometric_data['clear'], scale_factor, scale_factor, origin='center'
)
return DrawToolShape(scaled_geom_el)
else:
return geom_el
if not self.ui.apertures_table.selectedItems():
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No aperture to scale. Select at least one aperture and try again."))
return
for x in self.ui.apertures_table.selectedItems():
try:
apcode = self.ui.apertures_table.item(x.row(), 1).text()
temp_storage = deepcopy(scale_recursion(self.storage_dict[apcode]['geometry'], self.selected))
self.storage_dict[apcode]['geometry'] = []
self.storage_dict[apcode]['geometry'] = temp_storage
except Exception as e:
log.debug("AppGerberEditor.on_scale() --> %s" % str(e))
self.plot_all()
self.app.inform.emit('[success] %s' % _("Done."))
def on_markarea(self):
# clear previous marking
self.ma_annotation.clear(update=True)
self.units = self.app.defaults['units'].upper()
text = []
position = []
for apcode in self.storage_dict:
if 'geometry' in self.storage_dict[apcode]:
for geo_el in self.storage_dict[apcode]['geometry']:
if 'solid' in geo_el.geo:
area = geo_el.geo['solid'].area
try:
upper_threshold_val = self.ui.ma_upper_threshold_entry.get_value()
except Exception:
return
try:
lower_threshold_val = self.ui.ma_lower_threshold_entry.get_value()
except Exception:
lower_threshold_val = 0.0
if float(upper_threshold_val) > area > float(lower_threshold_val):
current_pos = geo_el.geo['solid'].exterior.coords[-1]
text_elem = '%.*f' % (self.decimals, area)
text.append(text_elem)
position.append(current_pos)
self.geo_to_delete.append(geo_el)
if text:
self.ma_annotation.set(text=text, pos=position, visible=True,
font_size=self.app.defaults["cncjob_annotation_fontsize"],
color='#000000FF')
self.app.inform.emit('[success] %s' %
_("Polygons marked."))
else:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No polygons were marked. None fit within the limits."))
def delete_marked_polygons(self):
for shape_sel in self.geo_to_delete:
self.delete_shape(shape_sel)
self.build_ui()
self.plot_all()
self.app.inform.emit('[success] %s' % _("Done."))
def on_eraser(self):
self.select_tool('eraser')
def on_transform(self):
if type(self.active_tool) == TransformEditorGrb:
self.select_tool('select')
else:
self.select_tool('transform')
def hide_tool(self, tool_name):
# self.app.ui.notebook.setTabText(2, _("Tools"))
try:
if tool_name == 'all':
self.ui.apertures_frame.hide()
if tool_name == 'select':
self.ui.apertures_frame.show()
if tool_name == 'buffer' or tool_name == 'all':
self.ui.buffer_tool_frame.hide()
if tool_name == 'scale' or tool_name == 'all':
self.ui.scale_tool_frame.hide()
if tool_name == 'markarea' or tool_name == 'all':
self.ui.ma_tool_frame.hide()
except Exception as e:
log.debug("AppGerberEditor.hide_tool() --> %s" % str(e))
self.app.ui.notebook.setCurrentWidget(self.app.ui.properties_tab)
class AppGerberEditorUI:
def __init__(self, app):
self.app = app
# Number of decimals used by tools in this class
self.decimals = self.app.decimals
# ## Current application units in Upper Case
self.units = self.app.defaults['units'].upper()
self.grb_edit_widget = QtWidgets.QWidget()
layout = QtWidgets.QVBoxLayout()
self.grb_edit_widget.setLayout(layout)
# Page Title box (spacing between children)
self.title_box = QtWidgets.QHBoxLayout()
layout.addLayout(self.title_box)
# Page Title icon
pixmap = QtGui.QPixmap(self.app.resource_location + '/flatcam_icon32.png')
self.icon = FCLabel()
self.icon.setPixmap(pixmap)
self.title_box.addWidget(self.icon, stretch=0)
# Title label
self.title_label = FCLabel("<font size=5><b>%s</b></font>" % _('Gerber Editor'))
self.title_label.setAlignment(QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter)
self.title_box.addWidget(self.title_label, stretch=1)
# Object name
self.name_box = QtWidgets.QHBoxLayout()
layout.addLayout(self.name_box)
name_label = FCLabel(_("Name:"))
self.name_box.addWidget(name_label)
self.name_entry = FCEntry()
self.name_box.addWidget(self.name_entry)
# Box for custom widgets
# This gets populated in offspring implementations.
self.custom_box = QtWidgets.QVBoxLayout()
layout.addLayout(self.custom_box)
# #########################
# ### Gerber Apertures ####
# #########################
self.apertures_table_label = FCLabel('<b>%s:</b>' % _('Apertures'))
self.apertures_table_label.setToolTip(
_("Apertures Table for the Gerber Object.")
)
self.custom_box.addWidget(self.apertures_table_label)
self.apertures_table = FCTable()
# delegate = SpinBoxDelegate(units=self.units)
# self.apertures_table.setItemDelegateForColumn(1, delegate)
self.custom_box.addWidget(self.apertures_table)
self.apertures_table.setColumnCount(5)
self.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')])
self.apertures_table.setSortingEnabled(False)
self.apertures_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows)
self.apertures_table.horizontalHeaderItem(0).setToolTip(
_("Index"))
self.apertures_table.horizontalHeaderItem(1).setToolTip(
_("Aperture Code"))
self.apertures_table.horizontalHeaderItem(2).setToolTip(
_("Type of aperture: circular, rectangle, macros etc"))
self.apertures_table.horizontalHeaderItem(4).setToolTip(
_("Aperture Size:"))
self.apertures_table.horizontalHeaderItem(4).setToolTip(
_("Aperture Dimensions:\n"
" - (width, height) for R, O type.\n"
" - (dia, nVertices) for P type"))
self.empty_label = FCLabel('')
self.custom_box.addWidget(self.empty_label)
# add a frame and inside add a vertical box layout. Inside this vbox layout I add all the Apertures widgets
# this way I can hide/show the frame
self.apertures_frame = QtWidgets.QFrame()
self.apertures_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.apertures_frame)
self.apertures_box = QtWidgets.QVBoxLayout()
self.apertures_box.setContentsMargins(0, 0, 0, 0)
self.apertures_frame.setLayout(self.apertures_box)
# # ## Add/Delete an new Aperture ## ##
grid1 = QtWidgets.QGridLayout()
self.apertures_box.addLayout(grid1)
grid1.setColumnStretch(0, 0)
grid1.setColumnStretch(1, 1)
apcode_lbl = FCLabel('%s:' % _('Aperture Code'))
apcode_lbl.setToolTip(_("Code for the new aperture"))
grid1.addWidget(apcode_lbl, 1, 0)
self.apcode_entry = FCSpinner()
self.apcode_entry.set_range(0, 999)
self.apcode_entry.setWrapping(True)
grid1.addWidget(self.apcode_entry, 1, 1)
apsize_lbl = FCLabel('%s' % _('Aperture Size:'))
apsize_lbl.setToolTip(
_("Size for the new aperture.\n"
"If aperture type is 'R' or 'O' then\n"
"this value is automatically\n"
"calculated as:\n"
"sqrt(width**2 + height**2)")
)
grid1.addWidget(apsize_lbl, 2, 0)
self.apsize_entry = FCDoubleSpinner()
self.apsize_entry.set_precision(self.decimals)
self.apsize_entry.set_range(0.0, 9999)
grid1.addWidget(self.apsize_entry, 2, 1)
aptype_lbl = FCLabel('%s:' % _('Aperture Type'))
aptype_lbl.setToolTip(
_("Select the type of new aperture. Can be:\n"
"C = circular\n"
"R = rectangular\n"
"O = oblong")
)
grid1.addWidget(aptype_lbl, 3, 0)
self.aptype_cb = FCComboBox()
self.aptype_cb.addItems(['C', 'R', 'O'])
grid1.addWidget(self.aptype_cb, 3, 1)
self.apdim_lbl = FCLabel('%s:' % _('Aperture Dim'))
self.apdim_lbl.setToolTip(
_("Dimensions for the new aperture.\n"
"Active only for rectangular apertures (type R).\n"
"The format is (width, height)")
)
grid1.addWidget(self.apdim_lbl, 4, 0)
self.apdim_entry = EvalEntry2()
grid1.addWidget(self.apdim_entry, 4, 1)
apadd_del_lbl = FCLabel('<b>%s:</b>' % _('Add/Delete Aperture'))
apadd_del_lbl.setToolTip(
_("Add/Delete an aperture in the aperture table")
)
self.apertures_box.addWidget(apadd_del_lbl)
hlay_ad = QtWidgets.QHBoxLayout()
self.apertures_box.addLayout(hlay_ad)
self.addaperture_btn = FCButton(_('Add'))
self.addaperture_btn.setIcon(QtGui.QIcon(self.app.resource_location + '/plus16.png'))
self.addaperture_btn.setToolTip(
_("Add a new aperture to the aperture list.")
)
self.delaperture_btn = FCButton(_('Delete'))
self.delaperture_btn.setIcon(QtGui.QIcon(self.app.resource_location + '/trash32.png'))
self.delaperture_btn.setToolTip(
_("Delete a aperture in the aperture list")
)
hlay_ad.addWidget(self.addaperture_btn)
hlay_ad.addWidget(self.delaperture_btn)
# ###################
# ### BUFFER TOOL ###
# ###################
self.buffer_tool_frame = QtWidgets.QFrame()
self.buffer_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.buffer_tool_frame)
self.buffer_tools_box = QtWidgets.QVBoxLayout()
self.buffer_tools_box.setContentsMargins(0, 0, 0, 0)
self.buffer_tool_frame.setLayout(self.buffer_tools_box)
self.buffer_tool_frame.hide()
# Title
buf_title_lbl = FCLabel('<b>%s:</b>' % _('Buffer Aperture'))
buf_title_lbl.setToolTip(
_("Buffer a aperture in the aperture list")
)
self.buffer_tools_box.addWidget(buf_title_lbl)
# Form Layout
buf_form_layout = QtWidgets.QFormLayout()
self.buffer_tools_box.addLayout(buf_form_layout)
# Buffer distance
self.buffer_distance_entry = FCDoubleSpinner()
self.buffer_distance_entry.set_precision(self.decimals)
self.buffer_distance_entry.set_range(-10000.0000, 10000.0000)
buf_form_layout.addRow('%s:' % _("Buffer distance"), self.buffer_distance_entry)
self.buffer_corner_lbl = FCLabel('%s:' % _("Buffer corner"))
self.buffer_corner_lbl.setToolTip(
_("There are 3 types of corners:\n"
" - 'Round': the corner is rounded.\n"
" - 'Square': the corner is met in a sharp angle.\n"
" - 'Beveled': the corner is a line that directly connects the features meeting in the corner")
)
self.buffer_corner_cb = FCComboBox()
self.buffer_corner_cb.addItem(_("Round"))
self.buffer_corner_cb.addItem(_("Square"))
self.buffer_corner_cb.addItem(_("Beveled"))
buf_form_layout.addRow(self.buffer_corner_lbl, self.buffer_corner_cb)
# Buttons
hlay_buf = QtWidgets.QHBoxLayout()
self.buffer_tools_box.addLayout(hlay_buf)
self.buffer_button = FCButton(_("Buffer"))
self.buffer_button.setIcon(QtGui.QIcon(self.app.resource_location + '/buffer16-2.png'))
hlay_buf.addWidget(self.buffer_button)
# ##################
# ### SCALE TOOL ###
# ##################
self.scale_tool_frame = QtWidgets.QFrame()
self.scale_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.scale_tool_frame)
self.scale_tools_box = QtWidgets.QVBoxLayout()
self.scale_tools_box.setContentsMargins(0, 0, 0, 0)
self.scale_tool_frame.setLayout(self.scale_tools_box)
self.scale_tool_frame.hide()
# Title
scale_title_lbl = FCLabel('<b>%s:</b>' % _('Scale Aperture'))
scale_title_lbl.setToolTip(
_("Scale a aperture in the aperture list")
)
self.scale_tools_box.addWidget(scale_title_lbl)
# Form Layout
scale_form_layout = QtWidgets.QFormLayout()
self.scale_tools_box.addLayout(scale_form_layout)
self.scale_factor_lbl = FCLabel('%s:' % _("Scale factor"))
self.scale_factor_lbl.setToolTip(
_("The factor by which to scale the selected aperture.\n"
"Values can be between 0.0000 and 999.9999")
)
self.scale_factor_entry = FCDoubleSpinner()
self.scale_factor_entry.set_precision(self.decimals)
self.scale_factor_entry.set_range(0.0000, 10000.0000)
scale_form_layout.addRow(self.scale_factor_lbl, self.scale_factor_entry)
# Buttons
hlay_scale = QtWidgets.QHBoxLayout()
self.scale_tools_box.addLayout(hlay_scale)
self.scale_button = FCButton(_("Scale"))
self.scale_button.setIcon(QtGui.QIcon(self.app.resource_location + '/clean32.png'))
hlay_scale.addWidget(self.scale_button)
# ######################
# ### Mark Area TOOL ###
# ######################
self.ma_tool_frame = QtWidgets.QFrame()
self.ma_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.ma_tool_frame)
self.ma_tools_box = QtWidgets.QVBoxLayout()
self.ma_tools_box.setContentsMargins(0, 0, 0, 0)
self.ma_tool_frame.setLayout(self.ma_tools_box)
self.ma_tool_frame.hide()
# Title
ma_title_lbl = FCLabel('<b>%s:</b>' % _('Mark polygons'))
ma_title_lbl.setToolTip(
_("Mark the polygon areas.")
)
self.ma_tools_box.addWidget(ma_title_lbl)
# Form Layout
ma_form_layout = QtWidgets.QFormLayout()
self.ma_tools_box.addLayout(ma_form_layout)
self.ma_upper_threshold_lbl = FCLabel('%s:' % _("Area UPPER threshold"))
self.ma_upper_threshold_lbl.setToolTip(
_("The threshold value, all areas less than this are marked.\n"
"Can have a value between 0.0000 and 10000.0000")
)
self.ma_upper_threshold_entry = FCDoubleSpinner()
self.ma_upper_threshold_entry.set_precision(self.decimals)
self.ma_upper_threshold_entry.set_range(0, 10000)
self.ma_lower_threshold_lbl = FCLabel('%s:' % _("Area LOWER threshold"))
self.ma_lower_threshold_lbl.setToolTip(
_("The threshold value, all areas more than this are marked.\n"
"Can have a value between 0.0000 and 10000.0000")
)
self.ma_lower_threshold_entry = FCDoubleSpinner()
self.ma_lower_threshold_entry.set_precision(self.decimals)
self.ma_lower_threshold_entry.set_range(0, 10000)
ma_form_layout.addRow(self.ma_lower_threshold_lbl, self.ma_lower_threshold_entry)
ma_form_layout.addRow(self.ma_upper_threshold_lbl, self.ma_upper_threshold_entry)
# Buttons
hlay_ma = QtWidgets.QHBoxLayout()
self.ma_tools_box.addLayout(hlay_ma)
self.ma_threshold_button = FCButton(_("Mark"))
self.ma_threshold_button.setIcon(QtGui.QIcon(self.app.resource_location + '/markarea32.png'))
self.ma_threshold_button.setToolTip(
_("Mark the polygons that fit within limits.")
)
hlay_ma.addWidget(self.ma_threshold_button)
self.ma_delete_button = FCButton(_("Delete"))
self.ma_delete_button.setIcon(QtGui.QIcon(self.app.resource_location + '/trash32.png'))
self.ma_delete_button.setToolTip(
_("Delete all the marked polygons.")
)
hlay_ma.addWidget(self.ma_delete_button)
self.ma_clear_button = FCButton(_("Clear"))
self.ma_clear_button.setIcon(QtGui.QIcon(self.app.resource_location + '/clean32.png'))
self.ma_clear_button.setToolTip(
_("Clear all the markings.")
)
hlay_ma.addWidget(self.ma_clear_button)
# ######################
# ### Add Pad Array ####
# ######################
# add a frame and inside add a vertical box layout. Inside this vbox layout I add
# all the add Pad array widgets
# this way I can hide/show the frame
self.array_frame = QtWidgets.QFrame()
self.array_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.array_frame)
self.array_box = QtWidgets.QVBoxLayout()
self.array_box.setContentsMargins(0, 0, 0, 0)
self.array_frame.setLayout(self.array_box)
self.emptyarray_label = FCLabel('')
self.array_box.addWidget(self.emptyarray_label)
self.padarray_label = FCLabel('<b>%s</b>' % _("Add Pad Array"))
self.padarray_label.setToolTip(
_("Add an array of pads (linear or circular array)")
)
self.array_box.addWidget(self.padarray_label)
self.array_type_combo = FCComboBox2()
self.array_type_combo.setToolTip(
_("Select the type of pads array to create.\n"
"It can be Linear X(Y) or Circular")
)
self.array_type_combo.addItem(_("Linear"))
self.array_type_combo.addItem(_("Circular"))
self.array_box.addWidget(self.array_type_combo)
self.array_form = QtWidgets.QFormLayout()
self.array_box.addLayout(self.array_form)
self.pad_array_size_label = FCLabel('%s:' % _('Nr of pads'))
self.pad_array_size_label.setToolTip(
_("Specify how many pads to be in the array.")
)
self.pad_array_size_label.setMinimumWidth(100)
self.pad_array_size_entry = FCSpinner()
self.pad_array_size_entry.set_range(1, 9999)
self.array_form.addRow(self.pad_array_size_label, self.pad_array_size_entry)
self.array_linear_frame = QtWidgets.QFrame()
self.array_linear_frame.setContentsMargins(0, 0, 0, 0)
self.array_box.addWidget(self.array_linear_frame)
self.linear_box = QtWidgets.QVBoxLayout()
self.linear_box.setContentsMargins(0, 0, 0, 0)
self.array_linear_frame.setLayout(self.linear_box)
self.linear_form = QtWidgets.QFormLayout()
self.linear_box.addLayout(self.linear_form)
self.pad_axis_label = FCLabel('%s:' % _('Direction'))
self.pad_axis_label.setToolTip(
_("Direction on which the linear array is oriented:\n"
"- 'X' - horizontal axis \n"
"- 'Y' - vertical axis or \n"
"- 'Angle' - a custom angle for the array inclination")
)
self.pad_axis_label.setMinimumWidth(100)
self.pad_axis_radio = RadioSet([{'label': _('X'), 'value': 'X'},
{'label': _('Y'), 'value': 'Y'},
{'label': _('Angle'), 'value': 'A'}])
self.pad_axis_radio.set_value('X')
self.linear_form.addRow(self.pad_axis_label, self.pad_axis_radio)
self.pad_pitch_label = FCLabel('%s:' % _('Pitch'))
self.pad_pitch_label.setToolTip(
_("Pitch = Distance between elements of the array.")
)
self.pad_pitch_label.setMinimumWidth(100)
self.pad_pitch_entry = FCDoubleSpinner()
self.pad_pitch_entry.set_precision(self.decimals)
self.pad_pitch_entry.set_range(0.0000, 10000.0000)
self.pad_pitch_entry.setSingleStep(0.1)
self.linear_form.addRow(self.pad_pitch_label, self.pad_pitch_entry)
self.linear_angle_label = FCLabel('%s:' % _('Angle'))
self.linear_angle_label.setToolTip(
_("Angle at which the linear array is placed.\n"
"The precision is of max 2 decimals.\n"
"Min value is: -360.00 degrees.\n"
"Max value is: 360.00 degrees.")
)
self.linear_angle_label.setMinimumWidth(100)
self.linear_angle_spinner = FCDoubleSpinner()
self.linear_angle_spinner.set_precision(self.decimals)
self.linear_angle_spinner.setRange(-360.00, 360.00)
self.linear_form.addRow(self.linear_angle_label, self.linear_angle_spinner)
self.array_circular_frame = QtWidgets.QFrame()
self.array_circular_frame.setContentsMargins(0, 0, 0, 0)
self.array_box.addWidget(self.array_circular_frame)
self.circular_box = QtWidgets.QVBoxLayout()
self.circular_box.setContentsMargins(0, 0, 0, 0)
self.array_circular_frame.setLayout(self.circular_box)
self.pad_direction_label = FCLabel('%s:' % _('Direction'))
self.pad_direction_label.setToolTip(
_("Direction for circular array.\n"
"Can be CW = clockwise or CCW = counter clockwise.")
)
self.pad_direction_label.setMinimumWidth(100)
self.circular_form = QtWidgets.QFormLayout()
self.circular_box.addLayout(self.circular_form)
self.pad_direction_radio = RadioSet([{'label': _('CW'), 'value': 'CW'},
{'label': _('CCW'), 'value': 'CCW'}])
self.pad_direction_radio.set_value('CW')
self.circular_form.addRow(self.pad_direction_label, self.pad_direction_radio)
self.pad_angle_label = FCLabel('%s:' % _('Angle'))
self.pad_angle_label.setToolTip(
_("Angle at which each element in circular array is placed.")
)
self.pad_angle_label.setMinimumWidth(100)
self.pad_angle_entry = FCDoubleSpinner()
self.pad_angle_entry.set_precision(self.decimals)
self.pad_angle_entry.set_range(-360.00, 360.00)
self.pad_angle_entry.setSingleStep(0.1)
self.circular_form.addRow(self.pad_angle_label, self.pad_angle_entry)
self.array_circular_frame.hide()
self.linear_angle_spinner.hide()
self.linear_angle_label.hide()
self.array_frame.hide()
self.custom_box.addStretch()
layout.addStretch()
# Editor
self.exit_editor_button = FCButton(_('Exit Editor'))
self.exit_editor_button.setIcon(QtGui.QIcon(self.app.resource_location + '/power16.png'))
self.exit_editor_button.setToolTip(
_("Exit from Editor.")
)
self.exit_editor_button.setStyleSheet("""
QPushButton
{
font-weight: bold;
}
""")
layout.addWidget(self.exit_editor_button)
class TransformEditorTool(AppTool):
"""
Inputs to specify how to paint the selected polygons.
"""
toolName = _("Transform Tool")
rotateName = _("Rotate")
skewName = _("Skew/Shear")
scaleName = _("Scale")
flipName = _("Mirror (Flip)")
offsetName = _("Offset")
bufferName = _("Buffer")
def __init__(self, app, draw_app):
AppTool.__init__(self, app)
self.app = app
self.draw_app = draw_app
self.decimals = self.app.decimals
# ## Title
title_label = FCLabel("%s" % self.toolName)
title_label.setStyleSheet("""
QLabel
{
font-size: 16px;
font-weight: bold;
}
""")
self.layout.addWidget(title_label)
self.layout.addWidget(FCLabel(''))
# ## Layout
grid0 = QtWidgets.QGridLayout()
self.layout.addLayout(grid0)
grid0.setColumnStretch(0, 0)
grid0.setColumnStretch(1, 1)
grid0.setColumnStretch(2, 0)
grid0.addWidget(FCLabel(''))
# Reference
ref_label = FCLabel('%s:' % _("Reference"))
ref_label.setToolTip(
_("The reference point for Rotate, Skew, Scale, Mirror.\n"
"Can be:\n"
"- Origin -> it is the 0, 0 point\n"
"- Selection -> the center of the bounding box of the selected objects\n"
"- Point -> a custom point defined by X,Y coordinates\n"
"- Min Selection -> the point (minx, miny) of the bounding box of the selection")
)
self.ref_combo = FCComboBox()
self.ref_items = [_("Origin"), _("Selection"), _("Point"), _("Minimum")]
self.ref_combo.addItems(self.ref_items)
grid0.addWidget(ref_label, 0, 0)
grid0.addWidget(self.ref_combo, 0, 1, 1, 2)
self.point_label = FCLabel('%s:' % _("Value"))
self.point_label.setToolTip(
_("A point of reference in format X,Y.")
)
self.point_entry = NumericalEvalTupleEntry()
grid0.addWidget(self.point_label, 1, 0)
grid0.addWidget(self.point_entry, 1, 1, 1, 2)
self.point_button = FCButton(_("Add"))
self.point_button.setToolTip(
_("Add point coordinates from clipboard.")
)
grid0.addWidget(self.point_button, 2, 0, 1, 3)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 5, 0, 1, 3)
# ## Rotate Title
rotate_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.rotateName)
grid0.addWidget(rotate_title_label, 6, 0, 1, 3)
self.rotate_label = FCLabel('%s:' % _("Angle"))
self.rotate_label.setToolTip(
_("Angle, in degrees.\n"
"Float number between -360 and 359.\n"
"Positive numbers for CW motion.\n"
"Negative numbers for CCW motion.")
)
self.rotate_entry = FCDoubleSpinner(callback=self.confirmation_message)
self.rotate_entry.set_precision(self.decimals)
self.rotate_entry.setSingleStep(45)
self.rotate_entry.setWrapping(True)
self.rotate_entry.set_range(-360, 360)
# self.rotate_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.rotate_button = FCButton(_("Rotate"))
self.rotate_button.setToolTip(
_("Rotate the selected object(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected objects.")
)
self.rotate_button.setMinimumWidth(90)
grid0.addWidget(self.rotate_label, 7, 0)
grid0.addWidget(self.rotate_entry, 7, 1)
grid0.addWidget(self.rotate_button, 7, 2)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 8, 0, 1, 3)
# ## Skew Title
skew_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.skewName)
grid0.addWidget(skew_title_label, 9, 0, 1, 2)
self.skew_link_cb = FCCheckBox()
self.skew_link_cb.setText(_("Link"))
self.skew_link_cb.setToolTip(
_("Link the Y entry to X entry and copy its content.")
)
grid0.addWidget(self.skew_link_cb, 9, 2)
self.skewx_label = FCLabel('%s:' % _("X angle"))
self.skewx_label.setToolTip(
_("Angle for Skew action, in degrees.\n"
"Float number between -360 and 360.")
)
self.skewx_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.skewx_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.skewx_entry.set_precision(self.decimals)
self.skewx_entry.set_range(-360, 360)
self.skewx_button = FCButton(_("Skew X"))
self.skewx_button.setToolTip(
_("Skew/shear the selected object(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected objects."))
self.skewx_button.setMinimumWidth(90)
grid0.addWidget(self.skewx_label, 10, 0)
grid0.addWidget(self.skewx_entry, 10, 1)
grid0.addWidget(self.skewx_button, 10, 2)
self.skewy_label = FCLabel('%s:' % _("Y angle"))
self.skewy_label.setToolTip(
_("Angle for Skew action, in degrees.\n"
"Float number between -360 and 360.")
)
self.skewy_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.skewy_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.skewy_entry.set_precision(self.decimals)
self.skewy_entry.set_range(-360, 360)
self.skewy_button = FCButton(_("Skew Y"))
self.skewy_button.setToolTip(
_("Skew/shear the selected object(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected objects."))
self.skewy_button.setMinimumWidth(90)
grid0.addWidget(self.skewy_label, 12, 0)
grid0.addWidget(self.skewy_entry, 12, 1)
grid0.addWidget(self.skewy_button, 12, 2)
self.ois_sk = OptionalInputSection(self.skew_link_cb, [self.skewy_label, self.skewy_entry, self.skewy_button],
logic=False)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 14, 0, 1, 3)
# ## Scale Title
scale_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.scaleName)
grid0.addWidget(scale_title_label, 15, 0, 1, 2)
self.scale_link_cb = FCCheckBox()
self.scale_link_cb.setText(_("Link"))
self.scale_link_cb.setToolTip(
_("Link the Y entry to X entry and copy its content.")
)
grid0.addWidget(self.scale_link_cb, 15, 2)
self.scalex_label = FCLabel('%s:' % _("X factor"))
self.scalex_label.setToolTip(
_("Factor for scaling on X axis.")
)
self.scalex_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.scalex_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.scalex_entry.set_precision(self.decimals)
self.scalex_entry.setMinimum(-1e6)
self.scalex_button = FCButton(_("Scale X"))
self.scalex_button.setToolTip(
_("Scale the selected object(s).\n"
"The point of reference depends on \n"
"the Scale reference checkbox state."))
self.scalex_button.setMinimumWidth(90)
grid0.addWidget(self.scalex_label, 17, 0)
grid0.addWidget(self.scalex_entry, 17, 1)
grid0.addWidget(self.scalex_button, 17, 2)
self.scaley_label = FCLabel('%s:' % _("Y factor"))
self.scaley_label.setToolTip(
_("Factor for scaling on Y axis.")
)
self.scaley_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.scaley_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.scaley_entry.set_precision(self.decimals)
self.scaley_entry.setMinimum(-1e6)
self.scaley_button = FCButton(_("Scale Y"))
self.scaley_button.setToolTip(
_("Scale the selected object(s).\n"
"The point of reference depends on \n"
"the Scale reference checkbox state."))
self.scaley_button.setMinimumWidth(90)
grid0.addWidget(self.scaley_label, 19, 0)
grid0.addWidget(self.scaley_entry, 19, 1)
grid0.addWidget(self.scaley_button, 19, 2)
self.ois_s = OptionalInputSection(self.scale_link_cb,
[
self.scaley_label,
self.scaley_entry,
self.scaley_button
], logic=False)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 21, 0, 1, 3)
# ## Flip Title
flip_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.flipName)
grid0.addWidget(flip_title_label, 23, 0, 1, 3)
self.flipx_button = FCButton(_("Flip on X"))
self.flipx_button.setToolTip(
_("Flip the selected object(s) over the X axis.")
)
self.flipy_button = FCButton(_("Flip on Y"))
self.flipy_button.setToolTip(
_("Flip the selected object(s) over the X axis.")
)
hlay0 = QtWidgets.QHBoxLayout()
grid0.addLayout(hlay0, 25, 0, 1, 3)
hlay0.addWidget(self.flipx_button)
hlay0.addWidget(self.flipy_button)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 27, 0, 1, 3)
# ## Offset Title
offset_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.offsetName)
grid0.addWidget(offset_title_label, 29, 0, 1, 3)
self.offx_label = FCLabel('%s:' % _("X val"))
self.offx_label.setToolTip(
_("Distance to offset on X axis. In current units.")
)
self.offx_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.offx_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.offx_entry.set_precision(self.decimals)
self.offx_entry.setMinimum(-1e6)
self.offx_button = FCButton(_("Offset X"))
self.offx_button.setToolTip(
_("Offset the selected object(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected objects.\n"))
self.offx_button.setMinimumWidth(90)
grid0.addWidget(self.offx_label, 31, 0)
grid0.addWidget(self.offx_entry, 31, 1)
grid0.addWidget(self.offx_button, 31, 2)
self.offy_label = FCLabel('%s:' % _("Y val"))
self.offy_label.setToolTip(
_("Distance to offset on Y axis. In current units.")
)
self.offy_entry = FCDoubleSpinner(callback=self.confirmation_message)
# self.offy_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.offy_entry.set_precision(self.decimals)
self.offy_entry.setMinimum(-1e6)
self.offy_button = FCButton(_("Offset Y"))
self.offy_button.setToolTip(
_("Offset the selected object(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected objects.\n"))
self.offy_button.setMinimumWidth(90)
grid0.addWidget(self.offy_label, 32, 0)
grid0.addWidget(self.offy_entry, 32, 1)
grid0.addWidget(self.offy_button, 32, 2)
separator_line = QtWidgets.QFrame()
separator_line.setFrameShape(QtWidgets.QFrame.HLine)
separator_line.setFrameShadow(QtWidgets.QFrame.Sunken)
grid0.addWidget(separator_line, 34, 0, 1, 3)
# ## Buffer Title
buffer_title_label = FCLabel("<font size=3><b>%s</b></font>" % self.bufferName)
grid0.addWidget(buffer_title_label, 35, 0, 1, 2)
self.buffer_rounded_cb = FCCheckBox('%s' % _("Rounded"))
self.buffer_rounded_cb.setToolTip(
_("If checked then the buffer will surround the buffered shape,\n"
"every corner will be rounded.\n"
"If not checked then the buffer will follow the exact geometry\n"
"of the buffered shape.")
)
grid0.addWidget(self.buffer_rounded_cb, 35, 2)
self.buffer_label = FCLabel('%s:' % _("Distance"))
self.buffer_label.setToolTip(
_("A positive value will create the effect of dilation,\n"
"while a negative value will create the effect of erosion.\n"
"Each geometry element of the object will be increased\n"
"or decreased with the 'distance'.")
)
self.buffer_entry = FCDoubleSpinner(callback=self.confirmation_message)
self.buffer_entry.set_precision(self.decimals)
self.buffer_entry.setSingleStep(0.1)
self.buffer_entry.setWrapping(True)
self.buffer_entry.set_range(-10000.0000, 10000.0000)
self.buffer_button = FCButton(_("Buffer D"))
self.buffer_button.setToolTip(
_("Create the buffer effect on each geometry,\n"
"element from the selected object, using the distance.")
)
self.buffer_button.setMinimumWidth(90)
grid0.addWidget(self.buffer_label, 37, 0)
grid0.addWidget(self.buffer_entry, 37, 1)
grid0.addWidget(self.buffer_button, 37, 2)
self.buffer_factor_label = FCLabel('%s:' % _("Value"))
self.buffer_factor_label.setToolTip(
_("A positive value will create the effect of dilation,\n"
"while a negative value will create the effect of erosion.\n"
"Each geometry element of the object will be increased\n"
"or decreased to fit the 'Value'. Value is a percentage\n"
"of the initial dimension.")
)
self.buffer_factor_entry = FCDoubleSpinner(callback=self.confirmation_message, suffix='%')
self.buffer_factor_entry.set_range(-100.0000, 1000.0000)
self.buffer_factor_entry.set_precision(self.decimals)
self.buffer_factor_entry.setWrapping(True)
self.buffer_factor_entry.setSingleStep(1)
self.buffer_factor_button = FCButton(_("Buffer F"))
self.buffer_factor_button.setToolTip(
_("Create the buffer effect on each geometry,\n"
"element from the selected object, using the factor.")
)
self.buffer_factor_button.setMinimumWidth(90)
grid0.addWidget(self.buffer_factor_label, 38, 0)
grid0.addWidget(self.buffer_factor_entry, 38, 1)
grid0.addWidget(self.buffer_factor_button, 38, 2)
grid0.addWidget(FCLabel(''), 42, 0, 1, 3)
self.layout.addStretch()
# Signals
self.ref_combo.currentIndexChanged.connect(self.on_reference_changed)
self.point_button.clicked.connect(self.on_add_coords)
self.rotate_button.clicked.connect(self.on_rotate)
self.skewx_button.clicked.connect(self.on_skewx)
self.skewy_button.clicked.connect(self.on_skewy)
self.scalex_button.clicked.connect(self.on_scalex)
self.scaley_button.clicked.connect(self.on_scaley)
self.offx_button.clicked.connect(self.on_offx)
self.offy_button.clicked.connect(self.on_offy)
self.flipx_button.clicked.connect(self.on_flipx)
self.flipy_button.clicked.connect(self.on_flipy)
self.buffer_button.clicked.connect(self.on_buffer_by_distance)
self.buffer_factor_button.clicked.connect(self.on_buffer_by_factor)
# self.rotate_entry.editingFinished.connect(self.on_rotate)
# self.skewx_entry.editingFinished.connect(self.on_skewx)
# self.skewy_entry.editingFinished.connect(self.on_skewy)
# self.scalex_entry.editingFinished.connect(self.on_scalex)
# self.scaley_entry.editingFinished.connect(self.on_scaley)
# self.offx_entry.editingFinished.connect(self.on_offx)
# self.offy_entry.editingFinished.connect(self.on_offy)
self.set_tool_ui()
def run(self, toggle=True):
self.app.defaults.report_usage("Gerber Editor Transform Tool()")
# if the splitter is hidden, display it, else hide it but only if the current widget is the same
if self.app.ui.splitter.sizes()[0] == 0:
self.app.ui.splitter.setSizes([1, 1])
if toggle:
try:
if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName:
self.app.ui.notebook.setCurrentWidget(self.app.ui.properties_tab)
else:
self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab)
except AttributeError:
pass
AppTool.run(self)
self.set_tool_ui()
self.app.ui.notebook.setTabText(2, _("Transform Tool"))
def install(self, icon=None, separator=None, **kwargs):
AppTool.install(self, icon, separator, shortcut='Alt+T', **kwargs)
def set_tool_ui(self):
# Initialize form
ref_val = self.app.defaults["tools_transform_reference"]
if ref_val == _("Object"):
ref_val = _("Selection")
self.ref_combo.set_value(ref_val)
self.point_entry.set_value(self.app.defaults["tools_transform_ref_point"])
self.rotate_entry.set_value(self.app.defaults["tools_transform_rotate"])
self.skewx_entry.set_value(self.app.defaults["tools_transform_skew_x"])
self.skewy_entry.set_value(self.app.defaults["tools_transform_skew_y"])
self.skew_link_cb.set_value(self.app.defaults["tools_transform_skew_link"])
self.scalex_entry.set_value(self.app.defaults["tools_transform_scale_x"])
self.scaley_entry.set_value(self.app.defaults["tools_transform_scale_y"])
self.scale_link_cb.set_value(self.app.defaults["tools_transform_scale_link"])
self.offx_entry.set_value(self.app.defaults["tools_transform_offset_x"])
self.offy_entry.set_value(self.app.defaults["tools_transform_offset_y"])
self.buffer_entry.set_value(self.app.defaults["tools_transform_buffer_dis"])
self.buffer_factor_entry.set_value(self.app.defaults["tools_transform_buffer_factor"])
self.buffer_rounded_cb.set_value(self.app.defaults["tools_transform_buffer_corner"])
# initial state is hidden
self.point_label.hide()
self.point_entry.hide()
self.point_button.hide()
def template(self):
if not self.draw_app.selected:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s %s' % (_("Cancelled."), _("No shape selected.")))
return
self.draw_app.select_tool("select")
self.app.ui.notebook.setTabText(2, "Tools")
self.app.ui.notebook.setCurrentWidget(self.app.ui.project_tab)
self.app.ui.splitter.setSizes([0, 1])
def on_reference_changed(self, index):
if index == 0 or index == 1: # "Origin" or "Selection" reference
self.point_label.hide()
self.point_entry.hide()
self.point_button.hide()
elif index == 2: # "Point" reference
self.point_label.show()
self.point_entry.show()
self.point_button.show()
def on_calculate_reference(self, ref_index=None):
if ref_index:
ref_val = ref_index
else:
ref_val = self.ref_combo.currentIndex()
if ref_val == 0: # "Origin" reference
return 0, 0
elif ref_val == 1: # "Selection" reference
sel_list = self.draw_app.selected
if sel_list:
xmin, ymin, xmax, ymax = self.alt_bounds(sel_list)
px = (xmax + xmin) * 0.5
py = (ymax + ymin) * 0.5
return px, py
else:
self.app.inform.emit('[ERROR_NOTCL] %s' % _("No shape selected."))
return "fail"
elif ref_val == 2: # "Point" reference
point_val = self.point_entry.get_value()
try:
px, py = eval('{}'.format(point_val))
return px, py
except Exception:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Incorrect format for Point value. Needs format X,Y"))
return "fail"
else:
sel_list = self.draw_app.selected
if sel_list:
xmin, ymin, xmax, ymax = self.alt_bounds(sel_list)
if ref_val == 3:
return xmin, ymin # lower left corner
elif ref_val == 4:
return xmax, ymin # lower right corner
elif ref_val == 5:
return xmax, ymax # upper right corner
else:
return xmin, ymax # upper left corner
else:
self.app.inform.emit('[ERROR_NOTCL] %s' % _("No shape selected."))
return "fail"
def on_add_coords(self):
val = self.app.clipboard.text()
self.point_entry.set_value(val)
def on_rotate(self, sig=None, val=None, ref=None):
value = float(self.rotate_entry.get_value()) if val is None else val
if value == 0:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Rotate transformation can not be done for a value of 0."))
return
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_rotate_action, 'params': [value, point]})
def on_flipx(self, signal=None, ref=None):
axis = 'Y'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_flip, 'params': [axis, point]})
def on_flipy(self, signal=None, ref=None):
axis = 'X'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_flip, 'params': [axis, point]})
def on_skewx(self, signal=None, val=None, ref=None):
xvalue = float(self.skewx_entry.get_value()) if val is None else val
if xvalue == 0:
return
if self.skew_link_cb.get_value():
yvalue = xvalue
else:
yvalue = 0
axis = 'X'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_skew, 'params': [axis, xvalue, yvalue, point]})
def on_skewy(self, signal=None, val=None, ref=None):
xvalue = 0
yvalue = float(self.skewy_entry.get_value()) if val is None else val
if yvalue == 0:
return
axis = 'Y'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_skew, 'params': [axis, xvalue, yvalue, point]})
def on_scalex(self, signal=None, val=None, ref=None):
xvalue = float(self.scalex_entry.get_value()) if val is None else val
if xvalue == 0 or xvalue == 1:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Scale transformation can not be done for a factor of 0 or 1."))
return
if self.scale_link_cb.get_value():
yvalue = xvalue
else:
yvalue = 1
axis = 'X'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, xvalue, yvalue, point]})
def on_scaley(self, signal=None, val=None, ref=None):
xvalue = 1
yvalue = float(self.scaley_entry.get_value()) if val is None else val
if yvalue == 0 or yvalue == 1:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Scale transformation can not be done for a factor of 0 or 1."))
return
axis = 'Y'
point = self.on_calculate_reference() if ref is None else self.on_calculate_reference(ref_index=ref)
if point == 'fail':
return
self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, xvalue, yvalue, point]})
def on_offx(self, signal=None, val=None):
value = float(self.offx_entry.get_value()) if val is None else val
if value == 0:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Offset transformation can not be done for a value of 0."))
return
axis = 'X'
self.app.worker_task.emit({'fcn': self.on_offset, 'params': [axis, value]})
def on_offy(self, signal=None, val=None):
value = float(self.offy_entry.get_value()) if val is None else val
if value == 0:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("Offset transformation can not be done for a value of 0."))
return
axis = 'Y'
self.app.worker_task.emit({'fcn': self.on_offset, 'params': [axis, value]})
def on_buffer_by_distance(self):
value = self.buffer_entry.get_value()
join = 1 if self.buffer_rounded_cb.get_value() else 2
self.app.worker_task.emit({'fcn': self.on_buffer_action, 'params': [value, join]})
def on_buffer_by_factor(self):
value = 1 + (self.buffer_factor_entry.get_value() / 100.0)
join = 1 if self.buffer_rounded_cb.get_value() else 2
# tell the buffer method to use the factor
factor = True
self.app.worker_task.emit({'fcn': self.on_buffer_action, 'params': [value, join, factor]})
def on_rotate_action(self, val, point):
"""
Rotate geometry
:param val: Rotate with a known angle value, val
:param point: Reference point for rotation: tuple
:return:
"""
elem_list = self.draw_app.selected
px, py = point
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
with self.app.proc_container.new(_("Appying Rotate")):
try:
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if 'solid' in sel_el:
sel_el['solid'] = affinity.rotate(sel_el['solid'], angle=-val, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.rotate(sel_el['follow'], angle=-val, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.rotate(sel_el['clear'], angle=-val, origin=(px, py))
self.draw_app.plot_all()
self.app.inform.emit('[success] %s' % _("Done."))
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Action was not executed"), str(e)))
return
def on_flip(self, axis, point):
"""
Mirror (flip) geometry
:param axis: Mirror on a known axis given by the axis parameter
:param point: Mirror reference point
:return:
"""
elem_list = self.draw_app.selected
px, py = point
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
with self.app.proc_container.new(_("Applying Flip")):
try:
# execute mirroring
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if axis == 'X':
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=1, yfact=-1, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=1, yfact=-1, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=1, yfact=-1, origin=(px, py))
self.app.inform.emit('[success] %s...' % _('Flip on Y axis done'))
elif axis == 'Y':
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=-1, yfact=1, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=-1, yfact=1, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=-1, yfact=1, origin=(px, py))
self.app.inform.emit('[success] %s...' % _('Flip on X axis done'))
self.draw_app.plot_all()
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Action was not executed"), str(e)))
return
def on_skew(self, axis, xval, yval, point):
"""
Skew geometry
:param axis: Axis on which to deform, skew
:param xval: Skew value on X axis
:param yval: Skew value on Y axis
:param point: Point of reference for deformation: tuple
:return:
"""
elem_list = self.draw_app.selected
px, py = point
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
with self.app.proc_container.new(_("Applying Skew")):
try:
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if 'solid' in sel_el:
sel_el['solid'] = affinity.skew(sel_el['solid'], xval, yval, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.skew(sel_el['follow'], xval, yval, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.skew(sel_el['clear'], xval, yval, origin=(px, py))
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' % _('Skew on the X axis done'))
else:
self.app.inform.emit('[success] %s...' % _('Skew on the Y axis done'))
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Action was not executed"), str(e)))
return
def on_scale(self, axis, xfactor, yfactor, point=None):
"""
Scale geometry
:param axis: Axis on which to scale
:param xfactor: Factor for scaling on X axis
:param yfactor: Factor for scaling on Y axis
:param point: Point of origin for scaling
:return:
"""
elem_list = self.draw_app.selected
px, py = point
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
else:
with self.app.proc_container.new(_("Applying Scale")):
try:
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfactor, yfactor, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfactor, yfactor, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfactor, yfactor, origin=(px, py))
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' % _('Scale on the X axis done'))
else:
self.app.inform.emit('[success] %s...' % _('Scale on the Y axis done'))
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Action was not executed"), str(e)))
return
def on_offset(self, axis, num):
"""
Offset geometry
:param axis: Axis on which to apply offset
:param num: The translation factor
:return:
"""
elem_list = self.draw_app.selected
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
with self.app.proc_container.new(_("Applying Offset")):
try:
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if axis == 'X':
if 'solid' in sel_el:
sel_el['solid'] = affinity.translate(sel_el['solid'], num, 0)
if 'follow' in sel_el:
sel_el['follow'] = affinity.translate(sel_el['follow'], num, 0)
if 'clear' in sel_el:
sel_el['clear'] = affinity.translate(sel_el['clear'], num, 0)
elif axis == 'Y':
if 'solid' in sel_el:
sel_el['solid'] = affinity.translate(sel_el['solid'], 0, num)
if 'follow' in sel_el:
sel_el['follow'] = affinity.translate(sel_el['follow'], 0, num)
if 'clear' in sel_el:
sel_el['clear'] = affinity.translate(sel_el['clear'], 0, num)
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' % _('Offset on the X axis done'))
else:
self.app.inform.emit('[success] %s...' % _('Offset on the Y axis done'))
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Action was not executed"), str(e)))
return
def on_buffer_action(self, value, join, factor=None):
elem_list = self.draw_app.selected
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected."))
return
with self.app.proc_container.new(_("Applying Buffer")):
try:
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if factor:
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], value, value, origin='center')
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['solid'], value, value, origin='center')
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['solid'], value, value, origin='center')
else:
if 'solid' in sel_el:
sel_el['solid'] = sel_el['solid'].buffer(
value, resolution=self.app.defaults["gerber_circle_steps"], join_style=join)
if 'clear' in sel_el:
sel_el['clear'] = sel_el['clear'].buffer(
value, resolution=self.app.defaults["gerber_circle_steps"], join_style=join)
self.draw_app.plot_all()
self.app.inform.emit('[success] %s...' % _('Buffer done'))
except Exception as e:
self.app.log.debug("TransformEditorTool.on_buffer_action() --> %s" % str(e))
self.app.inform.emit('[ERROR_NOTCL] %s: %s.' % (_("Action was not executed"), str(e)))
return
def on_rotate_key(self):
val_box = FCInputDialog(title=_("Rotate ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=self.decimals,
init_val=float(self.app.defaults['tools_transform_rotate']),
parent=self.app.ui)
val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/rotate.png'))
val, ok = val_box.get_value()
if ok:
self.on_rotate(val=val, ref=1)
self.app.inform.emit('[success] %s...' % _("Rotate done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Rotate cancelled"))
def on_offx_key(self):
units = self.app.defaults['units'].lower()
val_box = FCInputDialog(title=_("Offset on X axis ..."),
text='%s: (%s)' % (_('Enter a distance Value'), str(units)),
min=-10000.0000, max=10000.0000, decimals=self.decimals,
init_val=float(self.app.defaults['tools_transform_offset_x']),
parent=self.app.ui)
val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/offsetx32.png'))
val, ok = val_box.get_value()
if ok:
self.on_offx(val=val)
self.app.inform.emit('[success] %s...' % _("Offset on the X axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Offset X cancelled"))
def on_offy_key(self):
units = self.app.defaults['units'].lower()
val_box = FCInputDialog(title=_("Offset on Y axis ..."),
text='%s: (%s)' % (_('Enter a distance Value'), str(units)),
min=-10000.0000, max=10000.0000, decimals=self.decimals,
init_val=float(self.app.defaults['tools_transform_offset_y']),
parent=self.app.ui)
val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/offsety32.png'))
val, ok = val_box.get_value()
if ok:
self.on_offx(val=val)
self.app.inform.emit('[success] %s...' % _("Offset on Y axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Offset Y cancelled"))
def on_skewx_key(self):
val_box = FCInputDialog(title=_("Skew on X axis ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=self.decimals,
init_val=float(self.app.defaults['tools_transform_skew_x']),
parent=self.app.ui)
val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/skewX.png'))
val, ok = val_box.get_value()
if ok:
self.on_skewx(val=val, ref=3)
self.app.inform.emit('[success] %s...' % _("Skew on X axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Skew X cancelled"))
def on_skewy_key(self):
val_box = FCInputDialog(title=_("Skew on Y axis ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=self.decimals,
init_val=float(self.app.defaults['tools_transform_skew_y']),
parent=self.app.ui)
val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/skewY.png'))
val, ok = val_box.get_value()
if ok:
self.on_skewx(val=val, ref=3)
self.app.inform.emit('[success] %s...' % _("Skew on Y axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Skew Y cancelled"))
@staticmethod
def alt_bounds(shapelist):
"""
Returns coordinates of rectangular bounds of a selection of shapes
"""
def bounds_rec(lst):
minx = np.Inf
miny = np.Inf
maxx = -np.Inf
maxy = -np.Inf
try:
for shape in lst:
el = shape.geo
if 'solid' in el:
minx_, miny_, maxx_, maxy_ = bounds_rec(el['solid'])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
except TypeError:
# it's an object, return it's bounds
return lst.bounds
return bounds_rec(shapelist)
def get_shapely_list_bounds(geometry_list):
xmin = np.Inf
ymin = np.Inf
xmax = -np.Inf
ymax = -np.Inf
for gs in geometry_list:
try:
gxmin, gymin, gxmax, gymax = gs.bounds
xmin = min([xmin, gxmin])
ymin = min([ymin, gymin])
xmax = max([xmax, gxmax])
ymax = max([ymax, gymax])
except Exception as e:
log.warning("DEVELOPMENT: Tried to get bounds of empty geometry. --> %s" % str(e))
return [xmin, ymin, xmax, ymax]