flatcam/camlib.py

2555 lines
87 KiB
Python

############################################################
# FlatCAM: 2D Post-processing for Manufacturing #
# http://caram.cl/software/flatcam #
# Author: Juan Pablo Caram (c) #
# Date: 2/5/2014 #
# MIT Licence #
############################################################
import traceback
from numpy import arctan2, Inf, array, sqrt, pi, ceil, sin, cos
from matplotlib.figure import Figure
import re
# See: http://toblerity.org/shapely/manual.html
from shapely.geometry import Polygon, LineString, Point, LinearRing
from shapely.geometry import MultiPoint, MultiPolygon
from shapely.geometry import box as shply_box
from shapely.ops import cascaded_union
import shapely.affinity as affinity
from shapely.wkt import loads as sloads
from shapely.wkt import dumps as sdumps
from shapely.geometry.base import BaseGeometry
# Used for solid polygons in Matplotlib
from descartes.patch import PolygonPatch
import simplejson as json
# TODO: Commented for FlatCAM packaging with cx_freeze
#from matplotlib.pyplot import plot
import logging
log = logging.getLogger('base2')
log.setLevel(logging.DEBUG)
#log.setLevel(logging.WARNING)
#log.setLevel(logging.INFO)
formatter = logging.Formatter('[%(levelname)s] %(message)s')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
log.addHandler(handler)
class Geometry(object):
"""
Base geometry class.
"""
defaults = {
"init_units": 'in'
}
def __init__(self):
# Units (in or mm)
self.units = Geometry.defaults["init_units"]
# Final geometry: MultiPolygon
self.solid_geometry = None
# Attributes to be included in serialization
self.ser_attrs = ['units', 'solid_geometry']
def union(self):
"""
Runs a cascaded union on the list of objects in
solid_geometry.
:return: None
"""
self.solid_geometry = [cascaded_union(self.solid_geometry)]
def add_circle(self, origin, radius):
"""
Adds a circle to the object.
:param origin: Center of the circle.
:param radius: Radius of the circle.
:return: None
"""
# TODO: Decide what solid_geometry is supposed to be and how we append to it.
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
self.solid_geometry.append(Point(origin).buffer(radius))
return
try:
self.solid_geometry = self.solid_geometry.union(Point(origin).buffer(radius))
except:
print "Failed to run union on polygons."
raise
def add_polygon(self, points):
"""
Adds a polygon to the object (by union)
:param points: The vertices of the polygon.
:return: None
"""
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
self.solid_geometry.append(Polygon(points))
return
try:
self.solid_geometry = self.solid_geometry.union(Polygon(points))
except:
print "Failed to run union on polygons."
raise
def isolation_geometry(self, offset):
"""
Creates contours around geometry at a given
offset distance.
:param offset: Offset distance.
:type offset: float
:return: The buffered geometry.
:rtype: Shapely.MultiPolygon or Shapely.Polygon
"""
return self.solid_geometry.buffer(offset)
def bounds(self):
"""
Returns coordinates of rectangular bounds
of geometry: (xmin, ymin, xmax, ymax).
"""
log.debug("Geometry->bounds()")
if self.solid_geometry is None:
log.debug("solid_geometry is None")
log.warning("solid_geometry not computed yet.")
return (0, 0, 0, 0)
if type(self.solid_geometry) is list:
log.debug("type(solid_geometry) is list")
# TODO: This can be done faster. See comment from Shapely mailing lists.
if len(self.solid_geometry) == 0:
log.debug('solid_geometry is empty []')
return (0, 0, 0, 0)
log.debug('solid_geometry is not empty, returning cascaded union of items')
return cascaded_union(self.solid_geometry).bounds
else:
log.debug("type(solid_geometry) is not list, returning .bounds property")
return self.solid_geometry.bounds
def size(self):
"""
Returns (width, height) of rectangular
bounds of geometry.
"""
if self.solid_geometry is None:
log.warning("Solid_geometry not computed yet.")
return 0
bounds = self.bounds()
return (bounds[2]-bounds[0], bounds[3]-bounds[1])
def get_empty_area(self, boundary=None):
"""
Returns the complement of self.solid_geometry within
the given boundary polygon. If not specified, it defaults to
the rectangular bounding box of self.solid_geometry.
"""
if boundary is None:
boundary = self.solid_geometry.envelope
return boundary.difference(self.solid_geometry)
def clear_polygon(self, polygon, tooldia, overlap=0.15):
"""
Creates geometry inside a polygon for a tool to cover
the whole area.
"""
poly_cuts = [polygon.buffer(-tooldia/2.0)]
while True:
polygon = poly_cuts[-1].buffer(-tooldia*(1-overlap))
if polygon.area > 0:
poly_cuts.append(polygon)
else:
break
return poly_cuts
def scale(self, factor):
"""
Scales all of the object's geometry by a given factor. Override
this method.
:param factor: Number by which to scale.
:type factor: float
:return: None
:rtype: None
"""
return
def offset(self, vect):
"""
Offset the geometry by the given vector. Override this method.
:param vect: (x, y) vector by which to offset the object.
:type vect: tuple
:return: None
"""
return
def convert_units(self, units):
"""
Converts the units of the object to ``units`` by scaling all
the geometry appropriately. This call ``scale()``. Don't call
it again in descendents.
:param units: "IN" or "MM"
:type units: str
:return: Scaling factor resulting from unit change.
:rtype: float
"""
log.debug("Geometry.convert_units()")
if units.upper() == self.units.upper():
return 1.0
if units.upper() == "MM":
factor = 25.4
elif units.upper() == "IN":
factor = 1/25.4
else:
log.error("Unsupported units: %s" % str(units))
return 1.0
self.units = units
self.scale(factor)
return factor
def to_dict(self):
"""
Returns a respresentation of the object as a dictionary.
Attributes to include are listed in ``self.ser_attrs``.
:return: A dictionary-encoded copy of the object.
:rtype: dict
"""
d = {}
for attr in self.ser_attrs:
d[attr] = getattr(self, attr)
return d
def from_dict(self, d):
"""
Sets object's attributes from a dictionary.
Attributes to include are listed in ``self.ser_attrs``.
This method will look only for only and all the
attributes in ``self.ser_attrs``. They must all
be present. Use only for deserializing saved
objects.
:param d: Dictionary of attributes to set in the object.
:type d: dict
:return: None
"""
for attr in self.ser_attrs:
setattr(self, attr, d[attr])
class ApertureMacro:
"""
Syntax of aperture macros.
<AM command>: AM<Aperture macro name>*<Macro content>
<Macro content>: {{<Variable definition>*}{<Primitive>*}}
<Variable definition>: $K=<Arithmetic expression>
<Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
<Modifier>: $M|< Arithmetic expression>
<Comment>: 0 <Text>
"""
## Regular expressions
am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
am2_re = re.compile(r'(.*)%$')
amcomm_re = re.compile(r'^0(.*)')
amprim_re = re.compile(r'^[1-9].*')
amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
def __init__(self, name=None):
self.name = name
self.raw = ""
## These below are recomputed for every aperture
## definition, in other words, are temporary variables.
self.primitives = []
self.locvars = {}
self.geometry = None
def to_dict(self):
"""
Returns the object in a serializable form. Only the name and
raw are required.
:return: Dictionary representing the object. JSON ready.
:rtype: dict
"""
return {
'name': self.name,
'raw': self.raw
}
def from_dict(self, d):
"""
Populates the object from a serial representation created
with ``self.to_dict()``.
:param d: Serial representation of an ApertureMacro object.
:return: None
"""
for attr in ['name', 'raw']:
setattr(self, attr, d[attr])
def parse_content(self):
"""
Creates numerical lists for all primitives in the aperture
macro (in ``self.raw``) by replacing all variables by their
values iteratively and evaluating expressions. Results
are stored in ``self.primitives``.
:return: None
"""
# Cleanup
self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
self.primitives = []
# Separate parts
parts = self.raw.split('*')
#### Every part in the macro ####
for part in parts:
### Comments. Ignored.
match = ApertureMacro.amcomm_re.search(part)
if match:
continue
### Variables
# These are variables defined locally inside the macro. They can be
# numerical constant or defind in terms of previously define
# variables, which can be defined locally or in an aperture
# definition. All replacements ocurr here.
match = ApertureMacro.amvar_re.search(part)
if match:
var = match.group(1)
val = match.group(2)
# Replace variables in value
for v in self.locvars:
val = re.sub(r'\$'+str(v)+r'(?![0-9a-zA-Z])', str(self.locvars[v]), val)
# Make all others 0
val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
# Change x with *
val = re.sub(r'[xX]', "*", val)
# Eval() and store.
self.locvars[var] = eval(val)
continue
### Primitives
# Each is an array. The first identifies the primitive, while the
# rest depend on the primitive. All are strings representing a
# number and may contain variable definition. The values of these
# variables are defined in an aperture definition.
match = ApertureMacro.amprim_re.search(part)
if match:
## Replace all variables
for v in self.locvars:
part = re.sub(r'\$'+str(v)+r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
# Make all others 0
part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
# Change x with *
part = re.sub(r'[xX]', "*", part)
## Store
elements = part.split(",")
self.primitives.append([eval(x) for x in elements])
continue
log.warning("Unknown syntax of aperture macro part: %s" % str(part))
def append(self, data):
"""
Appends a string to the raw macro.
:param data: Part of the macro.
:type data: str
:return: None
"""
self.raw += data
@staticmethod
def default2zero(n, mods):
"""
Pads the ``mods`` list with zeros resulting in an
list of length n.
:param n: Length of the resulting list.
:type n: int
:param mods: List to be padded.
:type mods: list
:return: Zero-padded list.
:rtype: list
"""
x = [0.0]*n
na = len(mods)
x[0:na] = mods
return x
@staticmethod
def make_circle(mods):
"""
:param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
:return:
"""
pol, dia, x, y = ApertureMacro.default2zero(4, mods)
return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
@staticmethod
def make_vectorline(mods):
"""
:param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
rotation angle around origin in degrees)
:return:
"""
pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
line = LineString([(xs, ys), (xe, ye)])
box = line.buffer(width/2, cap_style=2)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_centerline(mods):
"""
:param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
rotation angle around origin in degrees)
:return:
"""
pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_lowerleftline(mods):
"""
:param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
rotation angle around origin in degrees)
:return:
"""
pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
box = shply_box(x, y, x+width, y+height)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_outline(mods):
"""
:param mods:
:return:
"""
pol = mods[0]
n = mods[1]
points = [(0, 0)]*(n+1)
for i in range(n+1):
points[i] = mods[2*i + 2:2*i + 4]
angle = mods[2*n + 4]
poly = Polygon(points)
poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": poly_rotated}
@staticmethod
def make_polygon(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
diameter of circumscribed circle >=0, rotation angle around origin)
:return:
"""
pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
points = [(0, 0)]*nverts
for i in range(nverts):
points[i] = (x + 0.5 * dia * cos(2*pi * i/nverts),
y + 0.5 * dia * sin(2*pi * i/nverts))
poly = Polygon(points)
poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": poly_rotated}
@staticmethod
def make_moire(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
gap, max_rings, crosshair_thickness, crosshair_len, rotation
angle around origin in degrees)
:return:
"""
x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
r = dia/2 - thickness/2
result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
i = 1 # Number of rings created so far
## If the ring does not have an interior it means that it is
## a disk. Then stop.
while len(ring.interiors) > 0 and i < nrings:
r -= thickness + gap
if r <= 0:
break
ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
result = cascaded_union([result, ring])
i += 1
## Crosshair
hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
result = cascaded_union([result, hor, ver])
return {"pol": 1, "geometry": result}
@staticmethod
def make_thermal(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: [x-center, y-center, diameter-outside, diameter-inside,
gap-thickness, rotation angle around origin]
:return:
"""
x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
thermal = ring.difference(hline.union(vline))
return {"pol": 1, "geometry": thermal}
def make_geometry(self, modifiers):
"""
Runs the macro for the given modifiers and generates
the corresponding geometry.
:param modifiers: Modifiers (parameters) for this macro
:type modifiers: list
"""
## Primitive makers
makers = {
"1": ApertureMacro.make_circle,
"2": ApertureMacro.make_vectorline,
"20": ApertureMacro.make_vectorline,
"21": ApertureMacro.make_centerline,
"22": ApertureMacro.make_lowerleftline,
"4": ApertureMacro.make_outline,
"5": ApertureMacro.make_polygon,
"6": ApertureMacro.make_moire,
"7": ApertureMacro.make_thermal
}
## Store modifiers as local variables
modifiers = modifiers or []
modifiers = [float(m) for m in modifiers]
self.locvars = {}
for i in range(0, len(modifiers)):
self.locvars[str(i+1)] = modifiers[i]
## Parse
self.primitives = [] # Cleanup
self.geometry = None
self.parse_content()
## Make the geometry
for primitive in self.primitives:
# Make the primitive
prim_geo = makers[str(int(primitive[0]))](primitive[1:])
# Add it (according to polarity)
if self.geometry is None and prim_geo['pol'] == 1:
self.geometry = prim_geo['geometry']
continue
if prim_geo['pol'] == 1:
self.geometry = self.geometry.union(prim_geo['geometry'])
continue
if prim_geo['pol'] == 0:
self.geometry = self.geometry.difference(prim_geo['geometry'])
continue
return self.geometry
class Gerber (Geometry):
"""
**ATTRIBUTES**
* ``apertures`` (dict): The keys are names/identifiers of each aperture.
The values are dictionaries key/value pairs which describe the aperture. The
type key is always present and the rest depend on the key:
+-----------+-----------------------------------+
| Key | Value |
+===========+===================================+
| type | (str) "C", "R", "O", "P", or "AP" |
+-----------+-----------------------------------+
| others | Depend on ``type`` |
+-----------+-----------------------------------+
* ``aperture_macros`` (dictionary): Are predefined geometrical structures
that can be instanciated with different parameters in an aperture
definition. See ``apertures`` above. The key is the name of the macro,
and the macro itself, the value, is a ``Aperture_Macro`` object.
* ``flash_geometry`` (list): List of (Shapely) geometric object resulting
from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
* ``buffered_paths`` (list): List of (Shapely) polygons resulting from
*buffering* (or thickening) the ``paths`` with the aperture. These are
generated from ``paths`` in ``buffer_paths()``.
**USAGE**::
g = Gerber()
g.parse_file(filename)
g.create_geometry()
do_something(s.solid_geometry)
"""
def __init__(self):
"""
The constructor takes no parameters. Use ``gerber.parse_files()``
or ``gerber.parse_lines()`` to populate the object from Gerber source.
:return: Gerber object
:rtype: Gerber
"""
# Initialize parent
Geometry.__init__(self)
self.solid_geometry = Polygon()
# Number format
self.int_digits = 3
"""Number of integer digits in Gerber numbers. Used during parsing."""
self.frac_digits = 4
"""Number of fraction digits in Gerber numbers. Used during parsing."""
## Gerber elements ##
# Apertures {'id':{'type':chr,
# ['size':float], ['width':float],
# ['height':float]}, ...}
self.apertures = {}
# Aperture Macros
self.aperture_macros = {}
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['int_digits', 'frac_digits', 'apertures',
'aperture_macros', 'solid_geometry']
#### Parser patterns ####
# FS - Format Specification
# The format of X and Y must be the same!
# L-omit leading zeros, T-omit trailing zeros
# A-absolute notation, I-incremental notation
self.fmt_re = re.compile(r'%FS([LT])([AI])X(\d)(\d)Y\d\d\*%$')
# Mode (IN/MM)
self.mode_re = re.compile(r'^%MO(IN|MM)\*%$')
# Comment G04|G4
self.comm_re = re.compile(r'^G0?4(.*)$')
# AD - Aperture definition
self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z_$\.][a-zA-Z0-9_$\.]*)(?:,(.*))?\*%$')
# AM - Aperture Macro
# Beginning of macro (Ends with *%):
#self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
# Tool change
# May begin with G54 but that is deprecated
self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
# G01... - Linear interpolation plus flashes with coordinates
# Operation code (D0x) missing is deprecated... oh well I will support it.
self.lin_re = re.compile(r'^(?:G0?(1))?(?=.*X(-?\d+))?(?=.*Y(-?\d+))?[XY][^DIJ]*(?:D0?([123]))?\*$')
# Operation code alone, usually just D03 (Flash)
self.opcode_re = re.compile(r'^D0?([123])\*$')
# G02/3... - Circular interpolation with coordinates
# 2-clockwise, 3-counterclockwise
# Operation code (D0x) missing is deprecated... oh well I will support it.
# Optional start with G02 or G03, optional end with D01 or D02 with
# optional coordinates but at least one in any order.
self.circ_re = re.compile(r'^(?:G0?([23]))?(?=.*X(-?\d+))?(?=.*Y(-?\d+))' +
'?(?=.*I(-?\d+))?(?=.*J(-?\d+))?[XYIJ][^D]*(?:D0([12]))?\*$')
# G01/2/3 Occurring without coordinates
self.interp_re = re.compile(r'^(?:G0?([123]))\*')
# Single D74 or multi D75 quadrant for circular interpolation
self.quad_re = re.compile(r'^G7([45])\*$')
# Region mode on
# In region mode, D01 starts a region
# and D02 ends it. A new region can be started again
# with D01. All contours must be closed before
# D02 or G37.
self.regionon_re = re.compile(r'^G36\*$')
# Region mode off
# Will end a region and come off region mode.
# All contours must be closed before D02 or G37.
self.regionoff_re = re.compile(r'^G37\*$')
# End of file
self.eof_re = re.compile(r'^M02\*')
# IP - Image polarity
self.pol_re = re.compile(r'^%IP(POS|NEG)\*%$')
# LP - Level polarity
self.lpol_re = re.compile(r'^%LP([DC])\*%$')
# Units (OBSOLETE)
self.units_re = re.compile(r'^G7([01])\*$')
# Absolute/Relative G90/1 (OBSOLETE)
self.absrel_re = re.compile(r'^G9([01])\*$')
# Aperture macros
self.am1_re = re.compile(r'^%AM([^\*]+)\*([^%]+)?(%)?$')
self.am2_re = re.compile(r'(.*)%$')
# TODO: This is bad.
self.steps_per_circ = 40
def scale(self, factor):
"""
Scales the objects' geometry on the XY plane by a given factor.
These are:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param factor: Number by which to scale.
:type factor: float
:rtype : None
"""
## solid_geometry ???
# It's a cascaded union of objects.
self.solid_geometry = affinity.scale(self.solid_geometry, factor,
factor, origin=(0, 0))
# # Now buffered_paths, flash_geometry and solid_geometry
# self.create_geometry()
def offset(self, vect):
"""
Offsets the objects' geometry on the XY plane by a given vector.
These are:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
dx, dy = vect
## Solid geometry
self.solid_geometry = affinity.translate(self.solid_geometry, xoff=dx, yoff=dy)
def mirror(self, axis, point):
"""
Mirrors the object around a specified axis passign through
the given point. What is affected:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param axis: "X" or "Y" indicates around which axis to mirror.
:type axis: str
:param point: [x, y] point belonging to the mirror axis.
:type point: list
:return: None
"""
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
## solid_geometry ???
# It's a cascaded union of objects.
self.solid_geometry = affinity.scale(self.solid_geometry,
xscale, yscale, origin=(px, py))
def aperture_parse(self, apertureId, apertureType, apParameters):
"""
Parse gerber aperture definition into dictionary of apertures.
The following kinds and their attributes are supported:
* *Circular (C)*: size (float)
* *Rectangle (R)*: width (float), height (float)
* *Obround (O)*: width (float), height (float).
* *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
* *Aperture Macro (AM)*: macro (ApertureMacro), modifiers (list)
:param apertureId: Id of the aperture being defined.
:param apertureType: Type of the aperture.
:param apParameters: Parameters of the aperture.
:type apertureId: str
:type apertureType: str
:type apParameters: str
:return: Identifier of the aperture.
:rtype: str
"""
# Found some Gerber with a leading zero in the aperture id and the
# referenced it without the zero, so this is a hack to handle that.
apid = str(int(apertureId))
try: # Could be empty for aperture macros
paramList = apParameters.split('X')
except:
paramList = None
if apertureType == "C": # Circle, example: %ADD11C,0.1*%
self.apertures[apid] = {"type": "C",
"size": float(paramList[0])}
return apid
if apertureType == "R": # Rectangle, example: %ADD15R,0.05X0.12*%
self.apertures[apid] = {"type": "R",
"width": float(paramList[0]),
"height": float(paramList[1]),
"size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
return apid
if apertureType == "O": # Obround
self.apertures[apid] = {"type": "O",
"width": float(paramList[0]),
"height": float(paramList[1]),
"size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
return apid
if apertureType == "P": # Polygon (regular)
self.apertures[apid] = {"type": "P",
"diam": float(paramList[0]),
"nVertices": int(paramList[1]),
"size": float(paramList[0])} # Hack
if len(paramList) >= 3:
self.apertures[apid]["rotation"] = float(paramList[2])
return apid
if apertureType in self.aperture_macros:
self.apertures[apid] = {"type": "AM",
"macro": self.aperture_macros[apertureType],
"modifiers": paramList}
return apid
log.warning("Aperture not implemented: %s" % str(apertureType))
return None
def parse_file(self, filename, follow=False):
"""
Calls Gerber.parse_lines() with array of lines
read from the given file.
:param filename: Gerber file to parse.
:type filename: str
:param follow: If true, will not create polygons, just lines
following the gerber path.
:type follow: bool
:return: None
"""
gfile = open(filename, 'r')
gstr = gfile.readlines()
gfile.close()
self.parse_lines(gstr, follow=follow)
def parse_lines(self, glines, follow=False):
"""
Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
``self.flashes``, ``self.regions`` and ``self.units``.
:param glines: Gerber code as list of strings, each element being
one line of the source file.
:type glines: list
:param follow: If true, will not create polygons, just lines
following the gerber path.
:type follow: bool
:return: None
:rtype: None
"""
# Coordinates of the current path, each is [x, y]
path = []
# Polygons are stored here until there is a change in polarity.
# Only then they are combined via cascaded_union and added or
# subtracted from solid_geometry. This is ~100 times faster than
# applyng a union for every new polygon.
poly_buffer = []
last_path_aperture = None
current_aperture = None
# 1,2 or 3 from "G01", "G02" or "G03"
current_interpolation_mode = None
# 1 or 2 from "D01" or "D02"
# Note this is to support deprecated Gerber not putting
# an operation code at the end of every coordinate line.
current_operation_code = None
# Current coordinates
current_x = None
current_y = None
# Absolute or Relative/Incremental coordinates
# Not implemented
absolute = True
# How to interpret circular interpolation: SINGLE or MULTI
quadrant_mode = None
# Indicates we are parsing an aperture macro
current_macro = None
# Indicates the current polarity: D-Dark, C-Clear
current_polarity = 'D'
# If a region is being defined
making_region = False
#### Parsing starts here ####
line_num = 0
gline = ""
try:
for gline in glines:
line_num += 1
### Cleanup
gline = gline.strip(' \r\n')
### Aperture Macros
# Having this at the beggining will slow things down
# but macros can have complicated statements than could
# be caught by other patterns.
if current_macro is None: # No macro started yet
match = self.am1_re.search(gline)
# Start macro if match, else not an AM, carry on.
if match:
log.info("Starting macro. Line %d: %s" % (line_num, gline))
current_macro = match.group(1)
self.aperture_macros[current_macro] = ApertureMacro(name=current_macro)
if match.group(2): # Append
self.aperture_macros[current_macro].append(match.group(2))
if match.group(3): # Finish macro
#self.aperture_macros[current_macro].parse_content()
current_macro = None
log.info("Macro complete in 1 line.")
continue
else: # Continue macro
log.info("Continuing macro. Line %d." % line_num)
match = self.am2_re.search(gline)
if match: # Finish macro
log.info("End of macro. Line %d." % line_num)
self.aperture_macros[current_macro].append(match.group(1))
#self.aperture_macros[current_macro].parse_content()
current_macro = None
else: # Append
self.aperture_macros[current_macro].append(gline)
continue
### G01 - Linear interpolation plus flashes
# Operation code (D0x) missing is deprecated... oh well I will support it.
# REGEX: r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$'
match = self.lin_re.search(gline)
if match:
# Dxx alone?
# if match.group(1) is None and match.group(2) is None and match.group(3) is None:
# try:
# current_operation_code = int(match.group(4))
# except:
# pass # A line with just * will match too.
# continue
# NOTE: Letting it continue allows it to react to the
# operation code.
# Parse coordinates
if match.group(2) is not None:
current_x = parse_gerber_number(match.group(2), self.frac_digits)
if match.group(3) is not None:
current_y = parse_gerber_number(match.group(3), self.frac_digits)
# Parse operation code
if match.group(4) is not None:
current_operation_code = int(match.group(4))
# Pen down: add segment
if current_operation_code == 1:
path.append([current_x, current_y])
last_path_aperture = current_aperture
elif current_operation_code == 2:
if len(path) > 1:
## --- BUFFERED ---
if making_region:
geo = Polygon(path)
else:
if last_path_aperture is None:
log.warning("No aperture defined for curent path. (%d)" % line_num)
width = self.apertures[last_path_aperture]["size"] # TODO: WARNING this should fail!
#log.debug("Line %d: Setting aperture to %s before buffering." % (line_num, last_path_aperture))
if follow:
geo = LineString(path)
else:
geo = LineString(path).buffer(width/2)
poly_buffer.append(geo)
path = [[current_x, current_y]] # Start new path
# Flash
elif current_operation_code == 3:
# --- BUFFERED ---
flash = Gerber.create_flash_geometry(Point([current_x, current_y]),
self.apertures[current_aperture])
poly_buffer.append(flash)
continue
### G02/3 - Circular interpolation
# 2-clockwise, 3-counterclockwise
match = self.circ_re.search(gline)
if match:
mode, x, y, i, j, d = match.groups()
try:
x = parse_gerber_number(x, self.frac_digits)
except:
x = current_x
try:
y = parse_gerber_number(y, self.frac_digits)
except:
y = current_y
try:
i = parse_gerber_number(i, self.frac_digits)
except:
i = 0
try:
j = parse_gerber_number(j, self.frac_digits)
except:
j = 0
if quadrant_mode is None:
log.error("Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num)
log.error(gline)
continue
if mode is None and current_interpolation_mode not in [2, 3]:
log.error("Found arc without circular interpolation mode defined. (%d)" % line_num)
log.error(gline)
continue
elif mode is not None:
current_interpolation_mode = int(mode)
# Set operation code if provided
if d is not None:
current_operation_code = int(d)
# Nothing created! Pen Up.
if current_operation_code == 2:
log.warning("Arc with D2. (%d)" % line_num)
if len(path) > 1:
if last_path_aperture is None:
log.warning("No aperture defined for curent path. (%d)" % line_num)
# --- BUFFERED ---
width = self.apertures[last_path_aperture]["size"]
buffered = LineString(path).buffer(width/2)
poly_buffer.append(buffered)
current_x = x
current_y = y
path = [[current_x, current_y]] # Start new path
continue
# Flash should not happen here
if current_operation_code == 3:
log.error("Trying to flash within arc. (%d)" % line_num)
continue
if quadrant_mode == 'MULTI':
center = [i + current_x, j + current_y]
radius = sqrt(i**2 + j**2)
start = arctan2(-j, -i)
stop = arctan2(-center[1] + y, -center[0] + x)
arcdir = [None, None, "cw", "ccw"]
this_arc = arc(center, radius, start, stop,
arcdir[current_interpolation_mode],
self.steps_per_circ)
# Last point in path is current point
current_x = this_arc[-1][0]
current_y = this_arc[-1][1]
# Append
path += this_arc
last_path_aperture = current_aperture
continue
if quadrant_mode == 'SINGLE':
log.warning("Single quadrant arc are not implemented yet. (%d)" % line_num)
### Operation code alone
# Operation code alone, usually just D03 (Flash)
# self.opcode_re = re.compile(r'^D0?([123])\*$')
match = self.opcode_re.search(gline)
if match:
current_operation_code = int(match.group(1))
if current_operation_code == 3:
## --- Buffered ---
try:
flash = Gerber.create_flash_geometry(Point(path[-1]),
self.apertures[current_aperture])
poly_buffer.append(flash)
except IndexError:
log.warning("Line %d: %s -> Nothing there to flash!" % (line_num, gline))
continue
### G74/75* - Single or multiple quadrant arcs
match = self.quad_re.search(gline)
if match:
if match.group(1) == '4':
quadrant_mode = 'SINGLE'
else:
quadrant_mode = 'MULTI'
continue
### G36* - Begin region
if self.regionon_re.search(gline):
if len(path) > 1:
# Take care of what is left in the path
## --- Buffered ---
width = self.apertures[last_path_aperture]["size"]
geo = LineString(path).buffer(width/2)
poly_buffer.append(geo)
path = [path[-1]]
making_region = True
continue
### G37* - End region
if self.regionoff_re.search(gline):
making_region = False
# Only one path defines region?
# This can happen if D02 happened before G37 and
# is not and error.
if len(path) < 3:
# print "ERROR: Path contains less than 3 points:"
# print path
# print "Line (%d): " % line_num, gline
# path = []
#path = [[current_x, current_y]]
continue
# For regions we may ignore an aperture that is None
# self.regions.append({"polygon": Polygon(path),
# "aperture": last_path_aperture})
# --- Buffered ---
region = Polygon(path)
if not region.is_valid:
region = region.buffer(0)
poly_buffer.append(region)
path = [[current_x, current_y]] # Start new path
continue
### Aperture definitions %ADD...
match = self.ad_re.search(gline)
if match:
log.info("Found aperture definition. Line %d: %s" % (line_num, gline))
self.aperture_parse(match.group(1), match.group(2), match.group(3))
continue
### G01/2/3* - Interpolation mode change
# Can occur along with coordinates and operation code but
# sometimes by itself (handled here).
# Example: G01*
match = self.interp_re.search(gline)
if match:
current_interpolation_mode = int(match.group(1))
continue
### Tool/aperture change
# Example: D12*
match = self.tool_re.search(gline)
if match:
log.debug("Line %d: Aperture change to (%s)" % (line_num, match.group(1)))
current_aperture = match.group(1)
# Take care of the current path with the previous tool
if len(path) > 1:
# --- Buffered ----
width = self.apertures[last_path_aperture]["size"]
geo = LineString(path).buffer(width/2)
poly_buffer.append(geo)
path = [path[-1]]
continue
### Polarity change
# Example: %LPD*% or %LPC*%
match = self.lpol_re.search(gline)
if match:
if len(path) > 1 and current_polarity != match.group(1):
# --- Buffered ----
width = self.apertures[last_path_aperture]["size"]
geo = LineString(path).buffer(width/2)
poly_buffer.append(geo)
path = [path[-1]]
# --- Apply buffer ---
if current_polarity == 'D':
self.solid_geometry = self.solid_geometry.union(cascaded_union(poly_buffer))
else:
self.solid_geometry = self.solid_geometry.difference(cascaded_union(poly_buffer))
poly_buffer = []
current_polarity = match.group(1)
continue
### Number format
# Example: %FSLAX24Y24*%
# TODO: This is ignoring most of the format. Implement the rest.
match = self.fmt_re.search(gline)
if match:
absolute = {'A': True, 'I': False}
self.int_digits = int(match.group(3))
self.frac_digits = int(match.group(4))
continue
### Mode (IN/MM)
# Example: %MOIN*%
match = self.mode_re.search(gline)
if match:
self.units = match.group(1)
continue
### Units (G70/1) OBSOLETE
match = self.units_re.search(gline)
if match:
self.units = {'0': 'IN', '1': 'MM'}[match.group(1)]
continue
### Absolute/relative coordinates G90/1 OBSOLETE
match = self.absrel_re.search(gline)
if match:
absolute = {'0': True, '1': False}[match.group(1)]
continue
#### Ignored lines
## Comments
match = self.comm_re.search(gline)
if match:
continue
## EOF
match = self.eof_re.search(gline)
if match:
continue
### Line did not match any pattern. Warn user.
log.warning("Line ignored (%d): %s" % (line_num, gline))
if len(path) > 1:
# EOF, create shapely LineString if something still in path
## --- Buffered ---
width = self.apertures[last_path_aperture]["size"]
geo = LineString(path).buffer(width/2)
poly_buffer.append(geo)
# --- Apply buffer ---
if current_polarity == 'D':
self.solid_geometry = self.solid_geometry.union(cascaded_union(poly_buffer))
else:
self.solid_geometry = self.solid_geometry.difference(cascaded_union(poly_buffer))
except Exception, err:
#print traceback.format_exc()
log.error("PARSING FAILED. Line %d: %s" % (line_num, gline))
raise
@staticmethod
def create_flash_geometry(location, aperture):
if type(location) == list:
location = Point(location)
if aperture['type'] == 'C': # Circles
return location.buffer(aperture['size']/2)
if aperture['type'] == 'R': # Rectangles
loc = location.coords[0]
width = aperture['width']
height = aperture['height']
minx = loc[0] - width/2
maxx = loc[0] + width/2
miny = loc[1] - height/2
maxy = loc[1] + height/2
return shply_box(minx, miny, maxx, maxy)
if aperture['type'] == 'O': # Obround
loc = location.coords[0]
width = aperture['width']
height = aperture['height']
if width > height:
p1 = Point(loc[0] + 0.5*(width-height), loc[1])
p2 = Point(loc[0] - 0.5*(width-height), loc[1])
c1 = p1.buffer(height*0.5)
c2 = p2.buffer(height*0.5)
else:
p1 = Point(loc[0], loc[1] + 0.5*(height-width))
p2 = Point(loc[0], loc[1] - 0.5*(height-width))
c1 = p1.buffer(width*0.5)
c2 = p2.buffer(width*0.5)
return cascaded_union([c1, c2]).convex_hull
if aperture['type'] == 'P': # Regular polygon
loc = location.coords[0]
diam = aperture['diam']
n_vertices = aperture['nVertices']
points = []
for i in range(0, n_vertices):
x = loc[0] + diam * (cos(2 * pi * i / n_vertices))
y = loc[1] + diam * (sin(2 * pi * i / n_vertices))
points.append((x, y))
ply = Polygon(points)
if 'rotation' in aperture:
ply = affinity.rotate(ply, aperture['rotation'])
return ply
if aperture['type'] == 'AM': # Aperture Macro
loc = location.coords[0]
flash_geo = aperture['macro'].make_geometry(aperture['modifiers'])
return affinity.translate(flash_geo, xoff=loc[0], yoff=loc[1])
return None
def create_geometry(self):
"""
Geometry from a Gerber file is made up entirely of polygons.
Every stroke (linear or circular) has an aperture which gives
it thickness. Additionally, aperture strokes have non-zero area,
and regions naturally do as well.
:rtype : None
:return: None
"""
# self.buffer_paths()
#
# self.fix_regions()
#
# self.do_flashes()
#
# self.solid_geometry = cascaded_union(self.buffered_paths +
# [poly['polygon'] for poly in self.regions] +
# self.flash_geometry)
def get_bounding_box(self, margin=0.0, rounded=False):
"""
Creates and returns a rectangular polygon bounding at a distance of
margin from the object's ``solid_geometry``. If margin > 0, the polygon
can optionally have rounded corners of radius equal to margin.
:param margin: Distance to enlarge the rectangular bounding
box in both positive and negative, x and y axes.
:type margin: float
:param rounded: Wether or not to have rounded corners.
:type rounded: bool
:return: The bounding box.
:rtype: Shapely.Polygon
"""
bbox = self.solid_geometry.envelope.buffer(margin)
if not rounded:
bbox = bbox.envelope
return bbox
class Excellon(Geometry):
"""
*ATTRIBUTES*
* ``tools`` (dict): The key is the tool name and the value is
a dictionary specifying the tool:
================ ====================================
Key Value
================ ====================================
C Diameter of the tool
Others Not supported (Ignored).
================ ====================================
* ``drills`` (list): Each is a dictionary:
================ ====================================
Key Value
================ ====================================
point (Shapely.Point) Where to drill
tool (str) A key in ``tools``
================ ====================================
"""
def __init__(self, zeros="L"):
"""
The constructor takes no parameters.
:return: Excellon object.
:rtype: Excellon
"""
Geometry.__init__(self)
self.tools = {}
self.drills = []
# Trailing "T" or leading "L" (default)
#self.zeros = "T"
self.zeros = zeros
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['tools', 'drills', 'zeros']
#### Patterns ####
# Regex basics:
# ^ - beginning
# $ - end
# *: 0 or more, +: 1 or more, ?: 0 or 1
# M48 - Beggining of Part Program Header
self.hbegin_re = re.compile(r'^M48$')
# M95 or % - End of Part Program Header
# NOTE: % has different meaning in the body
self.hend_re = re.compile(r'^(?:M95|%)$')
# FMAT Excellon format
self.fmat_re = re.compile(r'^FMAT,([12])$')
# Number format and units
# INCH uses 6 digits
# METRIC uses 5/6
self.units_re = re.compile(r'^(INCH|METRIC)(?:,([TL])Z)?$')
# Tool definition/parameters (?= is look-ahead
# NOTE: This might be an overkill!
# self.toolset_re = re.compile(r'^T(0?\d|\d\d)(?=.*C(\d*\.?\d*))?' +
# r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
# r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
# r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
self.toolset_re = re.compile(r'^T(\d+)(?=.*C(\d*\.?\d*))?' +
r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
# Tool select
# Can have additional data after tool number but
# is ignored if present in the header.
# Warning: This will match toolset_re too.
# self.toolsel_re = re.compile(r'^T((?:\d\d)|(?:\d))')
self.toolsel_re = re.compile(r'^T(\d+)')
# Comment
self.comm_re = re.compile(r'^;(.*)$')
# Absolute/Incremental G90/G91
self.absinc_re = re.compile(r'^G9([01])$')
# Modes of operation
# 1-linear, 2-circCW, 3-cirCCW, 4-vardwell, 5-Drill
self.modes_re = re.compile(r'^G0([012345])')
# Measuring mode
# 1-metric, 2-inch
self.meas_re = re.compile(r'^M7([12])$')
# Coordinates
#self.xcoord_re = re.compile(r'^X(\d*\.?\d*)(?:Y\d*\.?\d*)?$')
#self.ycoord_re = re.compile(r'^(?:X\d*\.?\d*)?Y(\d*\.?\d*)$')
self.coordsperiod_re = re.compile(r'(?=.*X([-\+]?\d*\.\d*))?(?=.*Y([-\+]?\d*\.\d*))?[XY]')
self.coordsnoperiod_re = re.compile(r'(?!.*\.)(?=.*X([-\+]?\d*))?(?=.*Y([-\+]?\d*))?[XY]')
# R - Repeat hole (# times, X offset, Y offset)
self.rep_re = re.compile(r'^R(\d+)(?=.*[XY])+(?:X([-\+]?\d*\.?\d*))?(?:Y([-\+]?\d*\.?\d*))?$')
# Various stop/pause commands
self.stop_re = re.compile(r'^((G04)|(M09)|(M06)|(M00)|(M30))')
# Parse coordinates
self.leadingzeros_re = re.compile(r'^[-\+]?(0*)(\d*)')
def parse_file(self, filename):
"""
Reads the specified file as array of lines as
passes it to ``parse_lines()``.
:param filename: The file to be read and parsed.
:type filename: str
:return: None
"""
efile = open(filename, 'r')
estr = efile.readlines()
efile.close()
self.parse_lines(estr)
def parse_lines(self, elines):
"""
Main Excellon parser.
:param elines: List of strings, each being a line of Excellon code.
:type elines: list
:return: None
"""
# State variables
current_tool = ""
in_header = False
current_x = None
current_y = None
#### Parsing starts here ####
line_num = 0 # Line number
for eline in elines:
line_num += 1
### Cleanup lines
eline = eline.strip(' \r\n')
## Header Begin/End ##
if self.hbegin_re.search(eline):
in_header = True
continue
if self.hend_re.search(eline):
in_header = False
continue
#### Body ####
if not in_header:
## Tool change ##
match = self.toolsel_re.search(eline)
if match:
current_tool = str(int(match.group(1)))
continue
## Coordinates without period ##
match = self.coordsnoperiod_re.search(eline)
if match:
try:
#x = float(match.group(1))/10000
x = self.parse_number(match.group(1))
current_x = x
except TypeError:
x = current_x
try:
#y = float(match.group(2))/10000
y = self.parse_number(match.group(2))
current_y = y
except TypeError:
y = current_y
if x is None or y is None:
log.error("Missing coordinates")
continue
self.drills.append({'point': Point((x, y)), 'tool': current_tool})
continue
## Coordinates with period: Use literally. ##
match = self.coordsperiod_re.search(eline)
if match:
try:
x = float(match.group(1))
current_x = x
except TypeError:
x = current_x
try:
y = float(match.group(2))
current_y = y
except TypeError:
y = current_y
if x is None or y is None:
log.error("Missing coordinates")
continue
self.drills.append({'point': Point((x, y)), 'tool': current_tool})
continue
#### Header ####
if in_header:
## Tool definitions ##
match = self.toolset_re.search(eline)
if match:
name = str(int(match.group(1)))
spec = {
"C": float(match.group(2)),
# "F": float(match.group(3)),
# "S": float(match.group(4)),
# "B": float(match.group(5)),
# "H": float(match.group(6)),
# "Z": float(match.group(7))
}
self.tools[name] = spec
continue
## Units and number format ##
match = self.units_re.match(eline)
if match:
self.zeros = match.group(2) or self.zeros # "T" or "L". Might be empty
self.units = {"INCH": "IN", "METRIC": "MM"}[match.group(1)]
continue
log.warning("Line ignored: %s" % eline)
log.info("Zeros: %s, Units %s." % (self.zeros, self.units))
def parse_number(self, number_str):
"""
Parses coordinate numbers without period.
:param number_str: String representing the numerical value.
:type number_str: str
:return: Floating point representation of the number
:rtype: foat
"""
if self.zeros == "L":
# r'^[-\+]?(0*)(\d*)'
# 6 digits are divided by 10^4
# If less than size digits, they are automatically added,
# 5 digits then are divided by 10^3
match = self.leadingzeros_re.search(number_str)
return float(number_str)/(10**(len(match.group(1)) + len(match.group(2)) - 2))
else: # Trailing
return float(number_str)/10000
def create_geometry(self):
"""
Creates circles of the tool diameter at every point
specified in ``self.drills``.
:return: None
"""
self.solid_geometry = []
for drill in self.drills:
#poly = drill['point'].buffer(self.tools[drill['tool']]["C"]/2.0)
tooldia = self.tools[drill['tool']]['C']
poly = drill['point'].buffer(tooldia/2.0)
self.solid_geometry.append(poly)
def scale(self, factor):
"""
Scales geometry on the XY plane in the object by a given factor.
Tool sizes, feedrates an Z-plane dimensions are untouched.
:param factor: Number by which to scale the object.
:type factor: float
:return: None
:rtype: NOne
"""
# Drills
for drill in self.drills:
drill['point'] = affinity.scale(drill['point'], factor, factor, origin=(0, 0))
self.create_geometry()
def offset(self, vect):
"""
Offsets geometry on the XY plane in the object by a given vector.
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
dx, dy = vect
# Drills
for drill in self.drills:
drill['point'] = affinity.translate(drill['point'], xoff=dx, yoff=dy)
# Recreate geometry
self.create_geometry()
def mirror(self, axis, point):
"""
:param axis: "X" or "Y" indicates around which axis to mirror.
:type axis: str
:param point: [x, y] point belonging to the mirror axis.
:type point: list
:return: None
"""
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
# Modify data
for drill in self.drills:
drill['point'] = affinity.scale(drill['point'], xscale, yscale, origin=(px, py))
# Recreate geometry
self.create_geometry()
def convert_units(self, units):
factor = Geometry.convert_units(self, units)
# Tools
for tname in self.tools:
self.tools[tname]["C"] *= factor
self.create_geometry()
return factor
class CNCjob(Geometry):
"""
Represents work to be done by a CNC machine.
*ATTRIBUTES*
* ``gcode_parsed`` (list): Each is a dictionary:
===================== =========================================
Key Value
===================== =========================================
geom (Shapely.LineString) Tool path (XY plane)
kind (string) "AB", A is "T" (travel) or
"C" (cut). B is "F" (fast) or "S" (slow).
===================== =========================================
"""
def __init__(self, units="in", kind="generic", z_move=0.1,
feedrate=3.0, z_cut=-0.002, tooldia=0.0):
Geometry.__init__(self)
self.kind = kind
self.units = units
self.z_cut = z_cut
self.z_move = z_move
self.feedrate = feedrate
self.tooldia = tooldia
self.unitcode = {"IN": "G20", "MM": "G21"}
self.pausecode = "G04 P1"
self.feedminutecode = "G94"
self.absolutecode = "G90"
self.gcode = ""
self.input_geometry_bounds = None
self.gcode_parsed = None
self.steps_per_circ = 20 # Used when parsing G-code arcs
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['kind', 'z_cut', 'z_move', 'feedrate', 'tooldia',
'gcode', 'input_geometry_bounds', 'gcode_parsed',
'steps_per_circ']
def convert_units(self, units):
factor = Geometry.convert_units(self, units)
log.debug("CNCjob.convert_units()")
self.z_cut *= factor
self.z_move *= factor
self.feedrate *= factor
self.tooldia *= factor
return factor
def generate_from_excellon(self, exobj):
"""
Generates G-code for drilling from Excellon object.
self.gcode becomes a list, each element is a
different job for each tool in the excellon code.
"""
self.kind = "drill"
self.gcode = []
t = "G00 X%.4fY%.4f\n"
down = "G01 Z%.4f\n" % self.z_cut
up = "G01 Z%.4f\n" % self.z_move
for tool in exobj.tools:
points = []
for drill in exobj.drill:
if drill['tool'] == tool:
points.append(drill['point'])
gcode = self.unitcode[self.units.upper()] + "\n"
gcode += self.absolutecode + "\n"
gcode += self.feedminutecode + "\n"
gcode += "F%.2f\n" % self.feedrate
gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
gcode += "M03\n" # Spindle start
gcode += self.pausecode + "\n"
for point in points:
gcode += t % point
gcode += down + up
gcode += t % (0, 0)
gcode += "M05\n" # Spindle stop
self.gcode.append(gcode)
def generate_from_excellon_by_tool(self, exobj, tools="all"):
"""
Creates gcode for this object from an Excellon object
for the specified tools.
:param exobj: Excellon object to process
:type exobj: Excellon
:param tools: Comma separated tool names
:type: tools: str
:return: None
:rtype: None
"""
log.debug("Creating CNC Job from Excellon...")
if tools == "all":
tools = [tool for tool in exobj.tools]
else:
tools = [x.strip() for x in tools.split(",")]
tools = filter(lambda i: i in exobj.tools, tools)
log.debug("Tools are: %s" % str(tools))
points = []
for drill in exobj.drills:
if drill['tool'] in tools:
points.append(drill['point'])
log.debug("Found %d drills." % len(points))
#self.kind = "drill"
self.gcode = []
t = "G00 X%.4fY%.4f\n"
down = "G01 Z%.4f\n" % self.z_cut
up = "G01 Z%.4f\n" % self.z_move
gcode = self.unitcode[self.units.upper()] + "\n"
gcode += self.absolutecode + "\n"
gcode += self.feedminutecode + "\n"
gcode += "F%.2f\n" % self.feedrate
gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
gcode += "M03\n" # Spindle start
gcode += self.pausecode + "\n"
for point in points:
x, y = point.coords.xy
gcode += t % (x[0], y[0])
gcode += down + up
gcode += t % (0, 0)
gcode += "M05\n" # Spindle stop
self.gcode = gcode
def generate_from_geometry(self, geometry, append=True, tooldia=None, tolerance=0):
"""
Generates G-Code from a Geometry object. Stores in ``self.gcode``.
:param geometry: Geometry defining the toolpath
:type geometry: Geometry
:param append: Wether to append to self.gcode or re-write it.
:type append: bool
:param tooldia: If given, sets the tooldia property but does
not affect the process in any other way.
:type tooldia: bool
:param tolerance: All points in the simplified object will be within the
tolerance distance of the original geometry.
:return: None
:rtype: None
"""
if tooldia is not None:
self.tooldia = tooldia
self.input_geometry_bounds = geometry.bounds()
if not append:
self.gcode = ""
self.gcode = self.unitcode[self.units.upper()] + "\n"
self.gcode += self.absolutecode + "\n"
self.gcode += self.feedminutecode + "\n"
self.gcode += "F%.2f\n" % self.feedrate
self.gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
self.gcode += "M03\n" # Spindle start
self.gcode += self.pausecode + "\n"
for geo in geometry.solid_geometry:
if type(geo) == Polygon:
self.gcode += self.polygon2gcode(geo, tolerance=tolerance)
continue
if type(geo) == LineString or type(geo) == LinearRing:
self.gcode += self.linear2gcode(geo, tolerance=tolerance)
continue
if type(geo) == Point:
# TODO: point2gcode does not return anything...
self.gcode += self.point2gcode(geo)
continue
if type(geo) == MultiPolygon:
for poly in geo:
self.gcode += self.polygon2gcode(poly, tolerance=tolerance)
continue
log.warning("G-code generation not implemented for %s" % (str(type(geo))))
self.gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
self.gcode += "G00 X0Y0\n"
self.gcode += "M05\n" # Spindle stop
def pre_parse(self, gtext):
"""
Separates parts of the G-Code text into a list of dictionaries.
Used by ``self.gcode_parse()``.
:param gtext: A single string with g-code
"""
# Units: G20-inches, G21-mm
units_re = re.compile(r'^G2([01])')
# TODO: This has to be re-done
gcmds = []
lines = gtext.split("\n") # TODO: This is probably a lot of work!
for line in lines:
# Clean up
line = line.strip()
# Remove comments
# NOTE: Limited to 1 bracket pair
op = line.find("(")
cl = line.find(")")
#if op > -1 and cl > op:
if cl > op > -1:
#comment = line[op+1:cl]
line = line[:op] + line[(cl+1):]
# Units
match = units_re.match(line)
if match:
self.units = {'0': "IN", '1': "MM"}[match.group(1)]
# Parse GCode
# 0 4 12
# G01 X-0.007 Y-0.057
# --> codes_idx = [0, 4, 12]
codes = "NMGXYZIJFP"
codes_idx = []
i = 0
for ch in line:
if ch in codes:
codes_idx.append(i)
i += 1
n_codes = len(codes_idx)
if n_codes == 0:
continue
# Separate codes in line
parts = []
for p in range(n_codes-1):
parts.append(line[codes_idx[p]:codes_idx[p+1]].strip())
parts.append(line[codes_idx[-1]:].strip())
# Separate codes from values
cmds = {}
for part in parts:
cmds[part[0]] = float(part[1:])
gcmds.append(cmds)
return gcmds
def gcode_parse(self):
"""
G-Code parser (from self.gcode). Generates dictionary with
single-segment LineString's and "kind" indicating cut or travel,
fast or feedrate speed.
"""
kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
# Results go here
geometry = []
# TODO: Merge into single parser?
gobjs = self.pre_parse(self.gcode)
# Last known instruction
current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
# Current path: temporary storage until tool is
# lifted or lowered.
path = [(0, 0)]
# Process every instruction
for gobj in gobjs:
## Changing height
if 'Z' in gobj:
if ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
log.warning("Non-orthogonal motion: From %s" % str(current))
log.warning(" To: %s" % str(gobj))
current['Z'] = gobj['Z']
# Store the path into geometry and reset path
if len(path) > 1:
geometry.append({"geom": LineString(path),
"kind": kind})
path = [path[-1]] # Start with the last point of last path.
if 'G' in gobj:
current['G'] = int(gobj['G'])
if 'X' in gobj or 'Y' in gobj:
if 'X' in gobj:
x = gobj['X']
else:
x = current['X']
if 'Y' in gobj:
y = gobj['Y']
else:
y = current['Y']
kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
if current['Z'] > 0:
kind[0] = 'T'
if current['G'] > 0:
kind[1] = 'S'
arcdir = [None, None, "cw", "ccw"]
if current['G'] in [0, 1]: # line
path.append((x, y))
if current['G'] in [2, 3]: # arc
center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
radius = sqrt(gobj['I']**2 + gobj['J']**2)
start = arctan2(-gobj['J'], -gobj['I'])
stop = arctan2(-center[1]+y, -center[0]+x)
path += arc(center, radius, start, stop,
arcdir[current['G']],
self.steps_per_circ)
# Update current instruction
for code in gobj:
current[code] = gobj[code]
# There might not be a change in height at the
# end, therefore, see here too if there is
# a final path.
if len(path) > 1:
geometry.append({"geom": LineString(path),
"kind": kind})
self.gcode_parsed = geometry
return geometry
# def plot(self, tooldia=None, dpi=75, margin=0.1,
# color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
# alpha={"T": 0.3, "C": 1.0}):
# """
# Creates a Matplotlib figure with a plot of the
# G-code job.
# """
# if tooldia is None:
# tooldia = self.tooldia
#
# fig = Figure(dpi=dpi)
# ax = fig.add_subplot(111)
# ax.set_aspect(1)
# xmin, ymin, xmax, ymax = self.input_geometry_bounds
# ax.set_xlim(xmin-margin, xmax+margin)
# ax.set_ylim(ymin-margin, ymax+margin)
#
# if tooldia == 0:
# for geo in self.gcode_parsed:
# linespec = '--'
# linecolor = color[geo['kind'][0]][1]
# if geo['kind'][0] == 'C':
# linespec = 'k-'
# x, y = geo['geom'].coords.xy
# ax.plot(x, y, linespec, color=linecolor)
# else:
# for geo in self.gcode_parsed:
# poly = geo['geom'].buffer(tooldia/2.0)
# patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
# edgecolor=color[geo['kind'][0]][1],
# alpha=alpha[geo['kind'][0]], zorder=2)
# ax.add_patch(patch)
#
# return fig
def plot2(self, axes, tooldia=None, dpi=75, margin=0.1,
color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005):
"""
Plots the G-code job onto the given axes.
:param axes: Matplotlib axes on which to plot.
:param tooldia: Tool diameter.
:param dpi: Not used!
:param margin: Not used!
:param color: Color specification.
:param alpha: Transparency specification.
:param tool_tolerance: Tolerance when drawing the toolshape.
:return: None
"""
if tooldia is None:
tooldia = self.tooldia
if tooldia == 0:
for geo in self.gcode_parsed:
linespec = '--'
linecolor = color[geo['kind'][0]][1]
if geo['kind'][0] == 'C':
linespec = 'k-'
x, y = geo['geom'].coords.xy
axes.plot(x, y, linespec, color=linecolor)
else:
for geo in self.gcode_parsed:
poly = geo['geom'].buffer(tooldia/2.0).simplify(tool_tolerance)
patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
edgecolor=color[geo['kind'][0]][1],
alpha=alpha[geo['kind'][0]], zorder=2)
axes.add_patch(patch)
def create_geometry(self):
# TODO: This takes forever. Too much data?
self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
def polygon2gcode(self, polygon, tolerance=0):
"""
Creates G-Code for the exterior and all interior paths
of a polygon.
:param polygon: A Shapely.Polygon
:type polygon: Shapely.Polygon
:param tolerance: All points in the simplified object will be within the
tolerance distance of the original geometry.
:type tolerance: float
:return: G-code to cut along polygon.
:rtype: str
"""
if tolerance > 0:
target_polygon = polygon.simplify(tolerance)
else:
target_polygon = polygon
gcode = ""
t = "G0%d X%.4fY%.4f\n"
path = list(target_polygon.exterior.coords) # Polygon exterior
gcode += t % (0, path[0][0], path[0][1]) # Move to first point
gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
for pt in path[1:]:
gcode += t % (1, pt[0], pt[1]) # Linear motion to point
gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
for ints in target_polygon.interiors: # Polygon interiors
path = list(ints.coords)
gcode += t % (0, path[0][0], path[0][1]) # Move to first point
gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
for pt in path[1:]:
gcode += t % (1, pt[0], pt[1]) # Linear motion to point
gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
return gcode
def linear2gcode(self, linear, tolerance=0):
"""
Generates G-code to cut along the linear feature.
:param linear: The path to cut along.
:type: Shapely.LinearRing or Shapely.Linear String
:param tolerance: All points in the simplified object will be within the
tolerance distance of the original geometry.
:type tolerance: float
:return: G-code to cut alon the linear feature.
:rtype: str
"""
if tolerance > 0:
target_linear = linear.simplify(tolerance)
else:
target_linear = linear
gcode = ""
t = "G0%d X%.4fY%.4f\n"
path = list(target_linear.coords)
gcode += t % (0, path[0][0], path[0][1]) # Move to first point
gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
for pt in path[1:]:
gcode += t % (1, pt[0], pt[1]) # Linear motion to point
gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
return gcode
def point2gcode(self, point):
# TODO: This is not doing anything.
gcode = ""
t = "G0%d X%.4fY%.4f\n"
path = list(point.coords)
gcode += t % (0, path[0][0], path[0][1]) # Move to first point
gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
def scale(self, factor):
"""
Scales all the geometry on the XY plane in the object by the
given factor. Tool sizes, feedrates, or Z-axis dimensions are
not altered.
:param factor: Number by which to scale the object.
:type factor: float
:return: None
:rtype: None
"""
for g in self.gcode_parsed:
g['geom'] = affinity.scale(g['geom'], factor, factor, origin=(0, 0))
self.create_geometry()
def offset(self, vect):
"""
Offsets all the geometry on the XY plane in the object by the
given vector.
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
dx, dy = vect
for g in self.gcode_parsed:
g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
self.create_geometry()
# def get_bounds(geometry_set):
# xmin = Inf
# ymin = Inf
# xmax = -Inf
# ymax = -Inf
#
# #print "Getting bounds of:", str(geometry_set)
# for gs in geometry_set:
# try:
# gxmin, gymin, gxmax, gymax = geometry_set[gs].bounds()
# xmin = min([xmin, gxmin])
# ymin = min([ymin, gymin])
# xmax = max([xmax, gxmax])
# ymax = max([ymax, gymax])
# except:
# print "DEV WARNING: Tried to get bounds of empty geometry."
#
# return [xmin, ymin, xmax, ymax]
def get_bounds(geometry_list):
xmin = Inf
ymin = Inf
xmax = -Inf
ymax = -Inf
#print "Getting bounds of:", str(geometry_set)
for gs in geometry_list:
try:
gxmin, gymin, gxmax, gymax = gs.bounds()
xmin = min([xmin, gxmin])
ymin = min([ymin, gymin])
xmax = max([xmax, gxmax])
ymax = max([ymax, gymax])
except:
log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
return [xmin, ymin, xmax, ymax]
def arc(center, radius, start, stop, direction, steps_per_circ):
"""
Creates a list of point along the specified arc.
:param center: Coordinates of the center [x, y]
:type center: list
:param radius: Radius of the arc.
:type radius: float
:param start: Starting angle in radians
:type start: float
:param stop: End angle in radians
:type stop: float
:param direction: Orientation of the arc, "CW" or "CCW"
:type direction: string
:param steps_per_circ: Number of straight line segments to
represent a circle.
:type steps_per_circ: int
:return: The desired arc, as list of tuples
:rtype: list
"""
# TODO: Resolution should be established by fraction of total length, not angle.
da_sign = {"cw": -1.0, "ccw": 1.0}
points = []
if direction == "ccw" and stop <= start:
stop += 2*pi
if direction == "cw" and stop >= start:
stop -= 2*pi
angle = abs(stop - start)
#angle = stop-start
steps = max([int(ceil(angle/(2*pi)*steps_per_circ)), 2])
delta_angle = da_sign[direction]*angle*1.0/steps
for i in range(steps+1):
theta = start + delta_angle*i
points.append((center[0]+radius*cos(theta), center[1]+radius*sin(theta)))
return points
def clear_poly(poly, tooldia, overlap=0.1):
"""
Creates a list of Shapely geometry objects covering the inside
of a Shapely.Polygon. Use for removing all the copper in a region
or bed flattening.
:param poly: Target polygon
:type poly: Shapely.Polygon
:param tooldia: Diameter of the tool
:type tooldia: float
:param overlap: Fraction of the tool diameter to overlap
in each pass.
:type overlap: float
:return: list of Shapely.Polygon
:rtype: list
"""
poly_cuts = [poly.buffer(-tooldia/2.0)]
while True:
poly = poly_cuts[-1].buffer(-tooldia*(1-overlap))
if poly.area > 0:
poly_cuts.append(poly)
else:
break
return poly_cuts
def find_polygon(poly_set, point):
"""
Return the first polygon in the list of polygons poly_set
that contains the given point.
"""
p = Point(point)
for poly in poly_set:
if poly.contains(p):
return poly
return None
def to_dict(obj):
"""
Makes a Shapely geometry object into serializeable form.
:param obj: Shapely geometry.
:type obj: BaseGeometry
:return: Dictionary with serializable form if ``obj`` was
BaseGeometry or ApertureMacro, otherwise returns ``obj``.
"""
if isinstance(obj, ApertureMacro):
return {
"__class__": "ApertureMacro",
"__inst__": obj.to_dict()
}
if isinstance(obj, BaseGeometry):
return {
"__class__": "Shply",
"__inst__": sdumps(obj)
}
return obj
def dict2obj(d):
"""
Default deserializer.
:param d: Serializable dictionary representation of an object
to be reconstructed.
:return: Reconstructed object.
"""
if '__class__' in d and '__inst__' in d:
if d['__class__'] == "Shply":
return sloads(d['__inst__'])
if d['__class__'] == "ApertureMacro":
am = ApertureMacro()
am.from_dict(d['__inst__'])
return am
return d
else:
return d
def plotg(geo):
try:
_ = iter(geo)
except:
geo = [geo]
for g in geo:
if type(g) == Polygon:
x, y = g.exterior.coords.xy
plot(x, y)
for ints in g.interiors:
x, y = ints.coords.xy
plot(x, y)
continue
if type(g) == LineString or type(g) == LinearRing:
x, y = g.coords.xy
plot(x, y)
continue
if type(g) == Point:
x, y = g.coords.xy
plot(x, y, 'o')
continue
try:
_ = iter(g)
plotg(g)
except:
log.error("Cannot plot: " + str(type(g)))
continue
def parse_gerber_number(strnumber, frac_digits):
"""
Parse a single number of Gerber coordinates.
:param strnumber: String containing a number in decimal digits
from a coordinate data block, possibly with a leading sign.
:type strnumber: str
:param frac_digits: Number of digits used for the fractional
part of the number
:type frac_digits: int
:return: The number in floating point.
:rtype: float
"""
return int(strnumber)*(10**(-frac_digits))