flatcam/camlib.py

9244 lines
375 KiB
Python

# ########################################################## ##
# FlatCAM: 2D Post-processing for Manufacturing #
# http://flatcam.org #
# Author: Juan Pablo Caram (c) #
# Date: 2/5/2014 #
# MIT Licence #
# ########################################################## ##
from io import StringIO
import numpy as np
from numpy import arctan2, Inf, array, sqrt, pi, ceil, sin, cos, dot, float32, \
transpose
from numpy.linalg import solve, norm
import re, sys, os, platform
import math
from copy import deepcopy
import traceback
from decimal import Decimal
from rtree import index as rtindex
from lxml import etree as ET
# See: http://toblerity.org/shapely/manual.html
from shapely.geometry import Polygon, LineString, Point, LinearRing, MultiLineString
from shapely.geometry import MultiPoint, MultiPolygon
from shapely.geometry import box as shply_box
from shapely.ops import cascaded_union, unary_union, polygonize
import shapely.affinity as affinity
from shapely.wkt import loads as sloads
from shapely.wkt import dumps as sdumps
from shapely.geometry.base import BaseGeometry
from shapely.geometry import shape
import collections
from collections import Iterable
import rasterio
from rasterio.features import shapes
import ezdxf
# TODO: Commented for FlatCAM packaging with cx_freeze
# from scipy.spatial import KDTree, Delaunay
# from scipy.spatial import Delaunay
from flatcamParsers.ParseSVG import *
from flatcamParsers.ParseDXF import *
import logging
import FlatCAMApp
import gettext
import FlatCAMTranslation as fcTranslate
import builtins
if platform.architecture()[0] == '64bit':
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2
fcTranslate.apply_language('strings')
log = logging.getLogger('base2')
log.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(levelname)s] %(message)s')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
log.addHandler(handler)
if '_' not in builtins.__dict__:
_ = gettext.gettext
class ParseError(Exception):
pass
class Geometry(object):
"""
Base geometry class.
"""
defaults = {
"units": 'in',
"geo_steps_per_circle": 128
}
def __init__(self, geo_steps_per_circle=None):
# Units (in or mm)
self.units = Geometry.defaults["units"]
# Final geometry: MultiPolygon or list (of geometry constructs)
self.solid_geometry = None
# Final geometry: MultiLineString or list (of LineString or Points)
self.follow_geometry = None
# Attributes to be included in serialization
self.ser_attrs = ["units", 'solid_geometry', 'follow_geometry']
# Flattened geometry (list of paths only)
self.flat_geometry = []
# this is the calculated conversion factor when the file units are different than the ones in the app
self.file_units_factor = 1
# Index
self.index = None
self.geo_steps_per_circle = geo_steps_per_circle
# variables to display the percentage of work done
self.geo_len = 0
self.old_disp_number = 0
self.el_count = 0
self.temp_shapes = self.app.plotcanvas.new_shape_group()
# if geo_steps_per_circle is None:
# geo_steps_per_circle = int(Geometry.defaults["geo_steps_per_circle"])
# self.geo_steps_per_circle = geo_steps_per_circle
def plot_temp_shapes(self, element, color='red'):
try:
for sub_el in element:
self.plot_temp_shapes(sub_el)
except TypeError: # Element is not iterable...
# self.add_shape(shape=element, color=color, visible=visible, layer=0)
self.temp_shapes.add(tolerance=float(self.app.defaults["global_tolerance"]),
shape=element, color=color, visible=True, layer=0)
def make_index(self):
self.flatten()
self.index = FlatCAMRTree()
for i, g in enumerate(self.flat_geometry):
self.index.insert(i, g)
def add_circle(self, origin, radius):
"""
Adds a circle to the object.
:param origin: Center of the circle.
:param radius: Radius of the circle.
:return: None
"""
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
self.solid_geometry.append(Point(origin).buffer(
radius, int(int(self.geo_steps_per_circle) / 4)))
return
try:
self.solid_geometry = self.solid_geometry.union(Point(origin).buffer(
radius, int(int(self.geo_steps_per_circle) / 4)))
except Exception as e:
log.error("Failed to run union on polygons. %s" % str(e))
return
def add_polygon(self, points):
"""
Adds a polygon to the object (by union)
:param points: The vertices of the polygon.
:return: None
"""
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
self.solid_geometry.append(Polygon(points))
return
try:
self.solid_geometry = self.solid_geometry.union(Polygon(points))
except Exception as e:
log.error("Failed to run union on polygons. %s" % str(e))
return
def add_polyline(self, points):
"""
Adds a polyline to the object (by union)
:param points: The vertices of the polyline.
:return: None
"""
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
self.solid_geometry.append(LineString(points))
return
try:
self.solid_geometry = self.solid_geometry.union(LineString(points))
except Exception as e:
log.error("Failed to run union on polylines. %s" % str(e))
return
def is_empty(self):
if isinstance(self.solid_geometry, BaseGeometry):
return self.solid_geometry.is_empty
if isinstance(self.solid_geometry, list):
return len(self.solid_geometry) == 0
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("self.solid_geometry is neither BaseGeometry or list."))
return
def subtract_polygon(self, points):
"""
Subtract polygon from the given object. This only operates on the paths in the original geometry,
i.e. it converts polygons into paths.
:param points: The vertices of the polygon.
:return: none
"""
if self.solid_geometry is None:
self.solid_geometry = []
# pathonly should be allways True, otherwise polygons are not subtracted
flat_geometry = self.flatten(pathonly=True)
log.debug("%d paths" % len(flat_geometry))
polygon = Polygon(points)
toolgeo = cascaded_union(polygon)
diffs = []
for target in flat_geometry:
if type(target) == LineString or type(target) == LinearRing:
diffs.append(target.difference(toolgeo))
else:
log.warning("Not implemented.")
self.solid_geometry = cascaded_union(diffs)
def bounds(self):
"""
Returns coordinates of rectangular bounds
of geometry: (xmin, ymin, xmax, ymax).
"""
# fixed issue of getting bounds only for one level lists of objects
# now it can get bounds for nested lists of objects
log.debug("camlib.Geometry.bounds()")
if self.solid_geometry is None:
log.debug("solid_geometry is None")
return 0, 0, 0, 0
def bounds_rec(obj):
if type(obj) is list:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in obj:
if type(k) is dict:
for key in k:
minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
else:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
return obj.bounds
if self.multigeo is True:
minx_list = []
miny_list = []
maxx_list = []
maxy_list = []
for tool in self.tools:
minx, miny, maxx, maxy = bounds_rec(self.tools[tool]['solid_geometry'])
minx_list.append(minx)
miny_list.append(miny)
maxx_list.append(maxx)
maxy_list.append(maxy)
return(min(minx_list), min(miny_list), max(maxx_list), max(maxy_list))
else:
bounds_coords = bounds_rec(self.solid_geometry)
return bounds_coords
# try:
# # from here: http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
# def flatten(l, ltypes=(list, tuple)):
# ltype = type(l)
# l = list(l)
# i = 0
# while i < len(l):
# while isinstance(l[i], ltypes):
# if not l[i]:
# l.pop(i)
# i -= 1
# break
# else:
# l[i:i + 1] = l[i]
# i += 1
# return ltype(l)
#
# log.debug("Geometry->bounds()")
# if self.solid_geometry is None:
# log.debug("solid_geometry is None")
# return 0, 0, 0, 0
#
# if type(self.solid_geometry) is list:
# # TODO: This can be done faster. See comment from Shapely mailing lists.
# if len(self.solid_geometry) == 0:
# log.debug('solid_geometry is empty []')
# return 0, 0, 0, 0
# return cascaded_union(flatten(self.solid_geometry)).bounds
# else:
# return self.solid_geometry.bounds
# except Exception as e:
# self.app.inform.emit("[ERROR_NOTCL] Error cause: %s" % str(e))
# log.debug("Geometry->bounds()")
# if self.solid_geometry is None:
# log.debug("solid_geometry is None")
# return 0, 0, 0, 0
#
# if type(self.solid_geometry) is list:
# # TODO: This can be done faster. See comment from Shapely mailing lists.
# if len(self.solid_geometry) == 0:
# log.debug('solid_geometry is empty []')
# return 0, 0, 0, 0
# return cascaded_union(self.solid_geometry).bounds
# else:
# return self.solid_geometry.bounds
def find_polygon(self, point, geoset=None):
"""
Find an object that object.contains(Point(point)) in
poly, which can can be iterable, contain iterable of, or
be itself an implementer of .contains().
:param point: See description
:param geoset: a polygon or list of polygons where to find if the param point is contained
:return: Polygon containing point or None.
"""
if geoset is None:
geoset = self.solid_geometry
try: # Iterable
for sub_geo in geoset:
p = self.find_polygon(point, geoset=sub_geo)
if p is not None:
return p
except TypeError: # Non-iterable
try: # Implements .contains()
if isinstance(geoset, LinearRing):
geoset = Polygon(geoset)
if geoset.contains(Point(point)):
return geoset
except AttributeError: # Does not implement .contains()
return None
return None
def get_interiors(self, geometry=None):
interiors = []
if geometry is None:
geometry = self.solid_geometry
# ## If iterable, expand recursively.
try:
for geo in geometry:
interiors.extend(self.get_interiors(geometry=geo))
# ## Not iterable, get the interiors if polygon.
except TypeError:
if type(geometry) == Polygon:
interiors.extend(geometry.interiors)
return interiors
def get_exteriors(self, geometry=None):
"""
Returns all exteriors of polygons in geometry. Uses
``self.solid_geometry`` if geometry is not provided.
:param geometry: Shapely type or list or list of list of such.
:return: List of paths constituting the exteriors
of polygons in geometry.
"""
exteriors = []
if geometry is None:
geometry = self.solid_geometry
# ## If iterable, expand recursively.
try:
for geo in geometry:
exteriors.extend(self.get_exteriors(geometry=geo))
# ## Not iterable, get the exterior if polygon.
except TypeError:
if type(geometry) == Polygon:
exteriors.append(geometry.exterior)
return exteriors
def flatten(self, geometry=None, reset=True, pathonly=False):
"""
Creates a list of non-iterable linear geometry objects.
Polygons are expanded into its exterior and interiors if specified.
Results are placed in self.flat_geometry
:param geometry: Shapely type or list or list of list of such.
:param reset: Clears the contents of self.flat_geometry.
:param pathonly: Expands polygons into linear elements.
"""
if geometry is None:
geometry = self.solid_geometry
if reset:
self.flat_geometry = []
# ## If iterable, expand recursively.
try:
for geo in geometry:
if geo is not None:
self.flatten(geometry=geo,
reset=False,
pathonly=pathonly)
# ## Not iterable, do the actual indexing and add.
except TypeError:
if pathonly and type(geometry) == Polygon:
self.flat_geometry.append(geometry.exterior)
self.flatten(geometry=geometry.interiors,
reset=False,
pathonly=True)
else:
self.flat_geometry.append(geometry)
return self.flat_geometry
# def make2Dstorage(self):
#
# self.flatten()
#
# def get_pts(o):
# pts = []
# if type(o) == Polygon:
# g = o.exterior
# pts += list(g.coords)
# for i in o.interiors:
# pts += list(i.coords)
# else:
# pts += list(o.coords)
# return pts
#
# storage = FlatCAMRTreeStorage()
# storage.get_points = get_pts
# for shape in self.flat_geometry:
# storage.insert(shape)
# return storage
# def flatten_to_paths(self, geometry=None, reset=True):
# """
# Creates a list of non-iterable linear geometry elements and
# indexes them in rtree.
#
# :param geometry: Iterable geometry
# :param reset: Wether to clear (True) or append (False) to self.flat_geometry
# :return: self.flat_geometry, self.flat_geometry_rtree
# """
#
# if geometry is None:
# geometry = self.solid_geometry
#
# if reset:
# self.flat_geometry = []
#
# # ## If iterable, expand recursively.
# try:
# for geo in geometry:
# self.flatten_to_paths(geometry=geo, reset=False)
#
# # ## Not iterable, do the actual indexing and add.
# except TypeError:
# if type(geometry) == Polygon:
# g = geometry.exterior
# self.flat_geometry.append(g)
#
# # ## Add first and last points of the path to the index.
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
#
# for interior in geometry.interiors:
# g = interior
# self.flat_geometry.append(g)
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
# else:
# g = geometry
# self.flat_geometry.append(g)
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
# self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
#
# return self.flat_geometry, self.flat_geometry_rtree
def isolation_geometry(self, offset, iso_type=2, corner=None, follow=None, passes=0):
"""
Creates contours around geometry at a given
offset distance.
:param offset: Offset distance.
:type offset: float
:param iso_type: type of isolation, can be 0 = exteriors or 1 = interiors or 2 = both (complete)
:param corner: type of corner for the isolation: 0 = round; 1 = square; 2= beveled (line that connects the ends)
:param follow: whether the geometry to be isolated is a follow_geometry
:param passes: current pass out of possible multiple passes for which the isolation is done
:return: The buffered geometry.
:rtype: Shapely.MultiPolygon or Shapely.Polygon
"""
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
geo_iso = []
if offset == 0:
if follow:
geo_iso = self.follow_geometry
else:
geo_iso = self.solid_geometry
else:
if follow:
geo_iso = self.follow_geometry
else:
if isinstance(self.solid_geometry, list):
temp_geo = cascaded_union(self.solid_geometry)
else:
temp_geo = self.solid_geometry
# Remember: do not make a buffer for each element in the solid_geometry because it will cut into
# other copper features
# if corner is None:
# geo_iso = temp_geo.buffer(offset, int(int(self.geo_steps_per_circle) / 4))
# else:
# geo_iso = temp_geo.buffer(offset, int(int(self.geo_steps_per_circle) / 4),
# join_style=corner)
# variables to display the percentage of work done
geo_len = 0
try:
for pol in self.solid_geometry:
geo_len += 1
except TypeError:
geo_len = 1
disp_number = 0
old_disp_number = 0
pol_nr = 0
# yet, it can be done by issuing an unary_union in the end, thus getting rid of the overlapping geo
try:
for pol in self.solid_geometry:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if corner is None:
geo_iso.append(pol.buffer(offset, int(int(self.geo_steps_per_circle) / 4)))
else:
geo_iso.append(pol.buffer(offset, int(int(self.geo_steps_per_circle) / 4)),
join_style=corner)
pol_nr += 1
disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %s %d: %d%%' %
(_("Pass"), int(passes + 1), int(disp_number)))
old_disp_number = disp_number
except TypeError:
# taking care of the case when the self.solid_geometry is just a single Polygon, not a list or a
# MultiPolygon (not an iterable)
if corner is None:
geo_iso.append(self.solid_geometry.buffer(offset, int(int(self.geo_steps_per_circle) / 4)))
else:
geo_iso.append(self.solid_geometry.buffer(offset, int(int(self.geo_steps_per_circle) / 4)),
join_style=corner)
self.app.proc_container.update_view_text(' %s' % _("Buffering"))
geo_iso = unary_union(geo_iso)
self.app.proc_container.update_view_text('')
# end of replaced block
if follow:
return geo_iso
elif iso_type == 2:
return geo_iso
elif iso_type == 0:
self.app.proc_container.update_view_text(' %s' % _("Get Exteriors"))
return self.get_exteriors(geo_iso)
elif iso_type == 1:
self.app.proc_container.update_view_text(' %s' % _("Get Interiors"))
return self.get_interiors(geo_iso)
else:
log.debug("Geometry.isolation_geometry() --> Type of isolation not supported")
return "fail"
def flatten_list(self, list):
for item in list:
if isinstance(item, Iterable) and not isinstance(item, (str, bytes)):
yield from self.flatten_list(item)
else:
yield item
def import_svg(self, filename, object_type=None, flip=True, units='MM'):
"""
Imports shapes from an SVG file into the object's geometry.
:param filename: Path to the SVG file.
:type filename: str
:param object_type: parameter passed further along
:param flip: Flip the vertically.
:type flip: bool
:param units: FlatCAM units
:return: None
"""
# Parse into list of shapely objects
svg_tree = ET.parse(filename)
svg_root = svg_tree.getroot()
# Change origin to bottom left
# h = float(svg_root.get('height'))
# w = float(svg_root.get('width'))
h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
geos = getsvggeo(svg_root, object_type)
if flip:
geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
# Add to object
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
# self.solid_geometry.append(cascaded_union(geos))
if type(geos) is list:
self.solid_geometry += geos
else:
self.solid_geometry.append(geos)
else: # It's shapely geometry
# self.solid_geometry = cascaded_union([self.solid_geometry,
# cascaded_union(geos)])
self.solid_geometry = [self.solid_geometry, geos]
# flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
self.solid_geometry = list(self.flatten_list(self.solid_geometry))
geos_text = getsvgtext(svg_root, object_type, units=units)
if geos_text is not None:
geos_text_f = []
if flip:
# Change origin to bottom left
for i in geos_text:
_, minimy, _, maximy = i.bounds
h2 = (maximy - minimy) * 0.5
geos_text_f.append(translate(scale(i, 1.0, -1.0, origin=(0, 0)), yoff=(h + h2)))
if geos_text_f:
self.solid_geometry = self.solid_geometry + geos_text_f
def import_dxf(self, filename, object_type=None, units='MM'):
"""
Imports shapes from an DXF file into the object's geometry.
:param filename: Path to the DXF file.
:type filename: str
:param units: Application units
:type flip: str
:return: None
"""
# Parse into list of shapely objects
dxf = ezdxf.readfile(filename)
geos = getdxfgeo(dxf)
# Add to object
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
if type(geos) is list:
self.solid_geometry += geos
else:
self.solid_geometry.append(geos)
else: # It's shapely geometry
self.solid_geometry = [self.solid_geometry, geos]
# flatten the self.solid_geometry list for import_dxf() to import DXF as Gerber
self.solid_geometry = list(self.flatten_list(self.solid_geometry))
if self.solid_geometry is not None:
self.solid_geometry = cascaded_union(self.solid_geometry)
else:
return
# commented until this function is ready
# geos_text = getdxftext(dxf, object_type, units=units)
# if geos_text is not None:
# geos_text_f = []
# self.solid_geometry = [self.solid_geometry, geos_text_f]
def import_image(self, filename, flip=True, units='MM', dpi=96, mode='black', mask=[128, 128, 128, 128]):
"""
Imports shapes from an IMAGE file into the object's geometry.
:param filename: Path to the IMAGE file.
:type filename: str
:param flip: Flip the object vertically.
:type flip: bool
:param units: FlatCAM units
:param dpi: dots per inch on the imported image
:param mode: how to import the image: as 'black' or 'color'
:param mask: level of detail for the import
:return: None
"""
scale_factor = 0.264583333
if units.lower() == 'mm':
scale_factor = 25.4 / dpi
else:
scale_factor = 1 / dpi
geos = []
unscaled_geos = []
with rasterio.open(filename) as src:
# if filename.lower().rpartition('.')[-1] == 'bmp':
# red = green = blue = src.read(1)
# print("BMP")
# elif filename.lower().rpartition('.')[-1] == 'png':
# red, green, blue, alpha = src.read()
# elif filename.lower().rpartition('.')[-1] == 'jpg':
# red, green, blue = src.read()
red = green = blue = src.read(1)
try:
green = src.read(2)
except Exception as e:
pass
try:
blue = src.read(3)
except Exception as e:
pass
if mode == 'black':
mask_setting = red <= mask[0]
total = red
log.debug("Image import as monochrome.")
else:
mask_setting = (red <= mask[1]) + (green <= mask[2]) + (blue <= mask[3])
total = np.zeros(red.shape, dtype=float32)
for band in red, green, blue:
total += band
total /= 3
log.debug("Image import as colored. Thresholds are: R = %s , G = %s, B = %s" %
(str(mask[1]), str(mask[2]), str(mask[3])))
for geom, val in shapes(total, mask=mask_setting):
unscaled_geos.append(shape(geom))
for g in unscaled_geos:
geos.append(scale(g, scale_factor, scale_factor, origin=(0, 0)))
if flip:
geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0))) for g in geos]
# Add to object
if self.solid_geometry is None:
self.solid_geometry = []
if type(self.solid_geometry) is list:
# self.solid_geometry.append(cascaded_union(geos))
if type(geos) is list:
self.solid_geometry += geos
else:
self.solid_geometry.append(geos)
else: # It's shapely geometry
self.solid_geometry = [self.solid_geometry, geos]
# flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
self.solid_geometry = list(self.flatten_list(self.solid_geometry))
self.solid_geometry = cascaded_union(self.solid_geometry)
# self.solid_geometry = MultiPolygon(self.solid_geometry)
# self.solid_geometry = self.solid_geometry.buffer(0.00000001)
# self.solid_geometry = self.solid_geometry.buffer(-0.00000001)
def size(self):
"""
Returns (width, height) of rectangular
bounds of geometry.
"""
if self.solid_geometry is None:
log.warning("Solid_geometry not computed yet.")
return 0
bounds = self.bounds()
return bounds[2] - bounds[0], bounds[3] - bounds[1]
def get_empty_area(self, boundary=None):
"""
Returns the complement of self.solid_geometry within
the given boundary polygon. If not specified, it defaults to
the rectangular bounding box of self.solid_geometry.
"""
if boundary is None:
boundary = self.solid_geometry.envelope
return boundary.difference(self.solid_geometry)
def clear_polygon(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
prog_plot=False):
"""
Creates geometry inside a polygon for a tool to cover
the whole area.
This algorithm shrinks the edges of the polygon and takes
the resulting edges as toolpaths.
:param polygon: Polygon to clear.
:param tooldia: Diameter of the tool.
:param steps_per_circle: number of linear segments to be used to approximate a circle
:param overlap: Overlap of toolpasses.
:param connect: Draw lines between disjoint segments to
minimize tool lifts.
:param contour: Paint around the edges. Inconsequential in
this painting method.
:param prog_plot: boolean; if Ture use the progressive plotting
:return:
"""
# log.debug("camlib.clear_polygon()")
assert type(polygon) == Polygon or type(polygon) == MultiPolygon, \
"Expected a Polygon or MultiPolygon, got %s" % type(polygon)
# ## The toolpaths
# Index first and last points in paths
def get_pts(o):
return [o.coords[0], o.coords[-1]]
geoms = FlatCAMRTreeStorage()
geoms.get_points = get_pts
# Can only result in a Polygon or MultiPolygon
# NOTE: The resulting polygon can be "empty".
current = polygon.buffer((-tooldia / 1.999999), int(int(steps_per_circle) / 4))
if current.area == 0:
# Otherwise, trying to to insert current.exterior == None
# into the FlatCAMStorage will fail.
# print("Area is None")
return None
# current can be a MultiPolygon
try:
for p in current:
geoms.insert(p.exterior)
for i in p.interiors:
geoms.insert(i)
# Not a Multipolygon. Must be a Polygon
except TypeError:
geoms.insert(current.exterior)
for i in current.interiors:
geoms.insert(i)
while True:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# Can only result in a Polygon or MultiPolygon
current = current.buffer(-tooldia * (1 - overlap), int(int(steps_per_circle) / 4))
if current.area > 0:
# current can be a MultiPolygon
try:
for p in current:
geoms.insert(p.exterior)
for i in p.interiors:
geoms.insert(i)
if prog_plot:
self.plot_temp_shapes(p)
# Not a Multipolygon. Must be a Polygon
except TypeError:
geoms.insert(current.exterior)
if prog_plot:
self.plot_temp_shapes(current.exterior)
for i in current.interiors:
geoms.insert(i)
if prog_plot:
self.plot_temp_shapes(i)
else:
log.debug("camlib.Geometry.clear_polygon() --> Current Area is zero")
break
if prog_plot:
self.temp_shapes.redraw()
# Optimization: Reduce lifts
if connect:
# log.debug("Reducing tool lifts...")
geoms = Geometry.paint_connect(geoms, polygon, tooldia, int(steps_per_circle))
return geoms
def clear_polygon2(self, polygon_to_clear, tooldia, steps_per_circle, seedpoint=None, overlap=0.15,
connect=True, contour=True, prog_plot=False):
"""
Creates geometry inside a polygon for a tool to cover
the whole area.
This algorithm starts with a seed point inside the polygon
and draws circles around it. Arcs inside the polygons are
valid cuts. Finalizes by cutting around the inside edge of
the polygon.
:param polygon_to_clear: Shapely.geometry.Polygon
:param steps_per_circle: how many linear segments to use to approximate a circle
:param tooldia: Diameter of the tool
:param seedpoint: Shapely.geometry.Point or None
:param overlap: Tool fraction overlap bewteen passes
:param connect: Connect disjoint segment to minumize tool lifts
:param contour: Cut countour inside the polygon.
:return: List of toolpaths covering polygon.
:rtype: FlatCAMRTreeStorage | None
:param prog_plot: boolean; if True use the progressive plotting
"""
# log.debug("camlib.clear_polygon2()")
# Current buffer radius
radius = tooldia / 2 * (1 - overlap)
# ## The toolpaths
# Index first and last points in paths
def get_pts(o):
return [o.coords[0], o.coords[-1]]
geoms = FlatCAMRTreeStorage()
geoms.get_points = get_pts
# Path margin
path_margin = polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4))
if path_margin.is_empty or path_margin is None:
return
# Estimate good seedpoint if not provided.
if seedpoint is None:
seedpoint = path_margin.representative_point()
# Grow from seed until outside the box. The polygons will
# never have an interior, so take the exterior LinearRing.
while True:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
path = Point(seedpoint).buffer(radius, int(steps_per_circle / 4)).exterior
path = path.intersection(path_margin)
# Touches polygon?
if path.is_empty:
break
else:
# geoms.append(path)
# geoms.insert(path)
# path can be a collection of paths.
try:
for p in path:
geoms.insert(p)
if prog_plot:
self.plot_temp_shapes(p)
except TypeError:
geoms.insert(path)
if prog_plot:
self.plot_temp_shapes(path)
if prog_plot:
self.temp_shapes.redraw()
radius += tooldia * (1 - overlap)
# Clean inside edges (contours) of the original polygon
if contour:
outer_edges = [x.exterior for x in autolist(
polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4)))]
inner_edges = []
# Over resulting polygons
for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4))):
for y in x.interiors: # Over interiors of each polygon
inner_edges.append(y)
# geoms += outer_edges + inner_edges
for g in outer_edges + inner_edges:
geoms.insert(g)
if prog_plot:
self.plot_temp_shapes(g)
if prog_plot:
self.temp_shapes.redraw()
# Optimization connect touching paths
# log.debug("Connecting paths...")
# geoms = Geometry.path_connect(geoms)
# Optimization: Reduce lifts
if connect:
# log.debug("Reducing tool lifts...")
geoms = Geometry.paint_connect(geoms, polygon_to_clear, tooldia, steps_per_circle)
return geoms
def clear_polygon3(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
prog_plot=False):
"""
Creates geometry inside a polygon for a tool to cover
the whole area.
This algorithm draws horizontal lines inside the polygon.
:param polygon: The polygon being painted.
:type polygon: shapely.geometry.Polygon
:param tooldia: Tool diameter.
:param steps_per_circle: how many linear segments to use to approximate a circle
:param overlap: Tool path overlap percentage.
:param connect: Connect lines to avoid tool lifts.
:param contour: Paint around the edges.
:param prog_plot: boolean; if to use the progressive plotting
:return:
"""
# log.debug("camlib.clear_polygon3()")
# ## The toolpaths
# Index first and last points in paths
def get_pts(o):
return [o.coords[0], o.coords[-1]]
geoms = FlatCAMRTreeStorage()
geoms.get_points = get_pts
lines_trimmed = []
# Bounding box
left, bot, right, top = polygon.bounds
margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
# First line
y = top - tooldia / 1.99999999
while y > bot + tooldia / 1.999999999:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
line = LineString([(left, y), (right, y)])
line = line.intersection(margin_poly)
lines_trimmed.append(line)
y -= tooldia * (1 - overlap)
if prog_plot:
self.plot_temp_shapes(line)
self.temp_shapes.redraw()
# Last line
y = bot + tooldia / 2
line = LineString([(left, y), (right, y)])
line = line.intersection(margin_poly)
for ll in line:
lines_trimmed.append(ll)
if prog_plot:
self.plot_temp_shapes(line)
# Combine
# linesgeo = unary_union(lines)
# Trim to the polygon
# margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
# lines_trimmed = linesgeo.intersection(margin_poly)
if prog_plot:
self.temp_shapes.redraw()
lines_trimmed = unary_union(lines_trimmed)
# Add lines to storage
try:
for line in lines_trimmed:
geoms.insert(line)
except TypeError:
# in case lines_trimmed are not iterable (Linestring, LinearRing)
geoms.insert(lines_trimmed)
# Add margin (contour) to storage
if contour:
if isinstance(margin_poly, Polygon):
geoms.insert(margin_poly.exterior)
if prog_plot:
self.plot_temp_shapes(margin_poly.exterior)
for ints in margin_poly.interiors:
geoms.insert(ints)
if prog_plot:
self.plot_temp_shapes(ints)
elif isinstance(margin_poly, MultiPolygon):
for poly in margin_poly:
geoms.insert(poly.exterior)
if prog_plot:
self.plot_temp_shapes(poly.exterior)
for ints in poly.interiors:
geoms.insert(ints)
if prog_plot:
self.plot_temp_shapes(ints)
if prog_plot:
self.temp_shapes.redraw()
# Optimization: Reduce lifts
if connect:
# log.debug("Reducing tool lifts...")
geoms = Geometry.paint_connect(geoms, polygon, tooldia, steps_per_circle)
return geoms
def scale(self, xfactor, yfactor, point=None):
"""
Scales all of the object's geometry by a given factor. Override
this method.
:param xfactor: Number by which to scale on X axis.
:type xfactor: float
:param yfactor: Number by which to scale on Y axis.
:type yfactor: float
:param point: point to be used as reference for scaling; a tuple
:return: None
:rtype: None
"""
return
def offset(self, vect):
"""
Offset the geometry by the given vector. Override this method.
:param vect: (x, y) vector by which to offset the object.
:type vect: tuple
:return: None
"""
return
@staticmethod
def paint_connect(storage, boundary, tooldia, steps_per_circle, max_walk=None):
"""
Connects paths that results in a connection segment that is
within the paint area. This avoids unnecessary tool lifting.
:param storage: Geometry to be optimized.
:type storage: FlatCAMRTreeStorage
:param boundary: Polygon defining the limits of the paintable area.
:type boundary: Polygon
:param tooldia: Tool diameter.
:rtype tooldia: float
:param steps_per_circle: how many linear segments to use to approximate a circle
:param max_walk: Maximum allowable distance without lifting tool.
:type max_walk: float or None
:return: Optimized geometry.
:rtype: FlatCAMRTreeStorage
"""
# If max_walk is not specified, the maximum allowed is
# 10 times the tool diameter
max_walk = max_walk or 10 * tooldia
# Assuming geolist is a flat list of flat elements
# ## Index first and last points in paths
def get_pts(o):
return [o.coords[0], o.coords[-1]]
# storage = FlatCAMRTreeStorage()
# storage.get_points = get_pts
#
# for shape in geolist:
# if shape is not None: # TODO: This shouldn't have happened.
# # Make LlinearRings into linestrings otherwise
# # When chaining the coordinates path is messed up.
# storage.insert(LineString(shape))
# #storage.insert(shape)
# ## Iterate over geometry paths getting the nearest each time.
#optimized_paths = []
optimized_paths = FlatCAMRTreeStorage()
optimized_paths.get_points = get_pts
path_count = 0
current_pt = (0, 0)
pt, geo = storage.nearest(current_pt)
storage.remove(geo)
geo = LineString(geo)
current_pt = geo.coords[-1]
try:
while True:
path_count += 1
# log.debug("Path %d" % path_count)
pt, candidate = storage.nearest(current_pt)
storage.remove(candidate)
candidate = LineString(candidate)
# If last point in geometry is the nearest
# then reverse coordinates.
# but prefer the first one if last == first
if pt != candidate.coords[0] and pt == candidate.coords[-1]:
candidate.coords = list(candidate.coords)[::-1]
# Straight line from current_pt to pt.
# Is the toolpath inside the geometry?
walk_path = LineString([current_pt, pt])
walk_cut = walk_path.buffer(tooldia / 2, int(steps_per_circle / 4))
if walk_cut.within(boundary) and walk_path.length < max_walk:
# log.debug("Walk to path #%d is inside. Joining." % path_count)
# Completely inside. Append...
geo.coords = list(geo.coords) + list(candidate.coords)
# try:
# last = optimized_paths[-1]
# last.coords = list(last.coords) + list(geo.coords)
# except IndexError:
# optimized_paths.append(geo)
else:
# Have to lift tool. End path.
# log.debug("Path #%d not within boundary. Next." % path_count)
# optimized_paths.append(geo)
optimized_paths.insert(geo)
geo = candidate
current_pt = geo.coords[-1]
# Next
# pt, geo = storage.nearest(current_pt)
except StopIteration: # Nothing left in storage.
# pass
optimized_paths.insert(geo)
return optimized_paths
@staticmethod
def path_connect(storage, origin=(0, 0)):
"""
Simplifies paths in the FlatCAMRTreeStorage storage by
connecting paths that touch on their enpoints.
:param storage: Storage containing the initial paths.
:rtype storage: FlatCAMRTreeStorage
:return: Simplified storage.
:rtype: FlatCAMRTreeStorage
"""
log.debug("path_connect()")
# ## Index first and last points in paths
def get_pts(o):
return [o.coords[0], o.coords[-1]]
#
# storage = FlatCAMRTreeStorage()
# storage.get_points = get_pts
#
# for shape in pathlist:
# if shape is not None: # TODO: This shouldn't have happened.
# storage.insert(shape)
path_count = 0
pt, geo = storage.nearest(origin)
storage.remove(geo)
# optimized_geometry = [geo]
optimized_geometry = FlatCAMRTreeStorage()
optimized_geometry.get_points = get_pts
# optimized_geometry.insert(geo)
try:
while True:
path_count += 1
_, left = storage.nearest(geo.coords[0])
# If left touches geo, remove left from original
# storage and append to geo.
if type(left) == LineString:
if left.coords[0] == geo.coords[0]:
storage.remove(left)
geo.coords = list(geo.coords)[::-1] + list(left.coords)
continue
if left.coords[-1] == geo.coords[0]:
storage.remove(left)
geo.coords = list(left.coords) + list(geo.coords)
continue
if left.coords[0] == geo.coords[-1]:
storage.remove(left)
geo.coords = list(geo.coords) + list(left.coords)
continue
if left.coords[-1] == geo.coords[-1]:
storage.remove(left)
geo.coords = list(geo.coords) + list(left.coords)[::-1]
continue
_, right = storage.nearest(geo.coords[-1])
# If right touches geo, remove left from original
# storage and append to geo.
if type(right) == LineString:
if right.coords[0] == geo.coords[-1]:
storage.remove(right)
geo.coords = list(geo.coords) + list(right.coords)
continue
if right.coords[-1] == geo.coords[-1]:
storage.remove(right)
geo.coords = list(geo.coords) + list(right.coords)[::-1]
continue
if right.coords[0] == geo.coords[0]:
storage.remove(right)
geo.coords = list(geo.coords)[::-1] + list(right.coords)
continue
if right.coords[-1] == geo.coords[0]:
storage.remove(right)
geo.coords = list(left.coords) + list(geo.coords)
continue
# right is either a LinearRing or it does not connect
# to geo (nothing left to connect to geo), so we continue
# with right as geo.
storage.remove(right)
if type(right) == LinearRing:
optimized_geometry.insert(right)
else:
# Cannot extend geo any further. Put it away.
optimized_geometry.insert(geo)
# Continue with right.
geo = right
except StopIteration: # Nothing found in storage.
optimized_geometry.insert(geo)
# print path_count
log.debug("path_count = %d" % path_count)
return optimized_geometry
def convert_units(self, units):
"""
Converts the units of the object to ``units`` by scaling all
the geometry appropriately. This call ``scale()``. Don't call
it again in descendents.
:param units: "IN" or "MM"
:type units: str
:return: Scaling factor resulting from unit change.
:rtype: float
"""
log.debug("camlib.Geometry.convert_units()")
if units.upper() == self.units.upper():
return 1.0
if units.upper() == "MM":
factor = 25.4
elif units.upper() == "IN":
factor = 1 / 25.4
else:
log.error("Unsupported units: %s" % str(units))
return 1.0
self.units = units
self.scale(factor, factor)
self.file_units_factor = factor
return factor
def to_dict(self):
"""
Returns a representation of the object as a dictionary.
Attributes to include are listed in ``self.ser_attrs``.
:return: A dictionary-encoded copy of the object.
:rtype: dict
"""
d = {}
for attr in self.ser_attrs:
d[attr] = getattr(self, attr)
return d
def from_dict(self, d):
"""
Sets object's attributes from a dictionary.
Attributes to include are listed in ``self.ser_attrs``.
This method will look only for only and all the
attributes in ``self.ser_attrs``. They must all
be present. Use only for deserializing saved
objects.
:param d: Dictionary of attributes to set in the object.
:type d: dict
:return: None
"""
for attr in self.ser_attrs:
setattr(self, attr, d[attr])
def union(self):
"""
Runs a cascaded union on the list of objects in
solid_geometry.
:return: None
"""
self.solid_geometry = [cascaded_union(self.solid_geometry)]
def export_svg(self, scale_factor=0.00):
"""
Exports the Geometry Object as a SVG Element
:return: SVG Element
"""
# Make sure we see a Shapely Geometry class and not a list
if str(type(self)) == "<class 'FlatCAMObj.FlatCAMGeometry'>":
flat_geo = []
if self.multigeo:
for tool in self.tools:
flat_geo += self.flatten(self.tools[tool]['solid_geometry'])
geom = cascaded_union(flat_geo)
else:
geom = cascaded_union(self.flatten())
else:
geom = cascaded_union(self.flatten())
# scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
# If 0 or less which is invalid then default to 0.05
# This value appears to work for zooming, and getting the output svg line width
# to match that viewed on screen with FlatCam
# MS: I choose a factor of 0.01 so the scale is right for PCB UV film
if scale_factor <= 0:
scale_factor = 0.01
# Convert to a SVG
svg_elem = geom.svg(scale_factor=scale_factor)
return svg_elem
def mirror(self, axis, point):
"""
Mirrors the object around a specified axis passign through
the given point.
:param axis: "X" or "Y" indicates around which axis to mirror.
:type axis: str
:param point: [x, y] point belonging to the mirror axis.
:type point: list
:return: None
"""
log.debug("camlib.Geometry.mirror()")
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
def mirror_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(mirror_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.scale(obj, xscale, yscale, origin=(px, py))
except AttributeError:
return obj
try:
if self.multigeo is True:
for tool in self.tools:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.tools[tool]['solid_geometry']:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.tools[tool]['solid_geometry'] = mirror_geom(self.tools[tool]['solid_geometry'])
else:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.solid_geometry = mirror_geom(self.solid_geometry)
self.app.inform.emit('[success] %s...' %
_('Object was mirrored'))
except AttributeError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed to mirror. No object selected"))
self.app.proc_container.new_text = ''
def rotate(self, angle, point):
"""
Rotate an object by an angle (in degrees) around the provided coordinates.
Parameters
----------
The angle of rotation are specified in degrees (default). Positive angles are
counter-clockwise and negative are clockwise rotations.
The point of origin can be a keyword 'center' for the bounding box
center (default), 'centroid' for the geometry's centroid, a Point object
or a coordinate tuple (x0, y0).
See shapely manual for more information:
http://toblerity.org/shapely/manual.html#affine-transformations
"""
log.debug("camlib.Geometry.rotate()")
px, py = point
def rotate_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(rotate_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.rotate(obj, angle, origin=(px, py))
except AttributeError:
return obj
try:
if self.multigeo is True:
for tool in self.tools:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.tools[tool]['solid_geometry']:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'])
else:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.solid_geometry = rotate_geom(self.solid_geometry)
self.app.inform.emit('[success] %s...' %
_('Object was rotated'))
except AttributeError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed to rotate. No object selected"))
self.app.proc_container.new_text = ''
def skew(self, angle_x, angle_y, point):
"""
Shear/Skew the geometries of an object by angles along x and y dimensions.
Parameters
----------
angle_x, angle_y : float, float
The shear angle(s) for the x and y axes respectively. These can be
specified in either degrees (default) or radians by setting
use_radians=True.
point: tuple of coordinates (x,y)
See shapely manual for more information:
http://toblerity.org/shapely/manual.html#affine-transformations
"""
log.debug("camlib.Geometry.skew()")
px, py = point
def skew_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(skew_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
except AttributeError:
return obj
try:
if self.multigeo is True:
for tool in self.tools:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.tools[tool]['solid_geometry']:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.tools[tool]['solid_geometry'] = skew_geom(self.tools[tool]['solid_geometry'])
else:
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
self.solid_geometry = skew_geom(self.solid_geometry)
self.app.inform.emit('[success] %s...' %
_('Object was skewed'))
except AttributeError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed to skew. No object selected"))
self.app.proc_container.new_text = ''
# if type(self.solid_geometry) == list:
# self.solid_geometry = [affinity.skew(g, angle_x, angle_y, origin=(px, py))
# for g in self.solid_geometry]
# else:
# self.solid_geometry = affinity.skew(self.solid_geometry, angle_x, angle_y,
# origin=(px, py))
class ApertureMacro:
"""
Syntax of aperture macros.
<AM command>: AM<Aperture macro name>*<Macro content>
<Macro content>: {{<Variable definition>*}{<Primitive>*}}
<Variable definition>: $K=<Arithmetic expression>
<Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
<Modifier>: $M|< Arithmetic expression>
<Comment>: 0 <Text>
"""
# ## Regular expressions
am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
am2_re = re.compile(r'(.*)%$')
amcomm_re = re.compile(r'^0(.*)')
amprim_re = re.compile(r'^[1-9].*')
amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
def __init__(self, name=None):
self.name = name
self.raw = ""
# ## These below are recomputed for every aperture
# ## definition, in other words, are temporary variables.
self.primitives = []
self.locvars = {}
self.geometry = None
def to_dict(self):
"""
Returns the object in a serializable form. Only the name and
raw are required.
:return: Dictionary representing the object. JSON ready.
:rtype: dict
"""
return {
'name': self.name,
'raw': self.raw
}
def from_dict(self, d):
"""
Populates the object from a serial representation created
with ``self.to_dict()``.
:param d: Serial representation of an ApertureMacro object.
:return: None
"""
for attr in ['name', 'raw']:
setattr(self, attr, d[attr])
def parse_content(self):
"""
Creates numerical lists for all primitives in the aperture
macro (in ``self.raw``) by replacing all variables by their
values iteratively and evaluating expressions. Results
are stored in ``self.primitives``.
:return: None
"""
# Cleanup
self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
self.primitives = []
# Separate parts
parts = self.raw.split('*')
# ### Every part in the macro ####
for part in parts:
# ## Comments. Ignored.
match = ApertureMacro.amcomm_re.search(part)
if match:
continue
# ## Variables
# These are variables defined locally inside the macro. They can be
# numerical constant or defind in terms of previously define
# variables, which can be defined locally or in an aperture
# definition. All replacements ocurr here.
match = ApertureMacro.amvar_re.search(part)
if match:
var = match.group(1)
val = match.group(2)
# Replace variables in value
for v in self.locvars:
# replaced the following line with the next to fix Mentor custom apertures not parsed OK
# val = re.sub((r'\$'+str(v)+r'(?![0-9a-zA-Z])'), str(self.locvars[v]), val)
val = val.replace('$' + str(v), str(self.locvars[v]))
# Make all others 0
val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
# Change x with *
val = re.sub(r'[xX]', "*", val)
# Eval() and store.
self.locvars[var] = eval(val)
continue
# ## Primitives
# Each is an array. The first identifies the primitive, while the
# rest depend on the primitive. All are strings representing a
# number and may contain variable definition. The values of these
# variables are defined in an aperture definition.
match = ApertureMacro.amprim_re.search(part)
if match:
# ## Replace all variables
for v in self.locvars:
# replaced the following line with the next to fix Mentor custom apertures not parsed OK
# part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
part = part.replace('$' + str(v), str(self.locvars[v]))
# Make all others 0
part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
# Change x with *
part = re.sub(r'[xX]', "*", part)
# ## Store
elements = part.split(",")
self.primitives.append([eval(x) for x in elements])
continue
log.warning("Unknown syntax of aperture macro part: %s" % str(part))
def append(self, data):
"""
Appends a string to the raw macro.
:param data: Part of the macro.
:type data: str
:return: None
"""
self.raw += data
@staticmethod
def default2zero(n, mods):
"""
Pads the ``mods`` list with zeros resulting in an
list of length n.
:param n: Length of the resulting list.
:type n: int
:param mods: List to be padded.
:type mods: list
:return: Zero-padded list.
:rtype: list
"""
x = [0.0] * n
na = len(mods)
x[0:na] = mods
return x
@staticmethod
def make_circle(mods):
"""
:param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
:return:
"""
pol, dia, x, y = ApertureMacro.default2zero(4, mods)
return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
@staticmethod
def make_vectorline(mods):
"""
:param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
rotation angle around origin in degrees)
:return:
"""
pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
line = LineString([(xs, ys), (xe, ye)])
box = line.buffer(width/2, cap_style=2)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_centerline(mods):
"""
:param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
rotation angle around origin in degrees)
:return:
"""
pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_lowerleftline(mods):
"""
:param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
rotation angle around origin in degrees)
:return:
"""
pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
box = shply_box(x, y, x+width, y+height)
box_rotated = affinity.rotate(box, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": box_rotated}
@staticmethod
def make_outline(mods):
"""
:param mods:
:return:
"""
pol = mods[0]
n = mods[1]
points = [(0, 0)]*(n+1)
for i in range(n+1):
points[i] = mods[2*i + 2:2*i + 4]
angle = mods[2*n + 4]
poly = Polygon(points)
poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": poly_rotated}
@staticmethod
def make_polygon(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
diameter of circumscribed circle >=0, rotation angle around origin)
:return:
"""
pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
points = [(0, 0)]*nverts
for i in range(nverts):
points[i] = (x + 0.5 * dia * cos(2*pi * i/nverts),
y + 0.5 * dia * sin(2*pi * i/nverts))
poly = Polygon(points)
poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
return {"pol": int(pol), "geometry": poly_rotated}
@staticmethod
def make_moire(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
gap, max_rings, crosshair_thickness, crosshair_len, rotation
angle around origin in degrees)
:return:
"""
x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
r = dia/2 - thickness/2
result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
i = 1 # Number of rings created so far
# ## If the ring does not have an interior it means that it is
# ## a disk. Then stop.
while len(ring.interiors) > 0 and i < nrings:
r -= thickness + gap
if r <= 0:
break
ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
result = cascaded_union([result, ring])
i += 1
# ## Crosshair
hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
result = cascaded_union([result, hor, ver])
return {"pol": 1, "geometry": result}
@staticmethod
def make_thermal(mods):
"""
Note: Specs indicate that rotation is only allowed if the center
(x, y) == (0, 0). I will tolerate breaking this rule.
:param mods: [x-center, y-center, diameter-outside, diameter-inside,
gap-thickness, rotation angle around origin]
:return:
"""
x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
thermal = ring.difference(hline.union(vline))
return {"pol": 1, "geometry": thermal}
def make_geometry(self, modifiers):
"""
Runs the macro for the given modifiers and generates
the corresponding geometry.
:param modifiers: Modifiers (parameters) for this macro
:type modifiers: list
:return: Shapely geometry
:rtype: shapely.geometry.polygon
"""
# ## Primitive makers
makers = {
"1": ApertureMacro.make_circle,
"2": ApertureMacro.make_vectorline,
"20": ApertureMacro.make_vectorline,
"21": ApertureMacro.make_centerline,
"22": ApertureMacro.make_lowerleftline,
"4": ApertureMacro.make_outline,
"5": ApertureMacro.make_polygon,
"6": ApertureMacro.make_moire,
"7": ApertureMacro.make_thermal
}
# ## Store modifiers as local variables
modifiers = modifiers or []
modifiers = [float(m) for m in modifiers]
self.locvars = {}
for i in range(0, len(modifiers)):
self.locvars[str(i + 1)] = modifiers[i]
# ## Parse
self.primitives = [] # Cleanup
self.geometry = Polygon()
self.parse_content()
# ## Make the geometry
for primitive in self.primitives:
# Make the primitive
prim_geo = makers[str(int(primitive[0]))](primitive[1:])
# Add it (according to polarity)
# if self.geometry is None and prim_geo['pol'] == 1:
# self.geometry = prim_geo['geometry']
# continue
if prim_geo['pol'] == 1:
self.geometry = self.geometry.union(prim_geo['geometry'])
continue
if prim_geo['pol'] == 0:
self.geometry = self.geometry.difference(prim_geo['geometry'])
continue
return self.geometry
class Gerber (Geometry):
"""
Here it is done all the Gerber parsing.
**ATTRIBUTES**
* ``apertures`` (dict): The keys are names/identifiers of each aperture.
The values are dictionaries key/value pairs which describe the aperture. The
type key is always present and the rest depend on the key:
+-----------+-----------------------------------+
| Key | Value |
+===========+===================================+
| type | (str) "C", "R", "O", "P", or "AP" |
+-----------+-----------------------------------+
| others | Depend on ``type`` |
+-----------+-----------------------------------+
| solid_geometry | (list) |
+-----------+-----------------------------------+
* ``aperture_macros`` (dictionary): Are predefined geometrical structures
that can be instantiated with different parameters in an aperture
definition. See ``apertures`` above. The key is the name of the macro,
and the macro itself, the value, is a ``Aperture_Macro`` object.
* ``flash_geometry`` (list): List of (Shapely) geometric object resulting
from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
* ``buffered_paths`` (list): List of (Shapely) polygons resulting from
*buffering* (or thickening) the ``paths`` with the aperture. These are
generated from ``paths`` in ``buffer_paths()``.
**USAGE**::
g = Gerber()
g.parse_file(filename)
g.create_geometry()
do_something(s.solid_geometry)
"""
# defaults = {
# "steps_per_circle": 128,
# "use_buffer_for_union": True
# }
def __init__(self, steps_per_circle=None):
"""
The constructor takes no parameters. Use ``gerber.parse_files()``
or ``gerber.parse_lines()`` to populate the object from Gerber source.
:return: Gerber object
:rtype: Gerber
"""
# How to approximate a circle with lines.
self.steps_per_circle = int(self.app.defaults["gerber_circle_steps"])
# Initialize parent
Geometry.__init__(self, geo_steps_per_circle=int(self.app.defaults["gerber_circle_steps"]))
# Number format
self.int_digits = 3
"""Number of integer digits in Gerber numbers. Used during parsing."""
self.frac_digits = 4
"""Number of fraction digits in Gerber numbers. Used during parsing."""
self.gerber_zeros = 'L'
"""Zeros in Gerber numbers. If 'L' then remove leading zeros, if 'T' remove trailing zeros. Used during parsing.
"""
# ## Gerber elements # ##
'''
apertures = {
'id':{
'type':string,
'size':float,
'width':float,
'height':float,
'geometry': [],
}
}
apertures['geometry'] list elements are dicts
dict = {
'solid': [],
'follow': [],
'clear': []
}
'''
# store the file units here:
self.gerber_units = 'IN'
# aperture storage
self.apertures = {}
# Aperture Macros
self.aperture_macros = {}
# will store the Gerber geometry's as solids
self.solid_geometry = Polygon()
# will store the Gerber geometry's as paths
self.follow_geometry = []
# made True when the LPC command is encountered in Gerber parsing
# it allows adding data into the clear_geometry key of the self.apertures[aperture] dict
self.is_lpc = False
self.source_file = ''
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['int_digits', 'frac_digits', 'apertures',
'aperture_macros', 'solid_geometry', 'source_file']
# ### Parser patterns ## ##
# FS - Format Specification
# The format of X and Y must be the same!
# L-omit leading zeros, T-omit trailing zeros, D-no zero supression
# A-absolute notation, I-incremental notation
self.fmt_re = re.compile(r'%?FS([LTD])([AI])X(\d)(\d)Y\d\d\*%?$')
self.fmt_re_alt = re.compile(r'%FS([LT])([AI])X(\d)(\d)Y\d\d\*MO(IN|MM)\*%$')
self.fmt_re_orcad = re.compile(r'(G\d+)*\**%FS([LT])([AI]).*X(\d)(\d)Y\d\d\*%$')
# Mode (IN/MM)
self.mode_re = re.compile(r'^%?MO(IN|MM)\*%?$')
# Comment G04|G4
self.comm_re = re.compile(r'^G0?4(.*)$')
# AD - Aperture definition
# Aperture Macro names: Name = [a-zA-Z_.$]{[a-zA-Z_.0-9]+}
# NOTE: Adding "-" to support output from Upverter.
self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z_$\.][a-zA-Z0-9_$\.\-]*)(?:,(.*))?\*%$')
# AM - Aperture Macro
# Beginning of macro (Ends with *%):
# self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
# Tool change
# May begin with G54 but that is deprecated
self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
# G01... - Linear interpolation plus flashes with coordinates
# Operation code (D0x) missing is deprecated... oh well I will support it.
self.lin_re = re.compile(r'^(?:G0?(1))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))?[XY][^DIJ]*(?:D0?([123]))?\*$')
# Operation code alone, usually just D03 (Flash)
self.opcode_re = re.compile(r'^D0?([123])\*$')
# G02/3... - Circular interpolation with coordinates
# 2-clockwise, 3-counterclockwise
# Operation code (D0x) missing is deprecated... oh well I will support it.
# Optional start with G02 or G03, optional end with D01 or D02 with
# optional coordinates but at least one in any order.
self.circ_re = re.compile(r'^(?:G0?([23]))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))' +
'?(?=.*I([\+-]?\d+))?(?=.*J([\+-]?\d+))?[XYIJ][^D]*(?:D0([12]))?\*$')
# G01/2/3 Occurring without coordinates
self.interp_re = re.compile(r'^(?:G0?([123]))\*')
# Single G74 or multi G75 quadrant for circular interpolation
self.quad_re = re.compile(r'^G7([45]).*\*$')
# Region mode on
# In region mode, D01 starts a region
# and D02 ends it. A new region can be started again
# with D01. All contours must be closed before
# D02 or G37.
self.regionon_re = re.compile(r'^G36\*$')
# Region mode off
# Will end a region and come off region mode.
# All contours must be closed before D02 or G37.
self.regionoff_re = re.compile(r'^G37\*$')
# End of file
self.eof_re = re.compile(r'^M02\*')
# IP - Image polarity
self.pol_re = re.compile(r'^%?IP(POS|NEG)\*%?$')
# LP - Level polarity
self.lpol_re = re.compile(r'^%LP([DC])\*%$')
# Units (OBSOLETE)
self.units_re = re.compile(r'^G7([01])\*$')
# Absolute/Relative G90/1 (OBSOLETE)
self.absrel_re = re.compile(r'^G9([01])\*$')
# Aperture macros
self.am1_re = re.compile(r'^%AM([^\*]+)\*([^%]+)?(%)?$')
self.am2_re = re.compile(r'(.*)%$')
self.use_buffer_for_union = self.app.defaults["gerber_use_buffer_for_union"]
def aperture_parse(self, apertureId, apertureType, apParameters):
"""
Parse gerber aperture definition into dictionary of apertures.
The following kinds and their attributes are supported:
* *Circular (C)*: size (float)
* *Rectangle (R)*: width (float), height (float)
* *Obround (O)*: width (float), height (float).
* *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
* *Aperture Macro (AM)*: macro (ApertureMacro), modifiers (list)
:param apertureId: Id of the aperture being defined.
:param apertureType: Type of the aperture.
:param apParameters: Parameters of the aperture.
:type apertureId: str
:type apertureType: str
:type apParameters: str
:return: Identifier of the aperture.
:rtype: str
"""
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# Found some Gerber with a leading zero in the aperture id and the
# referenced it without the zero, so this is a hack to handle that.
apid = str(int(apertureId))
try: # Could be empty for aperture macros
paramList = apParameters.split('X')
except:
paramList = None
if apertureType == "C": # Circle, example: %ADD11C,0.1*%
self.apertures[apid] = {"type": "C",
"size": float(paramList[0])}
return apid
if apertureType == "R": # Rectangle, example: %ADD15R,0.05X0.12*%
self.apertures[apid] = {"type": "R",
"width": float(paramList[0]),
"height": float(paramList[1]),
"size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
return apid
if apertureType == "O": # Obround
self.apertures[apid] = {"type": "O",
"width": float(paramList[0]),
"height": float(paramList[1]),
"size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
return apid
if apertureType == "P": # Polygon (regular)
self.apertures[apid] = {"type": "P",
"diam": float(paramList[0]),
"nVertices": int(paramList[1]),
"size": float(paramList[0])} # Hack
if len(paramList) >= 3:
self.apertures[apid]["rotation"] = float(paramList[2])
return apid
if apertureType in self.aperture_macros:
self.apertures[apid] = {"type": "AM",
"macro": self.aperture_macros[apertureType],
"modifiers": paramList}
return apid
log.warning("Aperture not implemented: %s" % str(apertureType))
return None
def parse_file(self, filename, follow=False):
"""
Calls Gerber.parse_lines() with generator of lines
read from the given file. Will split the lines if multiple
statements are found in a single original line.
The following line is split into two::
G54D11*G36*
First is ``G54D11*`` and seconds is ``G36*``.
:param filename: Gerber file to parse.
:type filename: str
:param follow: If true, will not create polygons, just lines
following the gerber path.
:type follow: bool
:return: None
"""
with open(filename, 'r') as gfile:
def line_generator():
for line in gfile:
line = line.strip(' \r\n')
while len(line) > 0:
# If ends with '%' leave as is.
if line[-1] == '%':
yield line
break
# Split after '*' if any.
starpos = line.find('*')
if starpos > -1:
cleanline = line[:starpos + 1]
yield cleanline
line = line[starpos + 1:]
# Otherwise leave as is.
else:
# yield clean line
yield line
break
processed_lines = list(line_generator())
self.parse_lines(processed_lines)
# @profile
def parse_lines(self, glines):
"""
Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
``self.flashes``, ``self.regions`` and ``self.units``.
:param glines: Gerber code as list of strings, each element being
one line of the source file.
:type glines: list
:return: None
:rtype: None
"""
# Coordinates of the current path, each is [x, y]
path = []
# store the file units here:
self.gerber_units = 'IN'
# this is for temporary storage of solid geometry until it is added to poly_buffer
geo_s = None
# this is for temporary storage of follow geometry until it is added to follow_buffer
geo_f = None
# Polygons are stored here until there is a change in polarity.
# Only then they are combined via cascaded_union and added or
# subtracted from solid_geometry. This is ~100 times faster than
# applying a union for every new polygon.
poly_buffer = []
# store here the follow geometry
follow_buffer = []
last_path_aperture = None
current_aperture = None
# 1,2 or 3 from "G01", "G02" or "G03"
current_interpolation_mode = None
# 1 or 2 from "D01" or "D02"
# Note this is to support deprecated Gerber not putting
# an operation code at the end of every coordinate line.
current_operation_code = None
# Current coordinates
current_x = None
current_y = None
previous_x = None
previous_y = None
current_d = None
# Absolute or Relative/Incremental coordinates
# Not implemented
absolute = True
# How to interpret circular interpolation: SINGLE or MULTI
quadrant_mode = None
# Indicates we are parsing an aperture macro
current_macro = None
# Indicates the current polarity: D-Dark, C-Clear
current_polarity = 'D'
# If a region is being defined
making_region = False
# ### Parsing starts here ## ##
line_num = 0
gline = ""
s_tol = float(self.app.defaults["gerber_simp_tolerance"])
self.app.inform.emit('%s %d %s.' % (_("Gerber processing. Parsing"), len(glines), _("lines")))
try:
for gline in glines:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
line_num += 1
self.source_file += gline + '\n'
# Cleanup #
gline = gline.strip(' \r\n')
# log.debug("Line=%3s %s" % (line_num, gline))
# ###################
# Ignored lines #####
# Comments #####
# ###################
match = self.comm_re.search(gline)
if match:
continue
# Polarity change ###### ##
# Example: %LPD*% or %LPC*%
# If polarity changes, creates geometry from current
# buffer, then adds or subtracts accordingly.
match = self.lpol_re.search(gline)
if match:
new_polarity = match.group(1)
# log.info("Polarity CHANGE, LPC = %s, poly_buff = %s" % (self.is_lpc, poly_buffer))
self.is_lpc = True if new_polarity == 'C' else False
if len(path) > 1 and current_polarity != new_polarity:
# finish the current path and add it to the storage
# --- Buffered ----
width = self.apertures[last_path_aperture]["size"]
geo_dict = dict()
geo_f = LineString(path)
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
path = [path[-1]]
# --- Apply buffer ---
# If added for testing of bug #83
# TODO: Remove when bug fixed
if len(poly_buffer) > 0:
if current_polarity == 'D':
# self.follow_geometry = self.follow_geometry.union(cascaded_union(follow_buffer))
self.solid_geometry = self.solid_geometry.union(cascaded_union(poly_buffer))
else:
# self.follow_geometry = self.follow_geometry.difference(cascaded_union(follow_buffer))
self.solid_geometry = self.solid_geometry.difference(cascaded_union(poly_buffer))
# follow_buffer = []
poly_buffer = []
current_polarity = new_polarity
continue
# ############################################################# ##
# Number format ############################################### ##
# Example: %FSLAX24Y24*%
# ############################################################# ##
# TODO: This is ignoring most of the format. Implement the rest.
match = self.fmt_re.search(gline)
if match:
absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(2)]
self.gerber_zeros = match.group(1)
self.int_digits = int(match.group(3))
self.frac_digits = int(match.group(4))
log.debug("Gerber format found. (%s) " % str(gline))
log.debug(
"Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
"D-no zero supression)" % self.gerber_zeros)
log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
continue
# ## Mode (IN/MM)
# Example: %MOIN*%
match = self.mode_re.search(gline)
if match:
self.gerber_units = match.group(1)
log.debug("Gerber units found = %s" % self.gerber_units)
# Changed for issue #80
self.convert_units(match.group(1))
continue
# ############################################################# ##
# Combined Number format and Mode --- Allegro does this ####### ##
# ############################################################# ##
match = self.fmt_re_alt.search(gline)
if match:
absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(2)]
self.gerber_zeros = match.group(1)
self.int_digits = int(match.group(3))
self.frac_digits = int(match.group(4))
log.debug("Gerber format found. (%s) " % str(gline))
log.debug(
"Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
"D-no zero suppression)" % self.gerber_zeros)
log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
self.gerber_units = match.group(5)
log.debug("Gerber units found = %s" % self.gerber_units)
# Changed for issue #80
self.convert_units(match.group(5))
continue
# ############################################################# ##
# Search for OrCAD way for having Number format
# ############################################################# ##
match = self.fmt_re_orcad.search(gline)
if match:
if match.group(1) is not None:
if match.group(1) == 'G74':
quadrant_mode = 'SINGLE'
elif match.group(1) == 'G75':
quadrant_mode = 'MULTI'
absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(3)]
self.gerber_zeros = match.group(2)
self.int_digits = int(match.group(4))
self.frac_digits = int(match.group(5))
log.debug("Gerber format found. (%s) " % str(gline))
log.debug(
"Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
"D-no zerosuppressionn)" % self.gerber_zeros)
log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
self.gerber_units = match.group(1)
log.debug("Gerber units found = %s" % self.gerber_units)
# Changed for issue #80
self.convert_units(match.group(5))
continue
# ############################################################# ##
# Units (G70/1) OBSOLETE
# ############################################################# ##
match = self.units_re.search(gline)
if match:
obs_gerber_units = {'0': 'IN', '1': 'MM'}[match.group(1)]
log.warning("Gerber obsolete units found = %s" % obs_gerber_units)
# Changed for issue #80
self.convert_units({'0': 'IN', '1': 'MM'}[match.group(1)])
continue
# ############################################################# ##
# Absolute/relative coordinates G90/1 OBSOLETE ######## ##
# ##################################################### ##
match = self.absrel_re.search(gline)
if match:
absolute = {'0': "Absolute", '1': "Relative"}[match.group(1)]
log.warning("Gerber obsolete coordinates type found = %s (Absolute or Relative) " % absolute)
continue
# ############################################################# ##
# Aperture Macros ##################################### ##
# Having this at the beginning will slow things down
# but macros can have complicated statements than could
# be caught by other patterns.
# ############################################################# ##
if current_macro is None: # No macro started yet
match = self.am1_re.search(gline)
# Start macro if match, else not an AM, carry on.
if match:
log.debug("Starting macro. Line %d: %s" % (line_num, gline))
current_macro = match.group(1)
self.aperture_macros[current_macro] = ApertureMacro(name=current_macro)
if match.group(2): # Append
self.aperture_macros[current_macro].append(match.group(2))
if match.group(3): # Finish macro
# self.aperture_macros[current_macro].parse_content()
current_macro = None
log.debug("Macro complete in 1 line.")
continue
else: # Continue macro
log.debug("Continuing macro. Line %d." % line_num)
match = self.am2_re.search(gline)
if match: # Finish macro
log.debug("End of macro. Line %d." % line_num)
self.aperture_macros[current_macro].append(match.group(1))
# self.aperture_macros[current_macro].parse_content()
current_macro = None
else: # Append
self.aperture_macros[current_macro].append(gline)
continue
# ## Aperture definitions %ADD...
match = self.ad_re.search(gline)
if match:
# log.info("Found aperture definition. Line %d: %s" % (line_num, gline))
self.aperture_parse(match.group(1), match.group(2), match.group(3))
continue
# ############################################################# ##
# Operation code alone ###################### ##
# Operation code alone, usually just D03 (Flash)
# self.opcode_re = re.compile(r'^D0?([123])\*$')
# ############################################################# ##
match = self.opcode_re.search(gline)
if match:
current_operation_code = int(match.group(1))
current_d = current_operation_code
if current_operation_code == 3:
# --- Buffered ---
try:
log.debug("Bare op-code %d." % current_operation_code)
geo_dict = dict()
flash = self.create_flash_geometry(
Point(current_x, current_y), self.apertures[current_aperture],
self.steps_per_circle)
geo_dict['follow'] = Point([current_x, current_y])
if not flash.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(flash.simplify(s_tol))
else:
poly_buffer.append(flash)
if self.is_lpc is True:
geo_dict['clear'] = flash
else:
geo_dict['solid'] = flash
if current_aperture not in self.apertures:
self.apertures[current_aperture] = dict()
if 'geometry' not in self.apertures[current_aperture]:
self.apertures[current_aperture]['geometry'] = []
self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
except IndexError:
log.warning("Line %d: %s -> Nothing there to flash!" % (line_num, gline))
continue
# ############################################################# ##
# Tool/aperture change
# Example: D12*
# ############################################################# ##
match = self.tool_re.search(gline)
if match:
current_aperture = match.group(1)
# log.debug("Line %d: Aperture change to (%s)" % (line_num, current_aperture))
# If the aperture value is zero then make it something quite small but with a non-zero value
# so it can be processed by FlatCAM.
# But first test to see if the aperture type is "aperture macro". In that case
# we should not test for "size" key as it does not exist in this case.
if self.apertures[current_aperture]["type"] is not "AM":
if self.apertures[current_aperture]["size"] == 0:
self.apertures[current_aperture]["size"] = 1e-12
# log.debug(self.apertures[current_aperture])
# Take care of the current path with the previous tool
if len(path) > 1:
if self.apertures[last_path_aperture]["type"] == 'R':
# do nothing because 'R' type moving aperture is none at once
pass
else:
geo_dict = dict()
geo_f = LineString(path)
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# --- Buffered ----
width = self.apertures[last_path_aperture]["size"]
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
path = [path[-1]]
continue
# ############################################################# ##
# G36* - Begin region
# ############################################################# ##
if self.regionon_re.search(gline):
if len(path) > 1:
# Take care of what is left in the path
geo_dict = dict()
geo_f = LineString(path)
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# --- Buffered ----
width = self.apertures[last_path_aperture]["size"]
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
path = [path[-1]]
making_region = True
continue
# ############################################################# ##
# G37* - End region
# ############################################################# ##
if self.regionoff_re.search(gline):
making_region = False
if '0' not in self.apertures:
self.apertures['0'] = {}
self.apertures['0']['type'] = 'REG'
self.apertures['0']['size'] = 0.0
self.apertures['0']['geometry'] = []
# if D02 happened before G37 we now have a path with 1 element only; we have to add the current
# geo to the poly_buffer otherwise we loose it
if current_operation_code == 2:
if len(path) == 1:
# this means that the geometry was prepared previously and we just need to add it
geo_dict = dict()
if geo_f:
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
if geo_s:
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if geo_s or geo_f:
self.apertures['0']['geometry'].append(deepcopy(geo_dict))
path = [[current_x, current_y]] # Start new path
# Only one path defines region?
# This can happen if D02 happened before G37 and
# is not and error.
if len(path) < 3:
# print "ERROR: Path contains less than 3 points:"
# path = [[current_x, current_y]]
continue
# For regions we may ignore an aperture that is None
# --- Buffered ---
geo_dict = dict()
region_f = Polygon(path).exterior
if not region_f.is_empty:
follow_buffer.append(region_f)
geo_dict['follow'] = region_f
region_s = Polygon(path)
if not region_s.is_valid:
region_s = region_s.buffer(0, int(self.steps_per_circle / 4))
if not region_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(region_s.simplify(s_tol))
else:
poly_buffer.append(region_s)
if self.is_lpc is True:
geo_dict['clear'] = region_s
else:
geo_dict['solid'] = region_s
if not region_s.is_empty or not region_f.is_empty:
self.apertures['0']['geometry'].append(deepcopy(geo_dict))
path = [[current_x, current_y]] # Start new path
continue
# ## G01/2/3* - Interpolation mode change
# Can occur along with coordinates and operation code but
# sometimes by itself (handled here).
# Example: G01*
match = self.interp_re.search(gline)
if match:
current_interpolation_mode = int(match.group(1))
continue
# ## G01 - Linear interpolation plus flashes
# Operation code (D0x) missing is deprecated... oh well I will support it.
# REGEX: r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$'
match = self.lin_re.search(gline)
if match:
# Dxx alone?
# if match.group(1) is None and match.group(2) is None and match.group(3) is None:
# try:
# current_operation_code = int(match.group(4))
# except:
# pass # A line with just * will match too.
# continue
# NOTE: Letting it continue allows it to react to the
# operation code.
# Parse coordinates
if match.group(2) is not None:
linear_x = parse_gerber_number(match.group(2),
self.int_digits, self.frac_digits, self.gerber_zeros)
current_x = linear_x
else:
linear_x = current_x
if match.group(3) is not None:
linear_y = parse_gerber_number(match.group(3),
self.int_digits, self.frac_digits, self.gerber_zeros)
current_y = linear_y
else:
linear_y = current_y
# Parse operation code
if match.group(4) is not None:
current_operation_code = int(match.group(4))
# Pen down: add segment
if current_operation_code == 1:
# if linear_x or linear_y are None, ignore those
if current_x is not None and current_y is not None:
# only add the point if it's a new one otherwise skip it (harder to process)
if path[-1] != [current_x, current_y]:
path.append([current_x, current_y])
if making_region is False:
# if the aperture is rectangle then add a rectangular shape having as parameters the
# coordinates of the start and end point and also the width and height
# of the 'R' aperture
try:
if self.apertures[current_aperture]["type"] == 'R':
width = self.apertures[current_aperture]['width']
height = self.apertures[current_aperture]['height']
minx = min(path[0][0], path[1][0]) - width / 2
maxx = max(path[0][0], path[1][0]) + width / 2
miny = min(path[0][1], path[1][1]) - height / 2
maxy = max(path[0][1], path[1][1]) + height / 2
log.debug("Coords: %s - %s - %s - %s" % (minx, miny, maxx, maxy))
geo_dict = dict()
geo_f = Point([current_x, current_y])
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
geo_s = shply_box(minx, miny, maxx, maxy)
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if current_aperture not in self.apertures:
self.apertures[current_aperture] = dict()
if 'geometry' not in self.apertures[current_aperture]:
self.apertures[current_aperture]['geometry'] = []
self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
except Exception as e:
pass
last_path_aperture = current_aperture
# we do this for the case that a region is done without having defined any aperture
if last_path_aperture is None:
if '0' not in self.apertures:
self.apertures['0'] = {}
self.apertures['0']['type'] = 'REG'
self.apertures['0']['size'] = 0.0
self.apertures['0']['geometry'] = []
last_path_aperture = '0'
else:
self.app.inform.emit('[WARNING] %s: %s' %
(_("Coordinates missing, line ignored"), str(gline)))
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("GERBER file might be CORRUPT. Check the file !!!"))
elif current_operation_code == 2:
if len(path) > 1:
geo_s = None
geo_f = None
geo_dict = dict()
# --- BUFFERED ---
# this treats the case when we are storing geometry as paths only
if making_region:
# we do this for the case that a region is done without having defined any aperture
if last_path_aperture is None:
if '0' not in self.apertures:
self.apertures['0'] = {}
self.apertures['0']['type'] = 'REG'
self.apertures['0']['size'] = 0.0
self.apertures['0']['geometry'] = []
last_path_aperture = '0'
geo_f = Polygon()
else:
geo_f = LineString(path)
try:
if self.apertures[last_path_aperture]["type"] != 'R':
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
except Exception as e:
log.debug("camlib.Gerber.parse_lines() --> %s" % str(e))
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# this treats the case when we are storing geometry as solids
if making_region:
# we do this for the case that a region is done without having defined any aperture
if last_path_aperture is None:
if '0' not in self.apertures:
self.apertures['0'] = {}
self.apertures['0']['type'] = 'REG'
self.apertures['0']['size'] = 0.0
self.apertures['0']['geometry'] = []
last_path_aperture = '0'
try:
geo_s = Polygon(path)
except ValueError:
log.warning("Problem %s %s" % (gline, line_num))
self.app.inform.emit('[ERROR] %s: %s' %
(_("Region does not have enough points. "
"File will be processed but there are parser errors. "
"Line number"), str(line_num)))
else:
if last_path_aperture is None:
log.warning("No aperture defined for curent path. (%d)" % line_num)
width = self.apertures[last_path_aperture]["size"] # TODO: WARNING this should fail!
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
try:
if self.apertures[last_path_aperture]["type"] != 'R':
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
except Exception as e:
log.debug("camlib.Gerber.parse_lines() --> %s" % str(e))
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
# if linear_x or linear_y are None, ignore those
if linear_x is not None and linear_y is not None:
path = [[linear_x, linear_y]] # Start new path
else:
self.app.inform.emit('[WARNING] %s: %s' %
(_("Coordinates missing, line ignored"), str(gline)))
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("GERBER file might be CORRUPT. Check the file !!!"))
# Flash
# Not allowed in region mode.
elif current_operation_code == 3:
# Create path draw so far.
if len(path) > 1:
# --- Buffered ----
geo_dict = dict()
# this treats the case when we are storing geometry as paths
geo_f = LineString(path)
if not geo_f.is_empty:
try:
if self.apertures[last_path_aperture]["type"] != 'R':
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
except Exception as e:
log.debug("camlib.Gerber.parse_lines() --> G01 match D03 --> %s" % str(e))
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# this treats the case when we are storing geometry as solids
width = self.apertures[last_path_aperture]["size"]
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
if not geo_s.is_empty:
try:
if self.apertures[last_path_aperture]["type"] != 'R':
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
except:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
# Reset path starting point
path = [[linear_x, linear_y]]
# --- BUFFERED ---
# Draw the flash
# this treats the case when we are storing geometry as paths
geo_dict = dict()
geo_flash = Point([linear_x, linear_y])
follow_buffer.append(geo_flash)
geo_dict['follow'] = geo_flash
# this treats the case when we are storing geometry as solids
flash = self.create_flash_geometry(
Point([linear_x, linear_y]),
self.apertures[current_aperture],
self.steps_per_circle
)
if not flash.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(flash.simplify(s_tol))
else:
poly_buffer.append(flash)
if self.is_lpc is True:
geo_dict['clear'] = flash
else:
geo_dict['solid'] = flash
if current_aperture not in self.apertures:
self.apertures[current_aperture] = dict()
if 'geometry' not in self.apertures[current_aperture]:
self.apertures[current_aperture]['geometry'] = []
self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
# maybe those lines are not exactly needed but it is easier to read the program as those coordinates
# are used in case that circular interpolation is encountered within the Gerber file
current_x = linear_x
current_y = linear_y
# log.debug("Line_number=%3s X=%s Y=%s (%s)" % (line_num, linear_x, linear_y, gline))
continue
# ## G74/75* - Single or multiple quadrant arcs
match = self.quad_re.search(gline)
if match:
if match.group(1) == '4':
quadrant_mode = 'SINGLE'
else:
quadrant_mode = 'MULTI'
continue
# ## G02/3 - Circular interpolation
# 2-clockwise, 3-counterclockwise
# Ex. format: G03 X0 Y50 I-50 J0 where the X, Y coords are the coords of the End Point
match = self.circ_re.search(gline)
if match:
arcdir = [None, None, "cw", "ccw"]
mode, circular_x, circular_y, i, j, d = match.groups()
try:
circular_x = parse_gerber_number(circular_x,
self.int_digits, self.frac_digits, self.gerber_zeros)
except:
circular_x = current_x
try:
circular_y = parse_gerber_number(circular_y,
self.int_digits, self.frac_digits, self.gerber_zeros)
except:
circular_y = current_y
# According to Gerber specification i and j are not modal, which means that when i or j are missing,
# they are to be interpreted as being zero
try:
i = parse_gerber_number(i, self.int_digits, self.frac_digits, self.gerber_zeros)
except:
i = 0
try:
j = parse_gerber_number(j, self.int_digits, self.frac_digits, self.gerber_zeros)
except:
j = 0
if quadrant_mode is None:
log.error("Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num)
log.error(gline)
continue
if mode is None and current_interpolation_mode not in [2, 3]:
log.error("Found arc without circular interpolation mode defined. (%d)" % line_num)
log.error(gline)
continue
elif mode is not None:
current_interpolation_mode = int(mode)
# Set operation code if provided
if d is not None:
current_operation_code = int(d)
# Nothing created! Pen Up.
if current_operation_code == 2:
log.warning("Arc with D2. (%d)" % line_num)
if len(path) > 1:
geo_dict = dict()
if last_path_aperture is None:
log.warning("No aperture defined for curent path. (%d)" % line_num)
# --- BUFFERED ---
width = self.apertures[last_path_aperture]["size"]
# this treats the case when we are storing geometry as paths
geo_f = LineString(path)
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# this treats the case when we are storing geometry as solids
buffered = LineString(path).buffer(width / 1.999, int(self.steps_per_circle))
if not buffered.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(buffered.simplify(s_tol))
else:
poly_buffer.append(buffered)
if self.is_lpc is True:
geo_dict['clear'] = buffered
else:
geo_dict['solid'] = buffered
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
current_x = circular_x
current_y = circular_y
path = [[current_x, current_y]] # Start new path
continue
# Flash should not happen here
if current_operation_code == 3:
log.error("Trying to flash within arc. (%d)" % line_num)
continue
if quadrant_mode == 'MULTI':
center = [i + current_x, j + current_y]
radius = sqrt(i ** 2 + j ** 2)
start = arctan2(-j, -i) # Start angle
# Numerical errors might prevent start == stop therefore
# we check ahead of time. This should result in a
# 360 degree arc.
if current_x == circular_x and current_y == circular_y:
stop = start
else:
stop = arctan2(-center[1] + circular_y, -center[0] + circular_x) # Stop angle
this_arc = arc(center, radius, start, stop,
arcdir[current_interpolation_mode],
self.steps_per_circle)
# The last point in the computed arc can have
# numerical errors. The exact final point is the
# specified (x, y). Replace.
this_arc[-1] = (circular_x, circular_y)
# Last point in path is current point
# current_x = this_arc[-1][0]
# current_y = this_arc[-1][1]
current_x, current_y = circular_x, circular_y
# Append
path += this_arc
last_path_aperture = current_aperture
continue
if quadrant_mode == 'SINGLE':
center_candidates = [
[i + current_x, j + current_y],
[-i + current_x, j + current_y],
[i + current_x, -j + current_y],
[-i + current_x, -j + current_y]
]
valid = False
log.debug("I: %f J: %f" % (i, j))
for center in center_candidates:
radius = sqrt(i ** 2 + j ** 2)
# Make sure radius to start is the same as radius to end.
radius2 = sqrt((center[0] - circular_x) ** 2 + (center[1] - circular_y) ** 2)
if radius2 < radius * 0.95 or radius2 > radius * 1.05:
continue # Not a valid center.
# Correct i and j and continue as with multi-quadrant.
i = center[0] - current_x
j = center[1] - current_y
start = arctan2(-j, -i) # Start angle
stop = arctan2(-center[1] + circular_y, -center[0] + circular_x) # Stop angle
angle = abs(arc_angle(start, stop, arcdir[current_interpolation_mode]))
log.debug("ARC START: %f, %f CENTER: %f, %f STOP: %f, %f" %
(current_x, current_y, center[0], center[1], circular_x, circular_y))
log.debug("START Ang: %f, STOP Ang: %f, DIR: %s, ABS: %.12f <= %.12f: %s" %
(start * 180 / pi, stop * 180 / pi, arcdir[current_interpolation_mode],
angle * 180 / pi, pi / 2 * 180 / pi, angle <= (pi + 1e-6) / 2))
if angle <= (pi + 1e-6) / 2:
log.debug("########## ACCEPTING ARC ############")
this_arc = arc(center, radius, start, stop,
arcdir[current_interpolation_mode],
self.steps_per_circle)
# Replace with exact values
this_arc[-1] = (circular_x, circular_y)
# current_x = this_arc[-1][0]
# current_y = this_arc[-1][1]
current_x, current_y = circular_x, circular_y
path += this_arc
last_path_aperture = current_aperture
valid = True
break
if valid:
continue
else:
log.warning("Invalid arc in line %d." % line_num)
# ## EOF
match = self.eof_re.search(gline)
if match:
continue
# ## Line did not match any pattern. Warn user.
log.warning("Line ignored (%d): %s" % (line_num, gline))
if len(path) > 1:
# In case that G01 (moving) aperture is rectangular, there is no need to still create
# another geo since we already created a shapely box using the start and end coordinates found in
# path variable. We do it only for other apertures than 'R' type
if self.apertures[last_path_aperture]["type"] == 'R':
pass
else:
# EOF, create shapely LineString if something still in path
# ## --- Buffered ---
geo_dict = dict()
# this treats the case when we are storing geometry as paths
geo_f = LineString(path)
if not geo_f.is_empty:
follow_buffer.append(geo_f)
geo_dict['follow'] = geo_f
# this treats the case when we are storing geometry as solids
width = self.apertures[last_path_aperture]["size"]
geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
if not geo_s.is_empty:
if self.app.defaults['gerber_simplification']:
poly_buffer.append(geo_s.simplify(s_tol))
else:
poly_buffer.append(geo_s)
if self.is_lpc is True:
geo_dict['clear'] = geo_s
else:
geo_dict['solid'] = geo_s
if last_path_aperture not in self.apertures:
self.apertures[last_path_aperture] = dict()
if 'geometry' not in self.apertures[last_path_aperture]:
self.apertures[last_path_aperture]['geometry'] = []
self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
# TODO: make sure to keep track of units changes because right now it seems to happen in a weird way
# find out the conversion factor used to convert inside the self.apertures keys: size, width, height
file_units = self.gerber_units if self.gerber_units else 'IN'
app_units = self.app.defaults['units']
conversion_factor = 25.4 if file_units == 'IN' else (1/25.4) if file_units != app_units else 1
# --- Apply buffer ---
# this treats the case when we are storing geometry as paths
self.follow_geometry = follow_buffer
# this treats the case when we are storing geometry as solids
if len(poly_buffer) == 0:
log.error("Object is not Gerber file or empty. Aborting Object creation.")
return 'fail'
log.warning("Joining %d polygons." % len(poly_buffer))
self.app.inform.emit('%s %d %s.' % (_("Gerber processing. Joining"), len(poly_buffer), _("polygons")))
if self.use_buffer_for_union:
log.debug("Union by buffer...")
new_poly = MultiPolygon(poly_buffer)
if self.app.defaults["gerber_buffering"] == 'full':
new_poly = new_poly.buffer(0.00000001)
new_poly = new_poly.buffer(-0.00000001)
log.warning("Union(buffer) done.")
else:
log.debug("Union by union()...")
new_poly = cascaded_union(poly_buffer)
new_poly = new_poly.buffer(0, int(self.steps_per_circle / 4))
log.warning("Union done.")
if current_polarity == 'D':
self.app.inform.emit('%s' % _("Gerber processing. Applying Gerber polarity."))
if new_poly.is_valid:
self.solid_geometry = self.solid_geometry.union(new_poly)
else:
# I do this so whenever the parsed geometry of the file is not valid (intersections) it is still
# loaded. Instead of applying a union I add to a list of polygons.
final_poly = []
try:
for poly in new_poly:
final_poly.append(poly)
except TypeError:
final_poly.append(new_poly)
try:
for poly in self.solid_geometry:
final_poly.append(poly)
except TypeError:
final_poly.append(self.solid_geometry)
self.solid_geometry = final_poly
# try:
# self.solid_geometry = self.solid_geometry.union(new_poly)
# except Exception as e:
# # in case in the new_poly are some self intersections try to avoid making union with them
# for poly in new_poly:
# try:
# self.solid_geometry = self.solid_geometry.union(poly)
# except:
# pass
else:
self.solid_geometry = self.solid_geometry.difference(new_poly)
except Exception as err:
ex_type, ex, tb = sys.exc_info()
traceback.print_tb(tb)
# print traceback.format_exc()
log.error("Gerber PARSING FAILED. Line %d: %s" % (line_num, gline))
loc = '%s #%d %s: %s\n' % (_("Gerber Line"), line_num, _("Gerber Line Content"), gline) + repr(err)
self.app.inform.emit('[ERROR] %s\n%s:' %
(_("Gerber Parser ERROR"), loc))
@staticmethod
def create_flash_geometry(location, aperture, steps_per_circle=None):
# log.debug('Flashing @%s, Aperture: %s' % (location, aperture))
if type(location) == list:
location = Point(location)
if aperture['type'] == 'C': # Circles
return location.buffer(aperture['size'] / 2, int(steps_per_circle / 4))
if aperture['type'] == 'R': # Rectangles
loc = location.coords[0]
width = aperture['width']
height = aperture['height']
minx = loc[0] - width / 2
maxx = loc[0] + width / 2
miny = loc[1] - height / 2
maxy = loc[1] + height / 2
return shply_box(minx, miny, maxx, maxy)
if aperture['type'] == 'O': # Obround
loc = location.coords[0]
width = aperture['width']
height = aperture['height']
if width > height:
p1 = Point(loc[0] + 0.5 * (width - height), loc[1])
p2 = Point(loc[0] - 0.5 * (width - height), loc[1])
c1 = p1.buffer(height * 0.5, int(steps_per_circle / 4))
c2 = p2.buffer(height * 0.5, int(steps_per_circle / 4))
else:
p1 = Point(loc[0], loc[1] + 0.5 * (height - width))
p2 = Point(loc[0], loc[1] - 0.5 * (height - width))
c1 = p1.buffer(width * 0.5, int(steps_per_circle / 4))
c2 = p2.buffer(width * 0.5, int(steps_per_circle / 4))
return cascaded_union([c1, c2]).convex_hull
if aperture['type'] == 'P': # Regular polygon
loc = location.coords[0]
diam = aperture['diam']
n_vertices = aperture['nVertices']
points = []
for i in range(0, n_vertices):
x = loc[0] + 0.5 * diam * (cos(2 * pi * i / n_vertices))
y = loc[1] + 0.5 * diam * (sin(2 * pi * i / n_vertices))
points.append((x, y))
ply = Polygon(points)
if 'rotation' in aperture:
ply = affinity.rotate(ply, aperture['rotation'])
return ply
if aperture['type'] == 'AM': # Aperture Macro
loc = location.coords[0]
flash_geo = aperture['macro'].make_geometry(aperture['modifiers'])
if flash_geo.is_empty:
log.warning("Empty geometry for Aperture Macro: %s" % str(aperture['macro'].name))
return affinity.translate(flash_geo, xoff=loc[0], yoff=loc[1])
log.warning("Unknown aperture type: %s" % aperture['type'])
return None
def create_geometry(self):
"""
Geometry from a Gerber file is made up entirely of polygons.
Every stroke (linear or circular) has an aperture which gives
it thickness. Additionally, aperture strokes have non-zero area,
and regions naturally do as well.
:rtype : None
:return: None
"""
pass
# self.buffer_paths()
#
# self.fix_regions()
#
# self.do_flashes()
#
# self.solid_geometry = cascaded_union(self.buffered_paths +
# [poly['polygon'] for poly in self.regions] +
# self.flash_geometry)
def get_bounding_box(self, margin=0.0, rounded=False):
"""
Creates and returns a rectangular polygon bounding at a distance of
margin from the object's ``solid_geometry``. If margin > 0, the polygon
can optionally have rounded corners of radius equal to margin.
:param margin: Distance to enlarge the rectangular bounding
box in both positive and negative, x and y axes.
:type margin: float
:param rounded: Wether or not to have rounded corners.
:type rounded: bool
:return: The bounding box.
:rtype: Shapely.Polygon
"""
bbox = self.solid_geometry.envelope.buffer(margin)
if not rounded:
bbox = bbox.envelope
return bbox
def bounds(self):
"""
Returns coordinates of rectangular bounds
of Gerber geometry: (xmin, ymin, xmax, ymax).
"""
# fixed issue of getting bounds only for one level lists of objects
# now it can get bounds for nested lists of objects
log.debug("camlib.Gerber.bounds()")
if self.solid_geometry is None:
log.debug("solid_geometry is None")
return 0, 0, 0, 0
def bounds_rec(obj):
if type(obj) is list and type(obj) is not MultiPolygon:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in obj:
if type(k) is dict:
for key in k:
minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
else:
if not k.is_empty:
try:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
except Exception as e:
log.debug("camlib.Gerber.bounds() --> %s" % str(e))
return
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
return obj.bounds
bounds_coords = bounds_rec(self.solid_geometry)
return bounds_coords
def scale(self, xfactor, yfactor=None, point=None):
"""
Scales the objects' geometry on the XY plane by a given factor.
These are:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param xfactor: Number by which to scale on X axis.
:type xfactor: float
:param yfactor: Number by which to scale on Y axis.
:type yfactor: float
:rtype : None
"""
log.debug("camlib.Gerber.scale()")
try:
xfactor = float(xfactor)
except:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Scale factor has to be a number: integer or float."))
return
if yfactor is None:
yfactor = xfactor
else:
try:
yfactor = float(yfactor)
except:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Scale factor has to be a number: integer or float."))
return
if point is None:
px = 0
py = 0
else:
px, py = point
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
def scale_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(scale_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.scale(obj, xfactor, yfactor, origin=(px, py))
except AttributeError:
return obj
self.solid_geometry = scale_geom(self.solid_geometry)
self.follow_geometry = scale_geom(self.follow_geometry)
# we need to scale the geometry stored in the Gerber apertures, too
try:
for apid in self.apertures:
if 'geometry' in self.apertures[apid]:
for geo_el in self.apertures[apid]['geometry']:
if 'solid' in geo_el:
geo_el['solid'] = scale_geom(geo_el['solid'])
if 'follow' in geo_el:
geo_el['follow'] = scale_geom(geo_el['follow'])
if 'clear' in geo_el:
geo_el['clear'] = scale_geom(geo_el['clear'])
except Exception as e:
log.debug('camlib.Gerber.scale() Exception --> %s' % str(e))
return 'fail'
self.app.inform.emit('[success] %s' %
_("Gerber Scale done."))
self.app.proc_container.new_text = ''
# ## solid_geometry ???
# It's a cascaded union of objects.
# self.solid_geometry = affinity.scale(self.solid_geometry, factor,
# factor, origin=(0, 0))
# # Now buffered_paths, flash_geometry and solid_geometry
# self.create_geometry()
def offset(self, vect):
"""
Offsets the objects' geometry on the XY plane by a given vector.
These are:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
log.debug("camlib.Gerber.offset()")
try:
dx, dy = vect
except TypeError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("An (x,y) pair of values are needed. "
"Probable you entered only one value in the Offset field."))
return
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
def offset_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(offset_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.translate(obj, xoff=dx, yoff=dy)
except AttributeError:
return obj
# ## Solid geometry
self.solid_geometry = offset_geom(self.solid_geometry)
self.follow_geometry = offset_geom(self.follow_geometry)
# we need to offset the geometry stored in the Gerber apertures, too
try:
for apid in self.apertures:
if 'geometry' in self.apertures[apid]:
for geo_el in self.apertures[apid]['geometry']:
if 'solid' in geo_el:
geo_el['solid'] = offset_geom(geo_el['solid'])
if 'follow' in geo_el:
geo_el['follow'] = offset_geom(geo_el['follow'])
if 'clear' in geo_el:
geo_el['clear'] = offset_geom(geo_el['clear'])
except Exception as e:
log.debug('camlib.Gerber.offset() Exception --> %s' % str(e))
return 'fail'
self.app.inform.emit('[success] %s' %
_("Gerber Offset done."))
self.app.proc_container.new_text = ''
def mirror(self, axis, point):
"""
Mirrors the object around a specified axis passing through
the given point. What is affected:
* ``buffered_paths``
* ``flash_geometry``
* ``solid_geometry``
* ``regions``
NOTE:
Does not modify the data used to create these elements. If these
are recreated, the scaling will be lost. This behavior was modified
because of the complexity reached in this class.
:param axis: "X" or "Y" indicates around which axis to mirror.
:type axis: str
:param point: [x, y] point belonging to the mirror axis.
:type point: list
:return: None
"""
log.debug("camlib.Gerber.mirror()")
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
def mirror_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(mirror_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.scale(obj, xscale, yscale, origin=(px, py))
except AttributeError:
return obj
self.solid_geometry = mirror_geom(self.solid_geometry)
self.follow_geometry = mirror_geom(self.follow_geometry)
# we need to mirror the geometry stored in the Gerber apertures, too
try:
for apid in self.apertures:
if 'geometry' in self.apertures[apid]:
for geo_el in self.apertures[apid]['geometry']:
if 'solid' in geo_el:
geo_el['solid'] = mirror_geom(geo_el['solid'])
if 'follow' in geo_el:
geo_el['follow'] = mirror_geom(geo_el['follow'])
if 'clear' in geo_el:
geo_el['clear'] = mirror_geom(geo_el['clear'])
except Exception as e:
log.debug('camlib.Gerber.mirror() Exception --> %s' % str(e))
return 'fail'
self.app.inform.emit('[success] %s' %
_("Gerber Mirror done."))
self.app.proc_container.new_text = ''
def skew(self, angle_x, angle_y, point):
"""
Shear/Skew the geometries of an object by angles along x and y dimensions.
Parameters
----------
angle_x, angle_y : float, float
The shear angle(s) for the x and y axes respectively. These can be
specified in either degrees (default) or radians by setting
use_radians=True.
See shapely manual for more information:
http://toblerity.org/shapely/manual.html#affine-transformations
"""
log.debug("camlib.Gerber.skew()")
px, py = point
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
def skew_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(skew_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
except AttributeError:
return obj
self.solid_geometry = skew_geom(self.solid_geometry)
self.follow_geometry = skew_geom(self.follow_geometry)
# we need to skew the geometry stored in the Gerber apertures, too
try:
for apid in self.apertures:
if 'geometry' in self.apertures[apid]:
for geo_el in self.apertures[apid]['geometry']:
if 'solid' in geo_el:
geo_el['solid'] = skew_geom(geo_el['solid'])
if 'follow' in geo_el:
geo_el['follow'] = skew_geom(geo_el['follow'])
if 'clear' in geo_el:
geo_el['clear'] = skew_geom(geo_el['clear'])
except Exception as e:
log.debug('camlib.Gerber.skew() Exception --> %s' % str(e))
return 'fail'
self.app.inform.emit('[success] %s' %
_("Gerber Skew done."))
self.app.proc_container.new_text = ''
def rotate(self, angle, point):
"""
Rotate an object by a given angle around given coords (point)
:param angle:
:param point:
:return:
"""
log.debug("camlib.Gerber.rotate()")
px, py = point
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.solid_geometry:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
def rotate_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(rotate_geom(g))
return new_obj
else:
try:
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
return affinity.rotate(obj, angle, origin=(px, py))
except AttributeError:
return obj
self.solid_geometry = rotate_geom(self.solid_geometry)
self.follow_geometry = rotate_geom(self.follow_geometry)
# we need to rotate the geometry stored in the Gerber apertures, too
try:
for apid in self.apertures:
if 'geometry' in self.apertures[apid]:
for geo_el in self.apertures[apid]['geometry']:
if 'solid' in geo_el:
geo_el['solid'] = rotate_geom(geo_el['solid'])
if 'follow' in geo_el:
geo_el['follow'] = rotate_geom(geo_el['follow'])
if 'clear' in geo_el:
geo_el['clear'] = rotate_geom(geo_el['clear'])
except Exception as e:
log.debug('camlib.Gerber.rotate() Exception --> %s' % str(e))
return 'fail'
self.app.inform.emit('[success] %s' %
_("Gerber Rotate done."))
self.app.proc_container.new_text = ''
class Excellon(Geometry):
"""
Here it is done all the Excellon parsing.
*ATTRIBUTES*
* ``tools`` (dict): The key is the tool name and the value is
a dictionary specifying the tool:
================ ====================================
Key Value
================ ====================================
C Diameter of the tool
solid_geometry Geometry list for each tool
Others Not supported (Ignored).
================ ====================================
* ``drills`` (list): Each is a dictionary:
================ ====================================
Key Value
================ ====================================
point (Shapely.Point) Where to drill
tool (str) A key in ``tools``
================ ====================================
* ``slots`` (list): Each is a dictionary
================ ====================================
Key Value
================ ====================================
start (Shapely.Point) Start point of the slot
stop (Shapely.Point) Stop point of the slot
tool (str) A key in ``tools``
================ ====================================
"""
defaults = {
"zeros": "L",
"excellon_format_upper_mm": '3',
"excellon_format_lower_mm": '3',
"excellon_format_upper_in": '2',
"excellon_format_lower_in": '4',
"excellon_units": 'INCH',
"geo_steps_per_circle": '64'
}
def __init__(self, zeros=None, excellon_format_upper_mm=None, excellon_format_lower_mm=None,
excellon_format_upper_in=None, excellon_format_lower_in=None, excellon_units=None,
geo_steps_per_circle=None):
"""
The constructor takes no parameters.
:return: Excellon object.
:rtype: Excellon
"""
if geo_steps_per_circle is None:
geo_steps_per_circle = int(Excellon.defaults['geo_steps_per_circle'])
self.geo_steps_per_circle = int(geo_steps_per_circle)
Geometry.__init__(self, geo_steps_per_circle=int(geo_steps_per_circle))
# dictionary to store tools, see above for description
self.tools = {}
# list to store the drills, see above for description
self.drills = []
# self.slots (list) to store the slots; each is a dictionary
self.slots = []
self.source_file = ''
# it serve to flag if a start routing or a stop routing was encountered
# if a stop is encounter and this flag is still 0 (so there is no stop for a previous start) issue error
self.routing_flag = 1
self.match_routing_start = None
self.match_routing_stop = None
self.num_tools = [] # List for keeping the tools sorted
self.index_per_tool = {} # Dictionary to store the indexed points for each tool
# ## IN|MM -> Units are inherited from Geometry
#self.units = units
# Trailing "T" or leading "L" (default)
#self.zeros = "T"
self.zeros = zeros or self.defaults["zeros"]
self.zeros_found = self.zeros
self.units_found = self.units
# this will serve as a default if the Excellon file has no info regarding of tool diameters (this info may be
# in another file like for PCB WIzard ECAD software
self.toolless_diam = 1.0
# signal that the Excellon file has no tool diameter informations and the tools have bogus (random) diameter
self.diameterless = False
# Excellon format
self.excellon_format_upper_in = excellon_format_upper_in or self.defaults["excellon_format_upper_in"]
self.excellon_format_lower_in = excellon_format_lower_in or self.defaults["excellon_format_lower_in"]
self.excellon_format_upper_mm = excellon_format_upper_mm or self.defaults["excellon_format_upper_mm"]
self.excellon_format_lower_mm = excellon_format_lower_mm or self.defaults["excellon_format_lower_mm"]
self.excellon_units = excellon_units or self.defaults["excellon_units"]
# detected Excellon format is stored here:
self.excellon_format = None
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['tools', 'drills', 'zeros', 'excellon_format_upper_mm', 'excellon_format_lower_mm',
'excellon_format_upper_in', 'excellon_format_lower_in', 'excellon_units', 'slots',
'source_file']
# ### Patterns ####
# Regex basics:
# ^ - beginning
# $ - end
# *: 0 or more, +: 1 or more, ?: 0 or 1
# M48 - Beginning of Part Program Header
self.hbegin_re = re.compile(r'^M48$')
# ;HEADER - Beginning of Allegro Program Header
self.allegro_hbegin_re = re.compile(r'\;\s*(HEADER)')
# M95 or % - End of Part Program Header
# NOTE: % has different meaning in the body
self.hend_re = re.compile(r'^(?:M95|%)$')
# FMAT Excellon format
# Ignored in the parser
#self.fmat_re = re.compile(r'^FMAT,([12])$')
# Uunits and possible Excellon zeros and possible Excellon format
# INCH uses 6 digits
# METRIC uses 5/6
self.units_re = re.compile(r'^(INCH|METRIC)(?:,([TL])Z)?,?(\d*\.\d+)?.*$')
# Tool definition/parameters (?= is look-ahead
# NOTE: This might be an overkill!
# self.toolset_re = re.compile(r'^T(0?\d|\d\d)(?=.*C(\d*\.?\d*))?' +
# r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
# r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
# r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
self.toolset_re = re.compile(r'^T(\d+)(?=.*C,?(\d*\.?\d*))?' +
r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
self.detect_gcode_re = re.compile(r'^G2([01])$')
# Tool select
# Can have additional data after tool number but
# is ignored if present in the header.
# Warning: This will match toolset_re too.
# self.toolsel_re = re.compile(r'^T((?:\d\d)|(?:\d))')
self.toolsel_re = re.compile(r'^T(\d+)')
# Headerless toolset
# self.toolset_hl_re = re.compile(r'^T(\d+)(?=.*C(\d*\.?\d*))')
self.toolset_hl_re = re.compile(r'^T(\d+)(?:.?C(\d+\.?\d*))?')
# Comment
self.comm_re = re.compile(r'^;(.*)$')
# Absolute/Incremental G90/G91
self.absinc_re = re.compile(r'^G9([01])$')
# Modes of operation
# 1-linear, 2-circCW, 3-cirCCW, 4-vardwell, 5-Drill
self.modes_re = re.compile(r'^G0([012345])')
# Measuring mode
# 1-metric, 2-inch
self.meas_re = re.compile(r'^M7([12])$')
# Coordinates
# self.xcoord_re = re.compile(r'^X(\d*\.?\d*)(?:Y\d*\.?\d*)?$')
# self.ycoord_re = re.compile(r'^(?:X\d*\.?\d*)?Y(\d*\.?\d*)$')
coordsperiod_re_string = r'(?=.*X([-\+]?\d*\.\d*))?(?=.*Y([-\+]?\d*\.\d*))?[XY]'
self.coordsperiod_re = re.compile(coordsperiod_re_string)
coordsnoperiod_re_string = r'(?!.*\.)(?=.*X([-\+]?\d*))?(?=.*Y([-\+]?\d*))?[XY]'
self.coordsnoperiod_re = re.compile(coordsnoperiod_re_string)
# Slots parsing
slots_re_string = r'^([^G]+)G85(.*)$'
self.slots_re = re.compile(slots_re_string)
# R - Repeat hole (# times, X offset, Y offset)
self.rep_re = re.compile(r'^R(\d+)(?=.*[XY])+(?:X([-\+]?\d*\.?\d*))?(?:Y([-\+]?\d*\.?\d*))?$')
# Various stop/pause commands
self.stop_re = re.compile(r'^((G04)|(M09)|(M06)|(M00)|(M30))')
# Allegro Excellon format support
self.tool_units_re = re.compile(r'(\;\s*Holesize \d+.\s*\=\s*(\d+.\d+).*(MILS|MM))')
# Altium Excellon format support
# it's a comment like this: ";FILE_FORMAT=2:5"
self.altium_format = re.compile(r'^;\s*(?:FILE_FORMAT)?(?:Format)?[=|:]\s*(\d+)[:|.](\d+).*$')
# Parse coordinates
self.leadingzeros_re = re.compile(r'^[-\+]?(0*)(\d*)')
# Repeating command
self.repeat_re = re.compile(r'R(\d+)')
def parse_file(self, filename=None, file_obj=None):
"""
Reads the specified file as array of lines as
passes it to ``parse_lines()``.
:param filename: The file to be read and parsed.
:type filename: str
:return: None
"""
if file_obj:
estr = file_obj
else:
if filename is None:
return "fail"
efile = open(filename, 'r')
estr = efile.readlines()
efile.close()
try:
self.parse_lines(estr)
except:
return "fail"
def parse_lines(self, elines):
"""
Main Excellon parser.
:param elines: List of strings, each being a line of Excellon code.
:type elines: list
:return: None
"""
# State variables
current_tool = ""
in_header = False
headerless = False
current_x = None
current_y = None
slot_current_x = None
slot_current_y = None
name_tool = 0
allegro_warning = False
line_units_found = False
repeating_x = 0
repeating_y = 0
repeat = 0
line_units = ''
#### Parsing starts here ## ##
line_num = 0 # Line number
eline = ""
try:
for eline in elines:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
line_num += 1
# log.debug("%3d %s" % (line_num, str(eline)))
self.source_file += eline
# Cleanup lines
eline = eline.strip(' \r\n')
# Excellon files and Gcode share some extensions therefore if we detect G20 or G21 it's GCODe
# and we need to exit from here
if self.detect_gcode_re.search(eline):
log.warning("This is GCODE mark: %s" % eline)
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_('This is GCODE mark'), eline))
return
# Header Begin (M48) #
if self.hbegin_re.search(eline):
in_header = True
headerless = False
log.warning("Found start of the header: %s" % eline)
continue
# Allegro Header Begin (;HEADER) #
if self.allegro_hbegin_re.search(eline):
in_header = True
allegro_warning = True
log.warning("Found ALLEGRO start of the header: %s" % eline)
continue
# Search for Header End #
# Since there might be comments in the header that include header end char (% or M95)
# we ignore the lines starting with ';' that contains such header end chars because it is not a
# real header end.
if self.comm_re.search(eline):
match = self.tool_units_re.search(eline)
if match:
if line_units_found is False:
line_units_found = True
line_units = match.group(3)
self.convert_units({"MILS": "IN", "MM": "MM"}[line_units])
log.warning("Type of Allegro UNITS found inline in comments: %s" % line_units)
if match.group(2):
name_tool += 1
if line_units == 'MILS':
spec = {"C": (float(match.group(2)) / 1000)}
self.tools[str(name_tool)] = spec
log.debug(" Tool definition: %s %s" % (name_tool, spec))
else:
spec = {"C": float(match.group(2))}
self.tools[str(name_tool)] = spec
log.debug(" Tool definition: %s %s" % (name_tool, spec))
spec['solid_geometry'] = []
continue
# search for Altium Excellon Format / Sprint Layout who is included as a comment
match = self.altium_format.search(eline)
if match:
self.excellon_format_upper_mm = match.group(1)
self.excellon_format_lower_mm = match.group(2)
self.excellon_format_upper_in = match.group(1)
self.excellon_format_lower_in = match.group(2)
log.warning("Altium Excellon format preset found in comments: %s:%s" %
(match.group(1), match.group(2)))
continue
else:
log.warning("Line ignored, it's a comment: %s" % eline)
else:
if self.hend_re.search(eline):
if in_header is False or bool(self.tools) is False:
log.warning("Found end of the header but there is no header: %s" % eline)
log.warning("The only useful data in header are tools, units and format.")
log.warning("Therefore we will create units and format based on defaults.")
headerless = True
try:
self.convert_units({"INCH": "IN", "METRIC": "MM"}[self.excellon_units])
except Exception as e:
log.warning("Units could not be converted: %s" % str(e))
in_header = False
# for Allegro type of Excellons we reset name_tool variable so we can reuse it for toolchange
if allegro_warning is True:
name_tool = 0
log.warning("Found end of the header: %s" % eline)
continue
# ## Alternative units format M71/M72
# Supposed to be just in the body (yes, the body)
# but some put it in the header (PADS for example).
# Will detect anywhere. Occurrence will change the
# object's units.
match = self.meas_re.match(eline)
if match:
#self.units = {"1": "MM", "2": "IN"}[match.group(1)]
# Modified for issue #80
self.convert_units({"1": "MM", "2": "IN"}[match.group(1)])
log.debug(" Units: %s" % self.units)
if self.units == 'MM':
log.warning("Excellon format preset is: %s" % self.excellon_format_upper_mm + \
':' + str(self.excellon_format_lower_mm))
else:
log.warning("Excellon format preset is: %s" % self.excellon_format_upper_in + \
':' + str(self.excellon_format_lower_in))
continue
# ### Body ####
if not in_header:
# ## Tool change ###
match = self.toolsel_re.search(eline)
if match:
current_tool = str(int(match.group(1)))
log.debug("Tool change: %s" % current_tool)
if bool(headerless):
match = self.toolset_hl_re.search(eline)
if match:
name = str(int(match.group(1)))
try:
diam = float(match.group(2))
except:
# it's possible that tool definition has only tool number and no diameter info
# (those could be in another file like PCB Wizard do)
# then match.group(2) = None and float(None) will create the exception
# the bellow construction is so each tool will have a slightly different diameter
# starting with a default value, to allow Excellon editing after that
self.diameterless = True
self.app.inform.emit('[WARNING] %s%s %s' %
(_("No tool diameter info's. See shell.\n"
"A tool change event: T"),
str(current_tool),
_("was found but the Excellon file "
"have no informations regarding the tool "
"diameters therefore the application will try to load it "
"by using some 'fake' diameters.\n"
"The user needs to edit the resulting Excellon object and "
"change the diameters to reflect the real diameters.")
)
)
if self.excellon_units == 'MM':
diam = self.toolless_diam + (int(current_tool) - 1) / 100
else:
diam = (self.toolless_diam + (int(current_tool) - 1) / 100) / 25.4
spec = {"C": diam, 'solid_geometry': []}
self.tools[name] = spec
log.debug("Tool definition out of header: %s %s" % (name, spec))
continue
# ## Allegro Type Tool change ###
if allegro_warning is True:
match = self.absinc_re.search(eline)
match1 = self.stop_re.search(eline)
if match or match1:
name_tool += 1
current_tool = str(name_tool)
log.debug("Tool change for Allegro type of Excellon: %s" % current_tool)
continue
# ## Slots parsing for drilled slots (contain G85)
# a Excellon drilled slot line may look like this:
# X01125Y0022244G85Y0027756
match = self.slots_re.search(eline)
if match:
# signal that there are milling slots operations
self.defaults['excellon_drills'] = False
# the slot start coordinates group is to the left of G85 command (group(1) )
# the slot stop coordinates group is to the right of G85 command (group(2) )
start_coords_match = match.group(1)
stop_coords_match = match.group(2)
# Slot coordinates without period # ##
# get the coordinates for slot start and for slot stop into variables
start_coords_noperiod = self.coordsnoperiod_re.search(start_coords_match)
stop_coords_noperiod = self.coordsnoperiod_re.search(stop_coords_match)
if start_coords_noperiod:
try:
slot_start_x = self.parse_number(start_coords_noperiod.group(1))
slot_current_x = slot_start_x
except TypeError:
slot_start_x = slot_current_x
except:
return
try:
slot_start_y = self.parse_number(start_coords_noperiod.group(2))
slot_current_y = slot_start_y
except TypeError:
slot_start_y = slot_current_y
except:
return
try:
slot_stop_x = self.parse_number(stop_coords_noperiod.group(1))
slot_current_x = slot_stop_x
except TypeError:
slot_stop_x = slot_current_x
except:
return
try:
slot_stop_y = self.parse_number(stop_coords_noperiod.group(2))
slot_current_y = slot_stop_y
except TypeError:
slot_stop_y = slot_current_y
except:
return
if (slot_start_x is None or slot_start_y is None or
slot_stop_x is None or slot_stop_y is None):
log.error("Slots are missing some or all coordinates.")
continue
# we have a slot
log.debug('Parsed a slot with coordinates: ' + str([slot_start_x,
slot_start_y, slot_stop_x,
slot_stop_y]))
# store current tool diameter as slot diameter
slot_dia = 0.05
try:
slot_dia = float(self.tools[current_tool]['C'])
except Exception as e:
pass
log.debug(
'Milling/Drilling slot with tool %s, diam=%f' % (
current_tool,
slot_dia
)
)
self.slots.append(
{
'start': Point(slot_start_x, slot_start_y),
'stop': Point(slot_stop_x, slot_stop_y),
'tool': current_tool
}
)
continue
# Slot coordinates with period: Use literally. ###
# get the coordinates for slot start and for slot stop into variables
start_coords_period = self.coordsperiod_re.search(start_coords_match)
stop_coords_period = self.coordsperiod_re.search(stop_coords_match)
if start_coords_period:
try:
slot_start_x = float(start_coords_period.group(1))
slot_current_x = slot_start_x
except TypeError:
slot_start_x = slot_current_x
except:
return
try:
slot_start_y = float(start_coords_period.group(2))
slot_current_y = slot_start_y
except TypeError:
slot_start_y = slot_current_y
except:
return
try:
slot_stop_x = float(stop_coords_period.group(1))
slot_current_x = slot_stop_x
except TypeError:
slot_stop_x = slot_current_x
except:
return
try:
slot_stop_y = float(stop_coords_period.group(2))
slot_current_y = slot_stop_y
except TypeError:
slot_stop_y = slot_current_y
except:
return
if (slot_start_x is None or slot_start_y is None or
slot_stop_x is None or slot_stop_y is None):
log.error("Slots are missing some or all coordinates.")
continue
# we have a slot
log.debug('Parsed a slot with coordinates: ' + str([slot_start_x,
slot_start_y, slot_stop_x, slot_stop_y]))
# store current tool diameter as slot diameter
slot_dia = 0.05
try:
slot_dia = float(self.tools[current_tool]['C'])
except Exception as e:
pass
log.debug(
'Milling/Drilling slot with tool %s, diam=%f' % (
current_tool,
slot_dia
)
)
self.slots.append(
{
'start': Point(slot_start_x, slot_start_y),
'stop': Point(slot_stop_x, slot_stop_y),
'tool': current_tool
}
)
continue
# ## Coordinates without period # ##
match = self.coordsnoperiod_re.search(eline)
if match:
matchr = self.repeat_re.search(eline)
if matchr:
repeat = int(matchr.group(1))
try:
x = self.parse_number(match.group(1))
repeating_x = current_x
current_x = x
except TypeError:
x = current_x
repeating_x = 0
except:
return
try:
y = self.parse_number(match.group(2))
repeating_y = current_y
current_y = y
except TypeError:
y = current_y
repeating_y = 0
except:
return
if x is None or y is None:
log.error("Missing coordinates")
continue
# ## Excellon Routing parse
if len(re.findall("G00", eline)) > 0:
self.match_routing_start = 'G00'
# signal that there are milling slots operations
self.defaults['excellon_drills'] = False
self.routing_flag = 0
slot_start_x = x
slot_start_y = y
continue
if self.routing_flag == 0:
if len(re.findall("G01", eline)) > 0:
self.match_routing_stop = 'G01'
# signal that there are milling slots operations
self.defaults['excellon_drills'] = False
self.routing_flag = 1
slot_stop_x = x
slot_stop_y = y
self.slots.append(
{
'start': Point(slot_start_x, slot_start_y),
'stop': Point(slot_stop_x, slot_stop_y),
'tool': current_tool
}
)
continue
if self.match_routing_start is None and self.match_routing_stop is None:
if repeat == 0:
# signal that there are drill operations
self.defaults['excellon_drills'] = True
self.drills.append({'point': Point((x, y)), 'tool': current_tool})
else:
coordx = x
coordy = y
while repeat > 0:
if repeating_x:
coordx = (repeat * x) + repeating_x
if repeating_y:
coordy = (repeat * y) + repeating_y
self.drills.append({'point': Point((coordx, coordy)), 'tool': current_tool})
repeat -= 1
repeating_x = repeating_y = 0
# log.debug("{:15} {:8} {:8}".format(eline, x, y))
continue
# ## Coordinates with period: Use literally. # ##
match = self.coordsperiod_re.search(eline)
if match:
matchr = self.repeat_re.search(eline)
if matchr:
repeat = int(matchr.group(1))
if match:
# signal that there are drill operations
self.defaults['excellon_drills'] = True
try:
x = float(match.group(1))
repeating_x = current_x
current_x = x
except TypeError:
x = current_x
repeating_x = 0
try:
y = float(match.group(2))
repeating_y = current_y
current_y = y
except TypeError:
y = current_y
repeating_y = 0
if x is None or y is None:
log.error("Missing coordinates")
continue
# ## Excellon Routing parse
if len(re.findall("G00", eline)) > 0:
self.match_routing_start = 'G00'
# signal that there are milling slots operations
self.defaults['excellon_drills'] = False
self.routing_flag = 0
slot_start_x = x
slot_start_y = y
continue
if self.routing_flag == 0:
if len(re.findall("G01", eline)) > 0:
self.match_routing_stop = 'G01'
# signal that there are milling slots operations
self.defaults['excellon_drills'] = False
self.routing_flag = 1
slot_stop_x = x
slot_stop_y = y
self.slots.append(
{
'start': Point(slot_start_x, slot_start_y),
'stop': Point(slot_stop_x, slot_stop_y),
'tool': current_tool
}
)
continue
if self.match_routing_start is None and self.match_routing_stop is None:
# signal that there are drill operations
if repeat == 0:
# signal that there are drill operations
self.defaults['excellon_drills'] = True
self.drills.append({'point': Point((x, y)), 'tool': current_tool})
else:
coordx = x
coordy = y
while repeat > 0:
if repeating_x:
coordx = (repeat * x) + repeating_x
if repeating_y:
coordy = (repeat * y) + repeating_y
self.drills.append({'point': Point((coordx, coordy)), 'tool': current_tool})
repeat -= 1
repeating_x = repeating_y = 0
# log.debug("{:15} {:8} {:8}".format(eline, x, y))
continue
# ### Header ####
if in_header:
# ## Tool definitions # ##
match = self.toolset_re.search(eline)
if match:
name = str(int(match.group(1)))
spec = {"C": float(match.group(2)), 'solid_geometry': []}
self.tools[name] = spec
log.debug(" Tool definition: %s %s" % (name, spec))
continue
# ## Units and number format # ##
match = self.units_re.match(eline)
if match:
self.units_found = match.group(1)
self.zeros = match.group(2) # "T" or "L". Might be empty
self.excellon_format = match.group(3)
if self.excellon_format:
upper = len(self.excellon_format.partition('.')[0])
lower = len(self.excellon_format.partition('.')[2])
if self.units == 'MM':
self.excellon_format_upper_mm = upper
self.excellon_format_lower_mm = lower
else:
self.excellon_format_upper_in = upper
self.excellon_format_lower_in = lower
# Modified for issue #80
self.convert_units({"INCH": "IN", "METRIC": "MM"}[self.units_found])
# log.warning(" Units/Format: %s %s" % (self.units, self.zeros))
log.warning("Units: %s" % self.units)
if self.units == 'MM':
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_mm) +
':' + str(self.excellon_format_lower_mm))
else:
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_in) +
':' + str(self.excellon_format_lower_in))
log.warning("Type of zeros found inline: %s" % self.zeros)
continue
# Search for units type again it might be alone on the line
if "INCH" in eline:
line_units = "INCH"
# Modified for issue #80
self.convert_units({"INCH": "IN", "METRIC": "MM"}[line_units])
log.warning("Type of UNITS found inline: %s" % line_units)
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_in) +
':' + str(self.excellon_format_lower_in))
# TODO: not working
#FlatCAMApp.App.inform.emit("Detected INLINE: %s" % str(eline))
continue
elif "METRIC" in eline:
line_units = "METRIC"
# Modified for issue #80
self.convert_units({"INCH": "IN", "METRIC": "MM"}[line_units])
log.warning("Type of UNITS found inline: %s" % line_units)
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_mm) +
':' + str(self.excellon_format_lower_mm))
# TODO: not working
#FlatCAMApp.App.inform.emit("Detected INLINE: %s" % str(eline))
continue
# Search for zeros type again because it might be alone on the line
match = re.search(r'[LT]Z',eline)
if match:
self.zeros = match.group()
log.warning("Type of zeros found: %s" % self.zeros)
continue
# ## Units and number format outside header# ##
match = self.units_re.match(eline)
if match:
self.units_found = match.group(1)
self.zeros = match.group(2) # "T" or "L". Might be empty
self.excellon_format = match.group(3)
if self.excellon_format:
upper = len(self.excellon_format.partition('.')[0])
lower = len(self.excellon_format.partition('.')[2])
if self.units == 'MM':
self.excellon_format_upper_mm = upper
self.excellon_format_lower_mm = lower
else:
self.excellon_format_upper_in = upper
self.excellon_format_lower_in = lower
# Modified for issue #80
self.convert_units({"INCH": "IN", "METRIC": "MM"}[self.units_found])
# log.warning(" Units/Format: %s %s" % (self.units, self.zeros))
log.warning("Units: %s" % self.units)
if self.units == 'MM':
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_mm) +
':' + str(self.excellon_format_lower_mm))
else:
log.warning("Excellon format preset is: %s" % str(self.excellon_format_upper_in) +
':' + str(self.excellon_format_lower_in))
log.warning("Type of zeros found outside header, inline: %s" % self.zeros)
log.warning("UNITS found outside header")
continue
log.warning("Line ignored: %s" % eline)
# make sure that since we are in headerless mode, we convert the tools only after the file parsing
# is finished since the tools definitions are spread in the Excellon body. We use as units the value
# from self.defaults['excellon_units']
log.info("Zeros: %s, Units %s." % (self.zeros, self.units))
except Exception as e:
log.error("Excellon PARSING FAILED. Line %d: %s" % (line_num, eline))
msg = '[ERROR_NOTCL] %s' % \
_("An internal error has ocurred. See shell.\n")
msg += _('{e_code} Excellon Parser error.\nParsing Failed. Line {l_nr}: {line}\n').format(
e_code='[ERROR]',
l_nr=line_num,
line=eline)
msg += traceback.format_exc()
self.app.inform.emit(msg)
return "fail"
def parse_number(self, number_str):
"""
Parses coordinate numbers without period.
:param number_str: String representing the numerical value.
:type number_str: str
:return: Floating point representation of the number
:rtype: float
"""
match = self.leadingzeros_re.search(number_str)
nr_length = len(match.group(1)) + len(match.group(2))
try:
if self.zeros == "L" or self.zeros == "LZ": # Leading
# With leading zeros, when you type in a coordinate,
# the leading zeros must always be included. Trailing zeros
# are unneeded and may be left off. The CNC-7 will automatically add them.
# r'^[-\+]?(0*)(\d*)'
# 6 digits are divided by 10^4
# If less than size digits, they are automatically added,
# 5 digits then are divided by 10^3 and so on.
if self.units.lower() == "in":
result = float(number_str) / (10 ** (float(nr_length) - float(self.excellon_format_upper_in)))
else:
result = float(number_str) / (10 ** (float(nr_length) - float(self.excellon_format_upper_mm)))
return result
else: # Trailing
# You must show all zeros to the right of the number and can omit
# all zeros to the left of the number. The CNC-7 will count the number
# of digits you typed and automatically fill in the missing zeros.
# ## flatCAM expects 6digits
# flatCAM expects the number of digits entered into the defaults
if self.units.lower() == "in": # Inches is 00.0000
result = float(number_str) / (10 ** (float(self.excellon_format_lower_in)))
else: # Metric is 000.000
result = float(number_str) / (10 ** (float(self.excellon_format_lower_mm)))
return result
except Exception as e:
log.error("Aborted. Operation could not be completed due of %s" % str(e))
return
def create_geometry(self):
"""
Creates circles of the tool diameter at every point
specified in ``self.drills``. Also creates geometries (polygons)
for the slots as specified in ``self.slots``
All the resulting geometry is stored into self.solid_geometry list.
The list self.solid_geometry has 2 elements: first is a dict with the drills geometry,
and second element is another similar dict that contain the slots geometry.
Each dict has as keys the tool diameters and as values lists with Shapely objects, the geometries
================ ====================================
Key Value
================ ====================================
tool_diameter list of (Shapely.Point) Where to drill
================ ====================================
:return: None
"""
self.solid_geometry = []
try:
# clear the solid_geometry in self.tools
for tool in self.tools:
try:
self.tools[tool]['solid_geometry'][:] = []
except KeyError:
self.tools[tool]['solid_geometry'] = []
for drill in self.drills:
# poly = drill['point'].buffer(self.tools[drill['tool']]["C"]/2.0)
if drill['tool'] is '':
self.app.inform.emit('[WARNING] %s' %
_("Excellon.create_geometry() -> a drill location was skipped "
"due of not having a tool associated.\n"
"Check the resulting GCode."))
log.debug("Excellon.create_geometry() -> a drill location was skipped "
"due of not having a tool associated")
continue
tooldia = self.tools[drill['tool']]['C']
poly = drill['point'].buffer(tooldia / 2.0, int(int(self.geo_steps_per_circle) / 4))
self.solid_geometry.append(poly)
self.tools[drill['tool']]['solid_geometry'].append(poly)
for slot in self.slots:
slot_tooldia = self.tools[slot['tool']]['C']
start = slot['start']
stop = slot['stop']
lines_string = LineString([start, stop])
poly = lines_string.buffer(slot_tooldia / 2.0, int(int(self.geo_steps_per_circle) / 4))
self.solid_geometry.append(poly)
self.tools[slot['tool']]['solid_geometry'].append(poly)
except Exception as e:
log.debug("Excellon geometry creation failed due of ERROR: %s" % str(e))
return "fail"
# drill_geometry = {}
# slot_geometry = {}
#
# def insertIntoDataStruct(dia, drill_geo, aDict):
# if not dia in aDict:
# aDict[dia] = [drill_geo]
# else:
# aDict[dia].append(drill_geo)
#
# for tool in self.tools:
# tooldia = self.tools[tool]['C']
# for drill in self.drills:
# if drill['tool'] == tool:
# poly = drill['point'].buffer(tooldia / 2.0)
# insertIntoDataStruct(tooldia, poly, drill_geometry)
#
# for tool in self.tools:
# slot_tooldia = self.tools[tool]['C']
# for slot in self.slots:
# if slot['tool'] == tool:
# start = slot['start']
# stop = slot['stop']
# lines_string = LineString([start, stop])
# poly = lines_string.buffer(slot_tooldia/2.0, self.geo_steps_per_circle)
# insertIntoDataStruct(slot_tooldia, poly, drill_geometry)
#
# self.solid_geometry = [drill_geometry, slot_geometry]
def bounds(self):
"""
Returns coordinates of rectangular bounds
of Gerber geometry: (xmin, ymin, xmax, ymax).
"""
# fixed issue of getting bounds only for one level lists of objects
# now it can get bounds for nested lists of objects
log.debug("camlib.Excellon.bounds()")
if self.solid_geometry is None:
log.debug("solid_geometry is None")
return 0, 0, 0, 0
def bounds_rec(obj):
if type(obj) is list:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in obj:
if type(k) is dict:
for key in k:
minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
else:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
return obj.bounds
minx_list = []
miny_list = []
maxx_list = []
maxy_list = []
for tool in self.tools:
minx, miny, maxx, maxy = bounds_rec(self.tools[tool]['solid_geometry'])
minx_list.append(minx)
miny_list.append(miny)
maxx_list.append(maxx)
maxy_list.append(maxy)
return (min(minx_list), min(miny_list), max(maxx_list), max(maxy_list))
def convert_units(self, units):
"""
This function first convert to the the units found in the Excellon file but it converts tools that
are not there yet so it has no effect other than it signal that the units are the ones in the file.
On object creation, in new_object(), true conversion is done because this is done at the end of the
Excellon file parsing, the tools are inside and self.tools is really converted from the units found
inside the file to the FlatCAM units.
Kind of convolute way to make the conversion and it is based on the assumption that the Excellon file
will have detected the units before the tools are parsed and stored in self.tools
:param units:
:type str: IN or MM
:return:
"""
log.debug("camlib.Excellon.convert_units()")
factor = Geometry.convert_units(self, units)
# Tools
for tname in self.tools:
self.tools[tname]["C"] *= factor
self.create_geometry()
return factor
def scale(self, xfactor, yfactor=None, point=None):
"""
Scales geometry on the XY plane in the object by a given factor.
Tool sizes, feedrates an Z-plane dimensions are untouched.
:param factor: Number by which to scale the object.
:type factor: float
:return: None
:rtype: NOne
"""
log.debug("camlib.Excellon.scale()")
if yfactor is None:
yfactor = xfactor
if point is None:
px = 0
py = 0
else:
px, py = point
def scale_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(scale_geom(g))
return new_obj
else:
try:
return affinity.scale(obj, xfactor, yfactor, origin=(px, py))
except AttributeError:
return obj
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.drills:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# Drills
for drill in self.drills:
drill['point'] = affinity.scale(drill['point'], xfactor, yfactor, origin=(px, py))
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# scale solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = scale_geom(self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.scale(slot['stop'], xfactor, yfactor, origin=(px, py))
slot['start'] = affinity.scale(slot['start'], xfactor, yfactor, origin=(px, py))
self.create_geometry()
self.app.proc_container.new_text = ''
def offset(self, vect):
"""
Offsets geometry on the XY plane in the object by a given vector.
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
log.debug("camlib.Excellon.offset()")
dx, dy = vect
def offset_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(offset_geom(g))
return new_obj
else:
try:
return affinity.translate(obj, xoff=dx, yoff=dy)
except AttributeError:
return obj
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.drills:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# Drills
for drill in self.drills:
drill['point'] = affinity.translate(drill['point'], xoff=dx, yoff=dy)
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# offset solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = offset_geom(self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.translate(slot['stop'], xoff=dx, yoff=dy)
slot['start'] = affinity.translate(slot['start'],xoff=dx, yoff=dy)
# Recreate geometry
self.create_geometry()
self.app.proc_container.new_text = ''
def mirror(self, axis, point):
"""
:param axis: "X" or "Y" indicates around which axis to mirror.
:type axis: str
:param point: [x, y] point belonging to the mirror axis.
:type point: list
:return: None
"""
log.debug("camlib.Excellon.mirror()")
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
def mirror_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(mirror_geom(g))
return new_obj
else:
try:
return affinity.scale(obj, xscale, yscale, origin=(px, py))
except AttributeError:
return obj
# Modify data
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.drills:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# Drills
for drill in self.drills:
drill['point'] = affinity.scale(drill['point'], xscale, yscale, origin=(px, py))
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# mirror solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = mirror_geom(self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.scale(slot['stop'], xscale, yscale, origin=(px, py))
slot['start'] = affinity.scale(slot['start'], xscale, yscale, origin=(px, py))
# Recreate geometry
self.create_geometry()
self.app.proc_container.new_text = ''
def skew(self, angle_x=None, angle_y=None, point=None):
"""
Shear/Skew the geometries of an object by angles along x and y dimensions.
Tool sizes, feedrates an Z-plane dimensions are untouched.
Parameters
----------
xs, ys : float, float
The shear angle(s) for the x and y axes respectively. These can be
specified in either degrees (default) or radians by setting
use_radians=True.
See shapely manual for more information:
http://toblerity.org/shapely/manual.html#affine-transformations
"""
log.debug("camlib.Excellon.skew()")
if angle_x is None:
angle_x = 0.0
if angle_y is None:
angle_y = 0.0
def skew_geom(obj):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(skew_geom(g))
return new_obj
else:
try:
return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
except AttributeError:
return obj
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.drills:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
if point is None:
px, py = 0, 0
# Drills
for drill in self.drills:
drill['point'] = affinity.skew(drill['point'], angle_x, angle_y,
origin=(px, py))
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# skew solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = skew_geom(self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.skew(slot['stop'], angle_x, angle_y, origin=(px, py))
slot['start'] = affinity.skew(slot['start'], angle_x, angle_y, origin=(px, py))
else:
px, py = point
# Drills
for drill in self.drills:
drill['point'] = affinity.skew(drill['point'], angle_x, angle_y,
origin=(px, py))
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# skew solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = skew_geom( self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.skew(slot['stop'], angle_x, angle_y, origin=(px, py))
slot['start'] = affinity.skew(slot['start'], angle_x, angle_y, origin=(px, py))
self.create_geometry()
self.app.proc_container.new_text = ''
def rotate(self, angle, point=None):
"""
Rotate the geometry of an object by an angle around the 'point' coordinates
:param angle:
:param point: tuple of coordinates (x, y)
:return:
"""
log.debug("camlib.Excellon.rotate()")
def rotate_geom(obj, origin=None):
if type(obj) is list:
new_obj = []
for g in obj:
new_obj.append(rotate_geom(g))
return new_obj
else:
if origin:
try:
return affinity.rotate(obj, angle, origin=origin)
except AttributeError:
return obj
else:
try:
return affinity.rotate(obj, angle, origin=(px, py))
except AttributeError:
return obj
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.drills:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
if point is None:
# Drills
for drill in self.drills:
drill['point'] = affinity.rotate(drill['point'], angle, origin='center')
# rotate solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'], origin='center')
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# Slots
for slot in self.slots:
slot['stop'] = affinity.rotate(slot['stop'], angle, origin='center')
slot['start'] = affinity.rotate(slot['start'], angle, origin='center')
else:
px, py = point
# Drills
for drill in self.drills:
drill['point'] = affinity.rotate(drill['point'], angle, origin=(px, py))
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# rotate solid_geometry
for tool in self.tools:
self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'])
# Slots
for slot in self.slots:
slot['stop'] = affinity.rotate(slot['stop'], angle, origin=(px, py))
slot['start'] = affinity.rotate(slot['start'], angle, origin=(px, py))
self.create_geometry()
self.app.proc_container.new_text = ''
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class CNCjob(Geometry):
"""
Represents work to be done by a CNC machine.
*ATTRIBUTES*
* ``gcode_parsed`` (list): Each is a dictionary:
===================== =========================================
Key Value
===================== =========================================
geom (Shapely.LineString) Tool path (XY plane)
kind (string) "AB", A is "T" (travel) or
"C" (cut). B is "F" (fast) or "S" (slow).
===================== =========================================
"""
defaults = {
"global_zdownrate": None,
"pp_geometry_name":'default',
"pp_excellon_name":'default',
"excellon_optimization_type": "B",
}
def __init__(self,
units="in", kind="generic", tooldia=0.0,
z_cut=-0.002, z_move=0.1,
feedrate=3.0, feedrate_z=3.0, feedrate_rapid=3.0, feedrate_probe=3.0,
pp_geometry_name='default', pp_excellon_name='default',
depthpercut=0.1,z_pdepth=-0.02,
spindlespeed=None, spindledir='CW', dwell=True, dwelltime=1000,
toolchangez=0.787402, toolchange_xy=[0.0, 0.0],
endz=2.0,
segx=None,
segy=None,
steps_per_circle=None):
# Used when parsing G-code arcs
self.steps_per_circle = int(self.app.defaults['cncjob_steps_per_circle'])
Geometry.__init__(self, geo_steps_per_circle=self.steps_per_circle)
self.kind = kind
self.origin_kind = None
self.units = units
self.z_cut = z_cut
self.tool_offset = {}
self.z_move = z_move
self.feedrate = feedrate
self.z_feedrate = feedrate_z
self.feedrate_rapid = feedrate_rapid
self.tooldia = tooldia
self.z_toolchange = toolchangez
self.xy_toolchange = toolchange_xy
self.toolchange_xy_type = None
self.toolC = tooldia
self.z_end = endz
self.z_depthpercut = depthpercut
self.unitcode = {"IN": "G20", "MM": "G21"}
self.feedminutecode = "G94"
# self.absolutecode = "G90"
# self.incrementalcode = "G91"
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
self.gcode = ""
self.gcode_parsed = None
self.pp_geometry_name = pp_geometry_name
self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
self.pp_excellon_name = pp_excellon_name
self.pp_excellon = self.app.postprocessors[self.pp_excellon_name]
self.pp_solderpaste_name = None
# Controls if the move from Z_Toolchange to Z_Move is done fast with G0 or normally with G1
self.f_plunge = None
# Controls if the move from Z_Cutto Z_Move is done fast with G0 or G1 until zero and then G0 to Z_move
self.f_retract = None
# how much depth the probe can probe before error
self.z_pdepth = z_pdepth if z_pdepth else None
# the feedrate(speed) with which the probel travel while probing
self.feedrate_probe = feedrate_probe if feedrate_probe else None
self.spindlespeed = spindlespeed
self.spindledir = spindledir
self.dwell = dwell
self.dwelltime = dwelltime
self.segx = float(segx) if segx is not None else 0.0
self.segy = float(segy) if segy is not None else 0.0
self.input_geometry_bounds = None
self.oldx = None
self.oldy = None
self.tool = 0.0
# here store the travelled distance
self.travel_distance = 0.0
# here store the routing time
self.routing_time = 0.0
# used for creating drill CCode geometry; will be updated in the generate_from_excellon_by_tool()
self.exc_drills = None
self.exc_tools = None
# search for toolchange parameters in the Toolchange Custom Code
self.re_toolchange_custom = re.compile(r'(%[a-zA-Z0-9\-_]+%)')
# search for toolchange code: M6
self.re_toolchange = re.compile(r'^\s*(M6)$')
# Attributes to be included in serialization
# Always append to it because it carries contents
# from Geometry.
self.ser_attrs += ['kind', 'z_cut', 'z_move', 'z_toolchange', 'feedrate', 'z_feedrate', 'feedrate_rapid',
'tooldia', 'gcode', 'input_geometry_bounds', 'gcode_parsed', 'steps_per_circle',
'z_depthpercut', 'spindlespeed', 'dwell', 'dwelltime']
@property
def postdata(self):
return self.__dict__
def convert_units(self, units):
log.debug("camlib.CNCJob.convert_units()")
factor = Geometry.convert_units(self, units)
self.z_cut = float(self.z_cut) * factor
self.z_move *= factor
self.feedrate *= factor
self.z_feedrate *= factor
self.feedrate_rapid *= factor
self.tooldia *= factor
self.z_toolchange *= factor
self.z_end *= factor
self.z_depthpercut = float(self.z_depthpercut) * factor
return factor
def doformat(self, fun, **kwargs):
return self.doformat2(fun, **kwargs) + "\n"
def doformat2(self, fun, **kwargs):
attributes = AttrDict()
attributes.update(self.postdata)
attributes.update(kwargs)
try:
returnvalue = fun(attributes)
return returnvalue
except Exception as e:
self.app.log.error('Exception occurred within a postprocessor: ' + traceback.format_exc())
return ''
def parse_custom_toolchange_code(self, data):
text = data
match_list = self.re_toolchange_custom.findall(text)
if match_list:
for match in match_list:
command = match.strip('%')
try:
value = getattr(self, command)
except AttributeError:
self.app.inform.emit('[ERROR] %s: %s' %
(_("There is no such parameter"), str(match)))
log.debug("CNCJob.parse_custom_toolchange_code() --> AttributeError ")
return 'fail'
text = text.replace(match, str(value))
return text
def optimized_travelling_salesman(self, points, start=None):
"""
As solving the problem in the brute force way is too slow,
this function implements a simple heuristic: always
go to the nearest city.
Even if this algorithm is extremely simple, it works pretty well
giving a solution only about 25%% longer than the optimal one (cit. Wikipedia),
and runs very fast in O(N^2) time complexity.
>>> optimized_travelling_salesman([[i,j] for i in range(5) for j in range(5)])
[[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], [2, 0], [2, 1], [2, 2],
[2, 3], [2, 4], [3, 4], [3, 3], [3, 2], [3, 1], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4]]
>>> optimized_travelling_salesman([[0,0],[10,0],[6,0]])
[[0, 0], [6, 0], [10, 0]]
"""
if start is None:
start = points[0]
must_visit = points
path = [start]
# must_visit.remove(start)
while must_visit:
nearest = min(must_visit, key=lambda x: distance(path[-1], x))
path.append(nearest)
must_visit.remove(nearest)
return path
def generate_from_excellon_by_tool(
self, exobj, tools="all", drillz = 3.0,
toolchange=False, toolchangez=0.1, toolchangexy='',
endz=2.0, startz=None,
excellon_optimization_type='B'):
"""
Creates gcode for this object from an Excellon object
for the specified tools.
:param exobj: Excellon object to process
:type exobj: Excellon
:param tools: Comma separated tool names
:type: tools: str
:param drillz: drill Z depth
:type drillz: float
:param toolchange: Use tool change sequence between tools.
:type toolchange: bool
:param toolchangez: Height at which to perform the tool change.
:type toolchangez: float
:param toolchangexy: Toolchange X,Y position
:type toolchangexy: String containing 2 floats separated by comma
:param startz: Z position just before starting the job
:type startz: float
:param endz: final Z position to move to at the end of the CNC job
:type endz: float
:param excellon_optimization_type: Single character that defines which drill re-ordering optimisation algorithm
is to be used: 'M' for meta-heuristic and 'B' for basic
:type excellon_optimization_type: string
:return: None
:rtype: None
"""
# create a local copy of the exobj.drills so it can be used for creating drill CCode geometry
self.exc_drills = deepcopy(exobj.drills)
self.exc_tools = deepcopy(exobj.tools)
if drillz > 0:
self.app.inform.emit('[WARNING] %s' %
_("The Cut Z parameter has positive value. "
"It is the depth value to drill into material.\n"
"The Cut Z parameter needs to have a negative value, assuming it is a typo "
"therefore the app will convert the value to negative. "
"Check the resulting CNC code (Gcode etc)."))
self.z_cut = -drillz
elif drillz == 0:
self.app.inform.emit('[WARNING] %s: %s' %
(_("The Cut Z parameter is zero. There will be no cut, skipping file"),
exobj.options['name']))
return 'fail'
else:
self.z_cut = drillz
self.z_toolchange = toolchangez
try:
if toolchangexy == '':
self.xy_toolchange = None
else:
self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
if len(self.xy_toolchange) < 2:
self.app.inform.emit('[ERROR]%s' %
_("The Toolchange X,Y field in Edit -> Preferences has to be "
"in the format (x, y) \nbut now there is only one value, not two. "))
return 'fail'
except Exception as e:
log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> %s" % str(e))
pass
self.startz = startz
self.z_end = endz
self.pp_excellon = self.app.postprocessors[self.pp_excellon_name]
p = self.pp_excellon
log.debug("Creating CNC Job from Excellon...")
# Tools
# sort the tools list by the second item in tuple (here we have a dict with diameter of the tool)
# so we actually are sorting the tools by diameter
#sorted_tools = sorted(exobj.tools.items(), key=lambda t1: t1['C'])
sort = []
for k, v in list(exobj.tools.items()):
sort.append((k, v.get('C')))
sorted_tools = sorted(sort,key=lambda t1: t1[1])
if tools == "all":
tools = [i[0] for i in sorted_tools] # we get a array of ordered tools
log.debug("Tools 'all' and sorted are: %s" % str(tools))
else:
selected_tools = [x.strip() for x in tools.split(",")] # we strip spaces and also separate the tools by ','
selected_tools = [t1 for t1 in selected_tools if t1 in selected_tools]
# Create a sorted list of selected tools from the sorted_tools list
tools = [i for i, j in sorted_tools for k in selected_tools if i == k]
log.debug("Tools selected and sorted are: %s" % str(tools))
self.app.inform.emit(_("Creating a list of points to drill..."))
# Points (Group by tool)
points = {}
for drill in exobj.drills:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if drill['tool'] in tools:
try:
points[drill['tool']].append(drill['point'])
except KeyError:
points[drill['tool']] = [drill['point']]
#log.debug("Found %d drills." % len(points))
self.gcode = []
self.f_plunge = self.app.defaults["excellon_f_plunge"]
self.f_retract = self.app.defaults["excellon_f_retract"]
# Initialization
gcode = self.doformat(p.start_code)
gcode += self.doformat(p.feedrate_code)
if toolchange is False:
if self.xy_toolchange is not None:
gcode += self.doformat(p.lift_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
gcode += self.doformat(p.startz_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
else:
gcode += self.doformat(p.lift_code, x=0.0, y=0.0)
gcode += self.doformat(p.startz_code, x=0.0, y=0.0)
# Distance callback
class CreateDistanceCallback(object):
"""Create callback to calculate distances between points."""
def __init__(self):
"""Initialize distance array."""
locations = create_data_array()
size = len(locations)
self.matrix = {}
for from_node in range(size):
self.matrix[from_node] = {}
for to_node in range(size):
if from_node == to_node:
self.matrix[from_node][to_node] = 0
else:
x1 = locations[from_node][0]
y1 = locations[from_node][1]
x2 = locations[to_node][0]
y2 = locations[to_node][1]
self.matrix[from_node][to_node] = distance_euclidian(x1, y1, x2, y2)
# def Distance(self, from_node, to_node):
# return int(self.matrix[from_node][to_node])
def Distance(self, from_index, to_index):
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return self.matrix[from_node][to_node]
# Create the data.
def create_data_array():
locations = []
for point in points[tool]:
locations.append((point.coords.xy[0][0], point.coords.xy[1][0]))
return locations
if self.xy_toolchange is not None:
self.oldx = self.xy_toolchange[0]
self.oldy = self.xy_toolchange[1]
else:
self.oldx = 0.0
self.oldy = 0.0
measured_distance = 0.0
measured_down_distance = 0.0
measured_up_to_zero_distance = 0.0
measured_lift_distance = 0.0
self.app.inform.emit('%s...' %
_("Starting G-Code"))
current_platform = platform.architecture()[0]
if current_platform == '64bit':
used_excellon_optimization_type = excellon_optimization_type
if used_excellon_optimization_type == 'M':
log.debug("Using OR-Tools Metaheuristic Guided Local Search drill path optimization.")
if exobj.drills:
for tool in tools:
self.tool=tool
self.postdata['toolC'] = exobj.tools[tool]["C"]
self.tooldia = exobj.tools[tool]["C"]
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# ###############################################
# ############ Create the data. #################
# ###############################################
node_list = []
locations = create_data_array()
tsp_size = len(locations)
num_routes = 1 # The number of routes, which is 1 in the TSP.
# Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
depot = 0
# Create routing model.
if tsp_size > 0:
manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
routing = pywrapcp.RoutingModel(manager)
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
# Set search time limit in milliseconds.
if float(self.app.defaults["excellon_search_time"]) != 0:
search_parameters.time_limit.seconds = int(
float(self.app.defaults["excellon_search_time"]))
else:
search_parameters.time_limit.seconds = 3
# Callback to the distance function. The callback takes two
# arguments (the from and to node indices) and returns the distance between them.
dist_between_locations = CreateDistanceCallback()
dist_callback = dist_between_locations.Distance
transit_callback_index = routing.RegisterTransitCallback(dist_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Solve, returns a solution if any.
assignment = routing.SolveWithParameters(search_parameters)
if assignment:
# Solution cost.
log.info("Total distance: " + str(assignment.ObjectiveValue()))
# Inspect solution.
# Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
route_number = 0
node = routing.Start(route_number)
start_node = node
while not routing.IsEnd(node):
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
node_list.append(node)
node = assignment.Value(routing.NextVar(node))
else:
log.warning('No solution found.')
else:
log.warning('Specify an instance greater than 0.')
# ############################################# ##
# Only if tool has points.
if tool in points:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# Tool change sequence (optional)
if toolchange:
gcode += self.doformat(p.toolchange_code,toolchangexy=(self.oldx, self.oldy))
gcode += self.doformat(p.spindle_code) # Spindle start
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
else:
gcode += self.doformat(p.spindle_code)
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
if self.units == 'MM':
current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
else:
current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
self.app.inform.emit(
'%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
str(current_tooldia),
str(self.units))
)
# TODO apply offset only when using the GUI, for TclCommand this will create an error
# because the values for Z offset are created in build_ui()
try:
z_offset = float(self.tool_offset[current_tooldia]) * (-1)
except KeyError:
z_offset = 0
self.z_cut += z_offset
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# Drillling! for Absolute coordinates type G90
# variables to display the percentage of work done
geo_len = len(node_list)
disp_number = 0
old_disp_number = 0
log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
loc_nr = 0
for k in node_list:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
locx = locations[k][0]
locy = locations[k][1]
gcode += self.doformat(p.rapid_code, x=locx, y=locy)
gcode += self.doformat(p.down_code, x=locx, y=locy)
measured_down_distance += abs(self.z_cut) + abs(self.z_move)
if self.f_retract is False:
gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
measured_up_to_zero_distance += abs(self.z_cut)
measured_lift_distance += abs(self.z_move)
else:
measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
gcode += self.doformat(p.lift_code, x=locx, y=locy)
measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
self.oldx = locx
self.oldy = locy
loc_nr += 1
disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
else:
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('G91 coordinates not implemented'))
return 'fail'
else:
log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
"The loaded Excellon file has no drills ...")
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('The loaded Excellon file has no drills'))
return 'fail'
log.debug("The total travel distance with OR-TOOLS Metaheuristics is: %s" % str(measured_distance))
if used_excellon_optimization_type == 'B':
log.debug("Using OR-Tools Basic drill path optimization.")
if exobj.drills:
for tool in tools:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
self.tool=tool
self.postdata['toolC']=exobj.tools[tool]["C"]
self.tooldia = exobj.tools[tool]["C"]
# ############################################# ##
node_list = []
locations = create_data_array()
tsp_size = len(locations)
num_routes = 1 # The number of routes, which is 1 in the TSP.
# Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
depot = 0
# Create routing model.
if tsp_size > 0:
manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
routing = pywrapcp.RoutingModel(manager)
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
# Callback to the distance function. The callback takes two
# arguments (the from and to node indices) and returns the distance between them.
dist_between_locations = CreateDistanceCallback()
dist_callback = dist_between_locations.Distance
transit_callback_index = routing.RegisterTransitCallback(dist_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Solve, returns a solution if any.
assignment = routing.SolveWithParameters(search_parameters)
if assignment:
# Solution cost.
log.info("Total distance: " + str(assignment.ObjectiveValue()))
# Inspect solution.
# Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
route_number = 0
node = routing.Start(route_number)
start_node = node
while not routing.IsEnd(node):
node_list.append(node)
node = assignment.Value(routing.NextVar(node))
else:
log.warning('No solution found.')
else:
log.warning('Specify an instance greater than 0.')
# ############################################# ##
# Only if tool has points.
if tool in points:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# Tool change sequence (optional)
if toolchange:
gcode += self.doformat(p.toolchange_code,toolchangexy=(self.oldx, self.oldy))
gcode += self.doformat(p.spindle_code) # Spindle start)
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
else:
gcode += self.doformat(p.spindle_code)
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
if self.units == 'MM':
current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
else:
current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
self.app.inform.emit(
'%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
str(current_tooldia),
str(self.units))
)
# TODO apply offset only when using the GUI, for TclCommand this will create an error
# because the values for Z offset are created in build_ui()
try:
z_offset = float(self.tool_offset[current_tooldia]) * (-1)
except KeyError:
z_offset = 0
self.z_cut += z_offset
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# Drillling! for Absolute coordinates type G90
# variables to display the percentage of work done
geo_len = len(node_list)
disp_number = 0
old_disp_number = 0
log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
loc_nr = 0
for k in node_list:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
locx = locations[k][0]
locy = locations[k][1]
gcode += self.doformat(p.rapid_code, x=locx, y=locy)
gcode += self.doformat(p.down_code, x=locx, y=locy)
measured_down_distance += abs(self.z_cut) + abs(self.z_move)
if self.f_retract is False:
gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
measured_up_to_zero_distance += abs(self.z_cut)
measured_lift_distance += abs(self.z_move)
else:
measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
gcode += self.doformat(p.lift_code, x=locx, y=locy)
measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
self.oldx = locx
self.oldy = locy
loc_nr += 1
disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
else:
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('G91 coordinates not implemented'))
return 'fail'
else:
log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
"The loaded Excellon file has no drills ...")
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('The loaded Excellon file has no drills'))
return 'fail'
log.debug("The total travel distance with OR-TOOLS Basic Algorithm is: %s" % str(measured_distance))
else:
used_excellon_optimization_type = 'T'
if used_excellon_optimization_type == 'T':
log.debug("Using Travelling Salesman drill path optimization.")
for tool in tools:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if exobj.drills:
self.tool = tool
self.postdata['toolC'] = exobj.tools[tool]["C"]
self.tooldia = exobj.tools[tool]["C"]
# Only if tool has points.
if tool in points:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
# Tool change sequence (optional)
if toolchange:
gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
gcode += self.doformat(p.spindle_code) # Spindle start)
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
else:
gcode += self.doformat(p.spindle_code)
if self.dwell is True:
gcode += self.doformat(p.dwell_code) # Dwell time
if self.units == 'MM':
current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
else:
current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
self.app.inform.emit(
'%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
str(current_tooldia),
str(self.units))
)
# TODO apply offset only when using the GUI, for TclCommand this will create an error
# because the values for Z offset are created in build_ui()
try:
z_offset = float(self.tool_offset[current_tooldia]) * (-1)
except KeyError:
z_offset = 0
self.z_cut += z_offset
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# Drillling! for Absolute coordinates type G90
altPoints = []
for point in points[tool]:
altPoints.append((point.coords.xy[0][0], point.coords.xy[1][0]))
node_list = self.optimized_travelling_salesman(altPoints)
# variables to display the percentage of work done
geo_len = len(node_list)
disp_number = 0
old_disp_number = 0
log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
loc_nr = 0
for point in node_list:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
gcode += self.doformat(p.rapid_code, x=point[0], y=point[1])
gcode += self.doformat(p.down_code, x=point[0], y=point[1])
measured_down_distance += abs(self.z_cut) + abs(self.z_move)
if self.f_retract is False:
gcode += self.doformat(p.up_to_zero_code, x=point[0], y=point[1])
measured_up_to_zero_distance += abs(self.z_cut)
measured_lift_distance += abs(self.z_move)
else:
measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
gcode += self.doformat(p.lift_code, x=point[0], y=point[1])
measured_distance += abs(distance_euclidian(point[0], point[1], self.oldx, self.oldy))
self.oldx = point[0]
self.oldy = point[1]
loc_nr += 1
disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
else:
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('G91 coordinates not implemented'))
return 'fail'
else:
log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
"The loaded Excellon file has no drills ...")
self.app.inform.emit('[ERROR_NOTCL] %s...' %
_('The loaded Excellon file has no drills'))
return 'fail'
log.debug("The total travel distance with Travelling Salesman Algorithm is: %s" % str(measured_distance))
gcode += self.doformat(p.spindle_stop_code) # Spindle stop
gcode += self.doformat(p.end_code, x=0, y=0)
measured_distance += abs(distance_euclidian(self.oldx, self.oldy, 0, 0))
log.debug("The total travel distance including travel to end position is: %s" %
str(measured_distance) + '\n')
self.travel_distance = measured_distance
# I use the value of self.feedrate_rapid for the feadrate in case of the measure_lift_distance and for
# traveled_time because it is not always possible to determine the feedrate that the CNC machine uses
# for G0 move (the fastest speed available to the CNC router). Although self.feedrate_rapids is used only with
# Marlin postprocessor and derivatives.
self.routing_time = (measured_down_distance + measured_up_to_zero_distance) / self.feedrate
lift_time = measured_lift_distance / self.feedrate_rapid
traveled_time = measured_distance / self.feedrate_rapid
self.routing_time += lift_time + traveled_time
self.gcode = gcode
self.app.inform.emit(_("Finished G-Code generation..."))
return 'OK'
def generate_from_multitool_geometry(self, geometry, append=True,
tooldia=None, offset=0.0, tolerance=0, z_cut=1.0, z_move=2.0,
feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
multidepth=False, depthpercut=None,
toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0", extracut=False,
startz=None, endz=2.0, pp_geometry_name=None, tool_no=1):
"""
Algorithm to generate from multitool Geometry.
Algorithm description:
----------------------
Uses RTree to find the nearest path to follow.
:param geometry:
:param append:
:param tooldia:
:param tolerance:
:param multidepth: If True, use multiple passes to reach
the desired depth.
:param depthpercut: Maximum depth in each pass.
:param extracut: Adds (or not) an extra cut at the end of each path
overlapping the first point in path to ensure complete copper removal
:return: GCode - string
"""
log.debug("Generate_from_multitool_geometry()")
temp_solid_geometry = []
if offset != 0.0:
for it in geometry:
# if the geometry is a closed shape then create a Polygon out of it
if isinstance(it, LineString):
c = it.coords
if c[0] == c[-1]:
it = Polygon(it)
temp_solid_geometry.append(it.buffer(offset, join_style=2))
else:
temp_solid_geometry = geometry
# ## Flatten the geometry. Only linear elements (no polygons) remain.
flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
log.debug("%d paths" % len(flat_geometry))
self.tooldia = float(tooldia) if tooldia else None
self.z_cut = float(z_cut) if z_cut else None
self.z_move = float(z_move) if z_move else None
self.feedrate = float(feedrate) if feedrate else None
self.z_feedrate = float(feedrate_z) if feedrate_z else None
self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
self.spindlespeed = int(spindlespeed) if spindlespeed else None
self.spindledir = spindledir
self.dwell = dwell
self.dwelltime = float(dwelltime) if dwelltime else None
self.startz = float(startz) if startz else None
self.z_end = float(endz) if endz else None
self.z_depthpercut = float(depthpercut) if depthpercut else None
self.multidepth = multidepth
self.z_toolchange = float(toolchangez) if toolchangez else None
# it servers in the postprocessor file
self.tool = tool_no
try:
if toolchangexy == '':
self.xy_toolchange = None
else:
self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
if len(self.xy_toolchange) < 2:
self.app.inform.emit('[ERROR] %s' % _("The Toolchange X,Y field in Edit -> Preferences has to be "
"in the format (x, y) \n"
"but now there is only one value, not two."))
return 'fail'
except Exception as e:
log.debug("camlib.CNCJob.generate_from_multitool_geometry() --> %s" % str(e))
pass
self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
self.f_plunge = self.app.defaults["geometry_f_plunge"]
if self.z_cut is None:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Cut_Z parameter is None or zero. Most likely a bad combinations of "
"other parameters."))
return 'fail'
if self.z_cut > 0:
self.app.inform.emit('[WARNING] %s' %
_("The Cut Z parameter has positive value. "
"It is the depth value to cut into material.\n"
"The Cut Z parameter needs to have a negative value, assuming it is a typo "
"therefore the app will convert the value to negative."
"Check the resulting CNC code (Gcode etc)."))
self.z_cut = -self.z_cut
elif self.z_cut == 0:
self.app.inform.emit('[WARNING] %s: %s' %
(_("The Cut Z parameter is zero. There will be no cut, skipping file"),
self.options['name']))
return 'fail'
# made sure that depth_per_cut is no more then the z_cut
if abs(self.z_cut) < self.z_depthpercut:
self.z_depthpercut = abs(self.z_cut)
if self.z_move is None:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Travel Z parameter is None or zero."))
return 'fail'
if self.z_move < 0:
self.app.inform.emit('[WARNING] %s' %
_("The Travel Z parameter has negative value. "
"It is the height value to travel between cuts.\n"
"The Z Travel parameter needs to have a positive value, assuming it is a typo "
"therefore the app will convert the value to positive."
"Check the resulting CNC code (Gcode etc)."))
self.z_move = -self.z_move
elif self.z_move == 0:
self.app.inform.emit('[WARNING] %s: %s' %
(_("The Z Travel parameter is zero. This is dangerous, skipping file"),
self.options['name']))
return 'fail'
# ## Index first and last points in paths
# What points to index.
def get_pts(o):
return [o.coords[0], o.coords[-1]]
# Create the indexed storage.
storage = FlatCAMRTreeStorage()
storage.get_points = get_pts
# Store the geometry
log.debug("Indexing geometry before generating G-Code...")
self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
for shape in flat_geometry:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if shape is not None: # TODO: This shouldn't have happened.
storage.insert(shape)
# self.input_geometry_bounds = geometry.bounds()
if not append:
self.gcode = ""
# tell postprocessor the number of tool (for toolchange)
self.tool = tool_no
# this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
# given under the name 'toolC'
self.postdata['toolC'] = self.tooldia
# Initial G-Code
self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
p = self.pp_geometry
self.gcode = self.doformat(p.start_code)
self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
if toolchange is False:
self.gcode += self.doformat(p.lift_code, x=0, y=0) # Move (up) to travel height
self.gcode += self.doformat(p.startz_code, x=0, y=0)
if toolchange:
# if "line_xyz" in self.pp_geometry_name:
# self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
# else:
# self.gcode += self.doformat(p.toolchange_code)
self.gcode += self.doformat(p.toolchange_code)
if 'laser' not in self.pp_geometry_name:
self.gcode += self.doformat(p.spindle_code) # Spindle start
else:
# for laser this will disable the laser
self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
if self.dwell is True:
self.gcode += self.doformat(p.dwell_code) # Dwell time
else:
if 'laser' not in self.pp_geometry_name:
self.gcode += self.doformat(p.spindle_code) # Spindle start
if self.dwell is True:
self.gcode += self.doformat(p.dwell_code) # Dwell time
total_travel = 0.0
total_cut = 0.0
# ## Iterate over geometry paths getting the nearest each time.
log.debug("Starting G-Code...")
self.app.inform.emit(_("Starting G-Code..."))
path_count = 0
current_pt = (0, 0)
# variables to display the percentage of work done
geo_len = len(flat_geometry)
disp_number = 0
old_disp_number = 0
log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
if self.units == 'MM':
current_tooldia = float('%.2f' % float(self.tooldia))
else:
current_tooldia = float('%.4f' % float(self.tooldia))
self.app.inform.emit(
'%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
str(current_tooldia),
str(self.units))
)
pt, geo = storage.nearest(current_pt)
try:
while True:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
path_count += 1
# Remove before modifying, otherwise deletion will fail.
storage.remove(geo)
# If last point in geometry is the nearest but prefer the first one if last point == first point
# then reverse coordinates.
if pt != geo.coords[0] and pt == geo.coords[-1]:
geo.coords = list(geo.coords)[::-1]
# ---------- Single depth/pass --------
if not multidepth:
# calculate the cut distance
total_cut = total_cut + geo.length
self.gcode += self.create_gcode_single_pass(geo, extracut, tolerance, old_point=current_pt)
# --------- Multi-pass ---------
else:
# calculate the cut distance
# due of the number of cuts (multi depth) it has to multiplied by the number of cuts
nr_cuts = 0
depth = abs(self.z_cut)
while depth > 0:
nr_cuts += 1
depth -= float(self.z_depthpercut)
total_cut += (geo.length * nr_cuts)
self.gcode += self.create_gcode_multi_pass(geo, extracut, tolerance,
postproc=p, old_point=current_pt)
# calculate the total distance
total_travel = total_travel + abs(distance(pt1=current_pt, pt2=pt))
current_pt = geo.coords[-1]
pt, geo = storage.nearest(current_pt) # Next
disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
except StopIteration: # Nothing found in storage.
pass
log.debug("Finished G-Code... %s paths traced." % path_count)
# add move to end position
total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
self.travel_distance += total_travel + total_cut
self.routing_time += total_cut / self.feedrate
# Finish
self.gcode += self.doformat(p.spindle_stop_code)
self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
self.gcode += self.doformat(p.end_code, x=0, y=0)
self.app.inform.emit('%s... %s %s.' %
(_("Finished G-Code generation"),
str(path_count),
_("paths traced")
)
)
return self.gcode
def generate_from_geometry_2(
self, geometry, append=True,
tooldia=None, offset=0.0, tolerance=0,
z_cut=1.0, z_move=2.0,
feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
multidepth=False, depthpercut=None,
toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0",
extracut=False, startz=None, endz=2.0,
pp_geometry_name=None, tool_no=1):
"""
Second algorithm to generate from Geometry.
Algorithm description:
----------------------
Uses RTree to find the nearest path to follow.
:param geometry:
:param append:
:param tooldia:
:param tolerance:
:param multidepth: If True, use multiple passes to reach
the desired depth.
:param depthpercut: Maximum depth in each pass.
:param extracut: Adds (or not) an extra cut at the end of each path
overlapping the first point in path to ensure complete copper removal
:return: None
"""
if not isinstance(geometry, Geometry):
self.app.inform.emit('[ERROR] %s: %s' %
(_("Expected a Geometry, got"), type(geometry)))
return 'fail'
log.debug("Generate_from_geometry_2()")
# if solid_geometry is empty raise an exception
if not geometry.solid_geometry:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Trying to generate a CNC Job "
"from a Geometry object without solid_geometry."))
temp_solid_geometry = []
def bounds_rec(obj):
if type(obj) is list:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in obj:
if type(k) is dict:
for key in k:
minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
else:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
return obj.bounds
if offset != 0.0:
offset_for_use = offset
if offset < 0:
a, b, c, d = bounds_rec(geometry.solid_geometry)
# if the offset is less than half of the total length or less than half of the total width of the
# solid geometry it's obvious we can't do the offset
if -offset > ((c - a) / 2) or -offset > ((d - b) / 2):
self.app.inform.emit('[ERROR_NOTCL] %s' % _(
"The Tool Offset value is too negative to use "
"for the current_geometry.\n"
"Raise the value (in module) and try again."))
return 'fail'
# hack: make offset smaller by 0.0000000001 which is insignificant difference but allow the job
# to continue
elif -offset == ((c - a) / 2) or -offset == ((d - b) / 2):
offset_for_use = offset - 0.0000000001
for it in geometry.solid_geometry:
# if the geometry is a closed shape then create a Polygon out of it
if isinstance(it, LineString):
c = it.coords
if c[0] == c[-1]:
it = Polygon(it)
temp_solid_geometry.append(it.buffer(offset_for_use, join_style=2))
else:
temp_solid_geometry = geometry.solid_geometry
# ## Flatten the geometry. Only linear elements (no polygons) remain.
flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
log.debug("%d paths" % len(flat_geometry))
try:
self.tooldia = float(tooldia) if tooldia else None
except ValueError:
self.tooldia = [float(el) for el in tooldia.split(',') if el != ''] if tooldia else None
self.z_cut = float(z_cut) if z_cut else None
self.z_move = float(z_move) if z_move else None
self.feedrate = float(feedrate) if feedrate else None
self.z_feedrate = float(feedrate_z) if feedrate_z else None
self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
self.spindlespeed = int(spindlespeed) if spindlespeed else None
self.spindledir = spindledir
self.dwell = dwell
self.dwelltime = float(dwelltime) if dwelltime else None
self.startz = float(startz) if startz else None
self.z_end = float(endz) if endz else None
self.z_depthpercut = float(depthpercut) if depthpercut else None
self.multidepth = multidepth
self.z_toolchange = float(toolchangez) if toolchangez else None
try:
if toolchangexy == '':
self.xy_toolchange = None
else:
self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
if len(self.xy_toolchange) < 2:
self.app.inform.emit('[ERROR] %s' %
_("The Toolchange X,Y field in Edit -> Preferences has to be "
"in the format (x, y) \nbut now there is only one value, not two. "))
return 'fail'
except Exception as e:
log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
pass
self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
self.f_plunge = self.app.defaults["geometry_f_plunge"]
if self.z_cut is None:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Cut_Z parameter is None or zero. Most likely a bad combinations of "
"other parameters."))
return 'fail'
if self.z_cut > 0:
self.app.inform.emit('[WARNING] %s' %
_("The Cut Z parameter has positive value. "
"It is the depth value to cut into material.\n"
"The Cut Z parameter needs to have a negative value, assuming it is a typo "
"therefore the app will convert the value to negative."
"Check the resulting CNC code (Gcode etc)."))
self.z_cut = -self.z_cut
elif self.z_cut == 0:
self.app.inform.emit('[WARNING] %s: %s' %
(_("The Cut Z parameter is zero. There will be no cut, skipping file"),
geometry.options['name']))
return 'fail'
if self.z_move is None:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Travel Z parameter is None or zero."))
return 'fail'
if self.z_move < 0:
self.app.inform.emit('[WARNING] %s' %
_("The Travel Z parameter has negative value. "
"It is the height value to travel between cuts.\n"
"The Z Travel parameter needs to have a positive value, assuming it is a typo "
"therefore the app will convert the value to positive."
"Check the resulting CNC code (Gcode etc)."))
self.z_move = -self.z_move
elif self.z_move == 0:
self.app.inform.emit('[WARNING] %s: %s' %
(_("The Z Travel parameter is zero. "
"This is dangerous, skipping file"), self.options['name']))
return 'fail'
# made sure that depth_per_cut is no more then the z_cut
if abs(self.z_cut) < self.z_depthpercut:
self.z_depthpercut = abs(self.z_cut)
# ## Index first and last points in paths
# What points to index.
def get_pts(o):
return [o.coords[0], o.coords[-1]]
# Create the indexed storage.
storage = FlatCAMRTreeStorage()
storage.get_points = get_pts
# Store the geometry
log.debug("Indexing geometry before generating G-Code...")
self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
for shape in flat_geometry:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if shape is not None: # TODO: This shouldn't have happened.
storage.insert(shape)
if not append:
self.gcode = ""
# tell postprocessor the number of tool (for toolchange)
self.tool = tool_no
# this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
# given under the name 'toolC'
self.postdata['toolC'] = self.tooldia
# Initial G-Code
self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
p = self.pp_geometry
self.oldx = 0.0
self.oldy = 0.0
self.gcode = self.doformat(p.start_code)
self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
if toolchange is False:
self.gcode += self.doformat(p.lift_code, x=self.oldx , y=self.oldy ) # Move (up) to travel height
self.gcode += self.doformat(p.startz_code, x=self.oldx , y=self.oldy )
if toolchange:
# if "line_xyz" in self.pp_geometry_name:
# self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
# else:
# self.gcode += self.doformat(p.toolchange_code)
self.gcode += self.doformat(p.toolchange_code)
if 'laser' not in self.pp_geometry_name:
self.gcode += self.doformat(p.spindle_code) # Spindle start
else:
# for laser this will disable the laser
self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
if self.dwell is True:
self.gcode += self.doformat(p.dwell_code) # Dwell time
else:
if 'laser' not in self.pp_geometry_name:
self.gcode += self.doformat(p.spindle_code) # Spindle start
if self.dwell is True:
self.gcode += self.doformat(p.dwell_code) # Dwell time
total_travel = 0.0
total_cut = 0.0
# Iterate over geometry paths getting the nearest each time.
log.debug("Starting G-Code...")
self.app.inform.emit(_("Starting G-Code..."))
# variables to display the percentage of work done
geo_len = len(flat_geometry)
disp_number = 0
old_disp_number = 0
log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
if self.units == 'MM':
current_tooldia = float('%.2f' % float(self.tooldia))
else:
current_tooldia = float('%.4f' % float(self.tooldia))
self.app.inform.emit(
'%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
str(current_tooldia),
str(self.units))
)
path_count = 0
current_pt = (0, 0)
pt, geo = storage.nearest(current_pt)
try:
while True:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
path_count += 1
# Remove before modifying, otherwise deletion will fail.
storage.remove(geo)
# If last point in geometry is the nearest but prefer the first one if last point == first point
# then reverse coordinates.
if pt != geo.coords[0] and pt == geo.coords[-1]:
geo.coords = list(geo.coords)[::-1]
# ---------- Single depth/pass --------
if not multidepth:
# calculate the cut distance
total_cut += geo.length
self.gcode += self.create_gcode_single_pass(geo, extracut, tolerance, old_point=current_pt)
# --------- Multi-pass ---------
else:
# calculate the cut distance
# due of the number of cuts (multi depth) it has to multiplied by the number of cuts
nr_cuts = 0
depth = abs(self.z_cut)
while depth > 0:
nr_cuts += 1
depth -= float(self.z_depthpercut)
total_cut += (geo.length * nr_cuts)
self.gcode += self.create_gcode_multi_pass(geo, extracut, tolerance,
postproc=p, old_point=current_pt)
# calculate the travel distance
total_travel += abs(distance(pt1=current_pt, pt2=pt))
current_pt = geo.coords[-1]
pt, geo = storage.nearest(current_pt) # Next
disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
except StopIteration: # Nothing found in storage.
pass
log.debug("Finishing G-Code... %s paths traced." % path_count)
# add move to end position
total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
self.travel_distance += total_travel + total_cut
self.routing_time += total_cut / self.feedrate
# Finish
self.gcode += self.doformat(p.spindle_stop_code)
self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
self.gcode += self.doformat(p.end_code, x=0, y=0)
self.app.inform.emit('%s... %s %s' %
(_("Finished G-Code generation"),
str(path_count),
_(" paths traced.")
)
)
return self.gcode
def generate_gcode_from_solderpaste_geo(self, **kwargs):
"""
Algorithm to generate from multitool Geometry.
Algorithm description:
----------------------
Uses RTree to find the nearest path to follow.
:return: Gcode string
"""
log.debug("Generate_from_solderpaste_geometry()")
# ## Index first and last points in paths
# What points to index.
def get_pts(o):
return [o.coords[0], o.coords[-1]]
self.gcode = ""
if not kwargs:
log.debug("camlib.generate_from_solderpaste_geo() --> No tool in the solderpaste geometry.")
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("There is no tool data in the SolderPaste geometry."))
# this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
# given under the name 'toolC'
self.postdata['z_start'] = kwargs['data']['tools_solderpaste_z_start']
self.postdata['z_dispense'] = kwargs['data']['tools_solderpaste_z_dispense']
self.postdata['z_stop'] = kwargs['data']['tools_solderpaste_z_stop']
self.postdata['z_travel'] = kwargs['data']['tools_solderpaste_z_travel']
self.postdata['z_toolchange'] = kwargs['data']['tools_solderpaste_z_toolchange']
self.postdata['xy_toolchange'] = kwargs['data']['tools_solderpaste_xy_toolchange']
self.postdata['frxy'] = kwargs['data']['tools_solderpaste_frxy']
self.postdata['frz'] = kwargs['data']['tools_solderpaste_frz']
self.postdata['frz_dispense'] = kwargs['data']['tools_solderpaste_frz_dispense']
self.postdata['speedfwd'] = kwargs['data']['tools_solderpaste_speedfwd']
self.postdata['dwellfwd'] = kwargs['data']['tools_solderpaste_dwellfwd']
self.postdata['speedrev'] = kwargs['data']['tools_solderpaste_speedrev']
self.postdata['dwellrev'] = kwargs['data']['tools_solderpaste_dwellrev']
self.postdata['pp_solderpaste_name'] = kwargs['data']['tools_solderpaste_pp']
self.postdata['toolC'] = kwargs['tooldia']
self.pp_solderpaste_name = kwargs['data']['tools_solderpaste_pp'] if kwargs['data']['tools_solderpaste_pp'] \
else self.app.defaults['tools_solderpaste_pp']
p = self.app.postprocessors[self.pp_solderpaste_name]
# ## Flatten the geometry. Only linear elements (no polygons) remain.
flat_geometry = self.flatten(kwargs['solid_geometry'], pathonly=True)
log.debug("%d paths" % len(flat_geometry))
# Create the indexed storage.
storage = FlatCAMRTreeStorage()
storage.get_points = get_pts
# Store the geometry
log.debug("Indexing geometry before generating G-Code...")
for shape in flat_geometry:
if shape is not None:
storage.insert(shape)
# Initial G-Code
self.gcode = self.doformat(p.start_code)
self.gcode += self.doformat(p.spindle_off_code)
self.gcode += self.doformat(p.toolchange_code)
# ## Iterate over geometry paths getting the nearest each time.
log.debug("Starting SolderPaste G-Code...")
path_count = 0
current_pt = (0, 0)
# variables to display the percentage of work done
geo_len = len(flat_geometry)
disp_number = 0
old_disp_number = 0
pt, geo = storage.nearest(current_pt)
try:
while True:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
path_count += 1
# Remove before modifying, otherwise deletion will fail.
storage.remove(geo)
# If last point in geometry is the nearest but prefer the first one if last point == first point
# then reverse coordinates.
if pt != geo.coords[0] and pt == geo.coords[-1]:
geo.coords = list(geo.coords)[::-1]
self.gcode += self.create_soldepaste_gcode(geo, p=p, old_point=current_pt)
current_pt = geo.coords[-1]
pt, geo = storage.nearest(current_pt) # Next
disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
if old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
old_disp_number = disp_number
except StopIteration: # Nothing found in storage.
pass
log.debug("Finishing SolderPste G-Code... %s paths traced." % path_count)
self.app.inform.emit('%s... %s %s' %
(_("Finished SolderPste G-Code generation"),
str(path_count),
_("paths traced.")
)
)
# Finish
self.gcode += self.doformat(p.lift_code)
self.gcode += self.doformat(p.end_code)
return self.gcode
def create_soldepaste_gcode(self, geometry, p, old_point=(0, 0)):
gcode = ''
path = geometry.coords
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
first_x = path[0][0]
first_y = path[0][1]
else:
# For Incremental coordinates type G91
first_x = path[0][0] - old_point[0]
first_y = path[0][1] - old_point[1]
if type(geometry) == LineString or type(geometry) == LinearRing:
# Move fast to 1st point
gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
# Move down to cutting depth
gcode += self.doformat(p.z_feedrate_code)
gcode += self.doformat(p.down_z_start_code)
gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
gcode += self.doformat(p.dwell_fwd_code)
gcode += self.doformat(p.feedrate_z_dispense_code)
gcode += self.doformat(p.lift_z_dispense_code)
gcode += self.doformat(p.feedrate_xy_code)
# Cutting...
prev_x = first_x
prev_y = first_y
for pt in path[1:]:
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
next_x = pt[0]
next_y = pt[1]
else:
# For Incremental coordinates type G91
next_x = pt[0] - prev_x
next_y = pt[1] - prev_y
gcode += self.doformat(p.linear_code, x=next_x, y=next_y) # Linear motion to point
prev_x = next_x
prev_y = next_y
# Up to travelling height.
gcode += self.doformat(p.spindle_off_code) # Stop dispensing
gcode += self.doformat(p.spindle_rev_code)
gcode += self.doformat(p.down_z_stop_code)
gcode += self.doformat(p.spindle_off_code)
gcode += self.doformat(p.dwell_rev_code)
gcode += self.doformat(p.z_feedrate_code)
gcode += self.doformat(p.lift_code)
elif type(geometry) == Point:
gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
gcode += self.doformat(p.feedrate_z_dispense_code)
gcode += self.doformat(p.down_z_start_code)
gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
gcode += self.doformat(p.dwell_fwd_code)
gcode += self.doformat(p.lift_z_dispense_code)
gcode += self.doformat(p.spindle_off_code) # Stop dispensing
gcode += self.doformat(p.spindle_rev_code)
gcode += self.doformat(p.spindle_off_code)
gcode += self.doformat(p.down_z_stop_code)
gcode += self.doformat(p.dwell_rev_code)
gcode += self.doformat(p.z_feedrate_code)
gcode += self.doformat(p.lift_code)
return gcode
def create_gcode_single_pass(self, geometry, extracut, tolerance, old_point=(0, 0)):
# G-code. Note: self.linear2gcode() and self.point2gcode() will lower and raise the tool every time.
gcode_single_pass = ''
if type(geometry) == LineString or type(geometry) == LinearRing:
if extracut is False:
gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
else:
if geometry.is_ring:
gcode_single_pass = self.linear2gcode_extra(geometry, tolerance=tolerance, old_point=old_point)
else:
gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
elif type(geometry) == Point:
gcode_single_pass = self.point2gcode(geometry)
else:
log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
return
return gcode_single_pass
def create_gcode_multi_pass(self, geometry, extracut, tolerance, postproc, old_point=(0, 0)):
gcode_multi_pass = ''
if isinstance(self.z_cut, Decimal):
z_cut = self.z_cut
else:
z_cut = Decimal(self.z_cut).quantize(Decimal('0.000000001'))
if self.z_depthpercut is None:
self.z_depthpercut = z_cut
elif not isinstance(self.z_depthpercut, Decimal):
self.z_depthpercut = Decimal(self.z_depthpercut).quantize(Decimal('0.000000001'))
depth = 0
reverse = False
while depth > z_cut:
# Increase depth. Limit to z_cut.
depth -= self.z_depthpercut
if depth < z_cut:
depth = z_cut
# Cut at specific depth and do not lift the tool.
# Note: linear2gcode() will use G00 to move to the first point in the path, but it should be already
# at the first point if the tool is down (in the material). So, an extra G00 should show up but
# is inconsequential.
if type(geometry) == LineString or type(geometry) == LinearRing:
if extracut is False:
gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
old_point=old_point)
else:
if geometry.is_ring:
gcode_multi_pass += self.linear2gcode_extra(geometry, tolerance=tolerance, z_cut=depth,
up=False, old_point=old_point)
else:
gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
old_point=old_point)
# Ignore multi-pass for points.
elif type(geometry) == Point:
gcode_multi_pass += self.point2gcode(geometry, old_point=old_point)
break # Ignoring ...
else:
log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
# Reverse coordinates if not a loop so we can continue cutting without returning to the beginning.
if type(geometry) == LineString:
geometry.coords = list(geometry.coords)[::-1]
reverse = True
# If geometry is reversed, revert.
if reverse:
if type(geometry) == LineString:
geometry.coords = list(geometry.coords)[::-1]
# Lift the tool
gcode_multi_pass += self.doformat(postproc.lift_code, x=old_point[0], y=old_point[1])
return gcode_multi_pass
def codes_split(self, gline):
"""
Parses a line of G-Code such as "G01 X1234 Y987" into
a dictionary: {'G': 1.0, 'X': 1234.0, 'Y': 987.0}
:param gline: G-Code line string
:return: Dictionary with parsed line.
"""
command = {}
if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
match_z = re.search(r"^Z(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
if match_z:
command['G'] = 0
command['X'] = float(match_z.group(1).replace(" ", "")) * 0.025
command['Y'] = float(match_z.group(2).replace(" ", "")) * 0.025
command['Z'] = float(match_z.group(3).replace(" ", "")) * 0.025
elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
match_pa = re.search(r"^PA(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
if match_pa:
command['G'] = 0
command['X'] = float(match_pa.group(1).replace(" ", ""))
command['Y'] = float(match_pa.group(2).replace(" ", ""))
match_pen = re.search(r"^(P[U|D])", gline)
if match_pen:
if match_pen.group(1) == 'PU':
# the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
# therefore the move is of kind T (travel)
command['Z'] = 1
else:
command['Z'] = 0
elif 'grbl_laser' in self.pp_excellon_name or 'grbl_laser' in self.pp_geometry_name or \
(self.pp_solderpaste_name is not None and 'Paste' in self.pp_solderpaste_name):
match_lsr = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
if match_lsr:
command['X'] = float(match_lsr.group(1).replace(" ", ""))
command['Y'] = float(match_lsr.group(2).replace(" ", ""))
match_lsr_pos = re.search(r"^(M0[3|5])", gline)
if match_lsr_pos:
if 'M05' in match_lsr_pos.group(1):
# the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
# therefore the move is of kind T (travel)
command['Z'] = 1
else:
command['Z'] = 0
elif self.pp_solderpaste_name is not None:
if 'Paste' in self.pp_solderpaste_name:
match_paste = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
if match_paste:
command['X'] = float(match_paste.group(1).replace(" ", ""))
command['Y'] = float(match_paste.group(2).replace(" ", ""))
else:
match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
while match:
command[match.group(1)] = float(match.group(2).replace(" ", ""))
gline = gline[match.end():]
match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
return command
def gcode_parse(self):
"""
G-Code parser (from self.gcode). Generates dictionary with
single-segment LineString's and "kind" indicating cut or travel,
fast or feedrate speed.
"""
kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
# Results go here
geometry = []
# Last known instruction
current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
# Current path: temporary storage until tool is
# lifted or lowered.
if self.toolchange_xy_type == "excellon":
if self.app.defaults["excellon_toolchangexy"] == '':
pos_xy = [0, 0]
else:
pos_xy = [float(eval(a)) for a in self.app.defaults["excellon_toolchangexy"].split(",")]
else:
if self.app.defaults["geometry_toolchangexy"] == '':
pos_xy = [0, 0]
else:
pos_xy = [float(eval(a)) for a in self.app.defaults["geometry_toolchangexy"].split(",")]
path = [pos_xy]
# path = [(0, 0)]
# Process every instruction
for line in StringIO(self.gcode):
if '%MO' in line or '%' in line or 'MOIN' in line or 'MOMM' in line:
return "fail"
gobj = self.codes_split(line)
# ## Units
if 'G' in gobj and (gobj['G'] == 20.0 or gobj['G'] == 21.0):
self.units = {20.0: "IN", 21.0: "MM"}[gobj['G']]
continue
# ## Changing height
if 'Z' in gobj:
if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
pass
elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
pass
elif 'laser' in self.pp_excellon_name or 'laser' in self.pp_geometry_name:
pass
elif ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
if self.pp_geometry_name == 'line_xyz' or self.pp_excellon_name == 'line_xyz':
pass
else:
log.warning("Non-orthogonal motion: From %s" % str(current))
log.warning(" To: %s" % str(gobj))
current['Z'] = gobj['Z']
# Store the path into geometry and reset path
if len(path) > 1:
geometry.append({"geom": LineString(path),
"kind": kind})
path = [path[-1]] # Start with the last point of last path.
# create the geometry for the holes created when drilling Excellon drills
if self.origin_kind == 'excellon':
if current['Z'] < 0:
current_drill_point_coords = (float('%.4f' % current['X']), float('%.4f' % current['Y']))
# find the drill diameter knowing the drill coordinates
for pt_dict in self.exc_drills:
point_in_dict_coords = (float('%.4f' % pt_dict['point'].x),
float('%.4f' % pt_dict['point'].y))
if point_in_dict_coords == current_drill_point_coords:
tool = pt_dict['tool']
dia = self.exc_tools[tool]['C']
kind = ['C', 'F']
geometry.append({"geom": Point(current_drill_point_coords).
buffer(dia/2).exterior,
"kind": kind})
break
if 'G' in gobj:
current['G'] = int(gobj['G'])
if 'X' in gobj or 'Y' in gobj:
if 'X' in gobj:
x = gobj['X']
# current['X'] = x
else:
x = current['X']
if 'Y' in gobj:
y = gobj['Y']
else:
y = current['Y']
kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
if current['Z'] > 0:
kind[0] = 'T'
if current['G'] > 0:
kind[1] = 'S'
if current['G'] in [0, 1]: # line
path.append((x, y))
arcdir = [None, None, "cw", "ccw"]
if current['G'] in [2, 3]: # arc
center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
radius = sqrt(gobj['I']**2 + gobj['J']**2)
start = arctan2(-gobj['J'], -gobj['I'])
stop = arctan2(-center[1] + y, -center[0] + x)
path += arc(center, radius, start, stop, arcdir[current['G']], int(self.steps_per_circle / 4))
# Update current instruction
for code in gobj:
current[code] = gobj[code]
# There might not be a change in height at the
# end, therefore, see here too if there is
# a final path.
if len(path) > 1:
geometry.append({"geom": LineString(path),
"kind": kind})
self.gcode_parsed = geometry
return geometry
# def plot(self, tooldia=None, dpi=75, margin=0.1,
# color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
# alpha={"T": 0.3, "C": 1.0}):
# """
# Creates a Matplotlib figure with a plot of the
# G-code job.
# """
# if tooldia is None:
# tooldia = self.tooldia
#
# fig = Figure(dpi=dpi)
# ax = fig.add_subplot(111)
# ax.set_aspect(1)
# xmin, ymin, xmax, ymax = self.input_geometry_bounds
# ax.set_xlim(xmin-margin, xmax+margin)
# ax.set_ylim(ymin-margin, ymax+margin)
#
# if tooldia == 0:
# for geo in self.gcode_parsed:
# linespec = '--'
# linecolor = color[geo['kind'][0]][1]
# if geo['kind'][0] == 'C':
# linespec = 'k-'
# x, y = geo['geom'].coords.xy
# ax.plot(x, y, linespec, color=linecolor)
# else:
# for geo in self.gcode_parsed:
# poly = geo['geom'].buffer(tooldia/2.0)
# patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
# edgecolor=color[geo['kind'][0]][1],
# alpha=alpha[geo['kind'][0]], zorder=2)
# ax.add_patch(patch)
#
# return fig
def plot2(self, tooldia=None, dpi=75, margin=0.1, gcode_parsed=None,
color={"T": ["#F0E24D4C", "#B5AB3A4C"], "C": ["#5E6CFFFF", "#4650BDFF"]},
alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005, obj=None, visible=False, kind='all'):
"""
Plots the G-code job onto the given axes.
:param tooldia: Tool diameter.
:param dpi: Not used!
:param margin: Not used!
:param color: Color specification.
:param alpha: Transparency specification.
:param tool_tolerance: Tolerance when drawing the toolshape.
:param obj
:param visible
:param kind
:return: None
"""
# units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
gcode_parsed = gcode_parsed if gcode_parsed else self.gcode_parsed
path_num = 0
if tooldia is None:
tooldia = self.tooldia
# this should be unlikely unless when upstream the tooldia is a tuple made by one dia and a comma like (2.4,)
if isinstance(tooldia, list):
tooldia = tooldia[0] if tooldia[0] is not None else self.tooldia
if tooldia == 0:
for geo in gcode_parsed:
if kind == 'all':
obj.add_shape(shape=geo['geom'], color=color[geo['kind'][0]][1], visible=visible)
elif kind == 'travel':
if geo['kind'][0] == 'T':
obj.add_shape(shape=geo['geom'], color=color['T'][1], visible=visible)
elif kind == 'cut':
if geo['kind'][0] == 'C':
obj.add_shape(shape=geo['geom'], color=color['C'][1], visible=visible)
else:
text = []
pos = []
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
for geo in gcode_parsed:
if geo['kind'][0] == 'T':
current_position = geo['geom'].coords[0]
if current_position not in pos:
pos.append(current_position)
path_num += 1
text.append(str(path_num))
current_position = geo['geom'].coords[-1]
if current_position not in pos:
pos.append(current_position)
path_num += 1
text.append(str(path_num))
# plot the geometry of Excellon objects
if self.origin_kind == 'excellon':
try:
poly = Polygon(geo['geom'])
except ValueError:
# if the geos are travel lines it will enter into Exception
poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
poly = poly.simplify(tool_tolerance)
else:
# plot the geometry of any objects other than Excellon
poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
poly = poly.simplify(tool_tolerance)
if kind == 'all':
obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
elif kind == 'travel':
if geo['kind'][0] == 'T':
obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
visible=visible, layer=2)
elif kind == 'cut':
if geo['kind'][0] == 'C':
obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
visible=visible, layer=1)
else:
# For Incremental coordinates type G91
self.app.inform.emit('[ERROR_NOTCL] %s' %
_('G91 coordinates not implemented ...'))
for geo in gcode_parsed:
if geo['kind'][0] == 'T':
current_position = geo['geom'].coords[0]
if current_position not in pos:
pos.append(current_position)
path_num += 1
text.append(str(path_num))
current_position = geo['geom'].coords[-1]
if current_position not in pos:
pos.append(current_position)
path_num += 1
text.append(str(path_num))
# plot the geometry of Excellon objects
if self.origin_kind == 'excellon':
try:
poly = Polygon(geo['geom'])
except ValueError:
# if the geos are travel lines it will enter into Exception
poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
poly = poly.simplify(tool_tolerance)
else:
# plot the geometry of any objects other than Excellon
poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
poly = poly.simplify(tool_tolerance)
if kind == 'all':
obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
elif kind == 'travel':
if geo['kind'][0] == 'T':
obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
visible=visible, layer=2)
elif kind == 'cut':
if geo['kind'][0] == 'C':
obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
visible=visible, layer=1)
# current_x = gcode_parsed[0]['geom'].coords[0][0]
# current_y = gcode_parsed[0]['geom'].coords[0][1]
# old_pos = (
# current_x,
# current_y
# )
#
# for geo in gcode_parsed:
# if geo['kind'][0] == 'T':
# current_position = (
# geo['geom'].coords[0][0] + old_pos[0],
# geo['geom'].coords[0][1] + old_pos[1]
# )
# if current_position not in pos:
# pos.append(current_position)
# path_num += 1
# text.append(str(path_num))
#
# delta = (
# geo['geom'].coords[-1][0] - geo['geom'].coords[0][0],
# geo['geom'].coords[-1][1] - geo['geom'].coords[0][1]
# )
# current_position = (
# current_position[0] + geo['geom'].coords[-1][0],
# current_position[1] + geo['geom'].coords[-1][1]
# )
# if current_position not in pos:
# pos.append(current_position)
# path_num += 1
# text.append(str(path_num))
#
# # plot the geometry of Excellon objects
# if self.origin_kind == 'excellon':
# if isinstance(geo['geom'], Point):
# # if geo is Point
# current_position = (
# current_position[0] + geo['geom'].x,
# current_position[1] + geo['geom'].y
# )
# poly = Polygon(Point(current_position))
# elif isinstance(geo['geom'], LineString):
# # if the geos are travel lines (LineStrings)
# new_line_pts = []
# old_line_pos = deepcopy(current_position)
# for p in list(geo['geom'].coords):
# current_position = (
# current_position[0] + p[0],
# current_position[1] + p[1]
# )
# new_line_pts.append(current_position)
# old_line_pos = p
# new_line = LineString(new_line_pts)
#
# poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
# poly = poly.simplify(tool_tolerance)
# else:
# # plot the geometry of any objects other than Excellon
# new_line_pts = []
# old_line_pos = deepcopy(current_position)
# for p in list(geo['geom'].coords):
# current_position = (
# current_position[0] + p[0],
# current_position[1] + p[1]
# )
# new_line_pts.append(current_position)
# old_line_pos = p
# new_line = LineString(new_line_pts)
#
# poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
# poly = poly.simplify(tool_tolerance)
#
# old_pos = deepcopy(current_position)
#
# if kind == 'all':
# obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
# visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
# elif kind == 'travel':
# if geo['kind'][0] == 'T':
# obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
# visible=visible, layer=2)
# elif kind == 'cut':
# if geo['kind'][0] == 'C':
# obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
# visible=visible, layer=1)
try:
obj.annotation.set(text=text, pos=pos, visible=obj.options['plot'],
font_size=self.app.defaults["cncjob_annotation_fontsize"],
color=self.app.defaults["cncjob_annotation_fontcolor"])
except Exception as e:
pass
def create_geometry(self):
# TODO: This takes forever. Too much data?
self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
return self.solid_geometry
# code snippet added by Lei Zheng in a rejected pull request on FlatCAM https://bitbucket.org/realthunder/
def segment(self, coords):
"""
break long linear lines to make it more auto level friendly
"""
if len(coords) < 2 or self.segx <= 0 and self.segy <= 0:
return list(coords)
path = [coords[0]]
# break the line in either x or y dimension only
def linebreak_single(line, dim, dmax):
if dmax <= 0:
return None
if line[1][dim] > line[0][dim]:
sign = 1.0
d = line[1][dim] - line[0][dim]
else:
sign = -1.0
d = line[0][dim] - line[1][dim]
if d > dmax:
# make sure we don't make any new lines too short
if d > dmax * 2:
dd = dmax
else:
dd = d / 2
other = dim ^ 1
return (line[0][dim] + dd * sign, line[0][other] + \
dd * (line[1][other] - line[0][other]) / d)
return None
# recursively breaks down a given line until it is within the
# required step size
def linebreak(line):
pt_new = linebreak_single(line, 0, self.segx)
if pt_new is None:
pt_new2 = linebreak_single(line, 1, self.segy)
else:
pt_new2 = linebreak_single((line[0], pt_new), 1, self.segy)
if pt_new2 is not None:
pt_new = pt_new2[::-1]
if pt_new is None:
path.append(line[1])
else:
path.append(pt_new)
linebreak((pt_new, line[1]))
for pt in coords[1:]:
linebreak((path[-1], pt))
return path
def linear2gcode(self, linear, tolerance=0, down=True, up=True,
z_cut=None, z_move=None, zdownrate=None,
feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
"""
Generates G-code to cut along the linear feature.
:param linear: The path to cut along.
:type: Shapely.LinearRing or Shapely.Linear String
:param tolerance: All points in the simplified object will be within the
tolerance distance of the original geometry.
:type tolerance: float
:param feedrate: speed for cut on X - Y plane
:param feedrate_z: speed for cut on Z plane
:param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
:return: G-code to cut along the linear feature.
:rtype: str
"""
if z_cut is None:
z_cut = self.z_cut
if z_move is None:
z_move = self.z_move
#
# if zdownrate is None:
# zdownrate = self.zdownrate
if feedrate is None:
feedrate = self.feedrate
if feedrate_z is None:
feedrate_z = self.z_feedrate
if feedrate_rapid is None:
feedrate_rapid = self.feedrate_rapid
# Simplify paths?
if tolerance > 0:
target_linear = linear.simplify(tolerance)
else:
target_linear = linear
gcode = ""
# path = list(target_linear.coords)
path = self.segment(target_linear.coords)
p = self.pp_geometry
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
first_x = path[0][0]
first_y = path[0][1]
else:
# For Incremental coordinates type G91
first_x = path[0][0] - old_point[0]
first_y = path[0][1] - old_point[1]
# Move fast to 1st point
if not cont:
gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
# Move down to cutting depth
if down:
# Different feedrate for vertical cut?
gcode += self.doformat(p.z_feedrate_code)
# gcode += self.doformat(p.feedrate_code)
gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
# Cutting...
prev_x = first_x
prev_y = first_y
for pt in path[1:]:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
next_x = pt[0]
next_y = pt[1]
else:
# For Incremental coordinates type G91
# next_x = pt[0] - prev_x
# next_y = pt[1] - prev_y
self.app.inform.emit('[ERROR_NOTCL] %s' %
_('G91 coordinates not implemented ...'))
next_x = pt[0]
next_y = pt[1]
gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
prev_x = pt[0]
prev_y = pt[1]
# Up to travelling height.
if up:
gcode += self.doformat(p.lift_code, x=prev_x, y=prev_y, z_move=z_move) # Stop cutting
return gcode
def linear2gcode_extra(self, linear, tolerance=0, down=True, up=True,
z_cut=None, z_move=None, zdownrate=None,
feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
"""
Generates G-code to cut along the linear feature.
:param linear: The path to cut along.
:type: Shapely.LinearRing or Shapely.Linear String
:param tolerance: All points in the simplified object will be within the
tolerance distance of the original geometry.
:type tolerance: float
:param feedrate: speed for cut on X - Y plane
:param feedrate_z: speed for cut on Z plane
:param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
:return: G-code to cut along the linear feature.
:rtype: str
"""
if z_cut is None:
z_cut = self.z_cut
if z_move is None:
z_move = self.z_move
#
# if zdownrate is None:
# zdownrate = self.zdownrate
if feedrate is None:
feedrate = self.feedrate
if feedrate_z is None:
feedrate_z = self.z_feedrate
if feedrate_rapid is None:
feedrate_rapid = self.feedrate_rapid
# Simplify paths?
if tolerance > 0:
target_linear = linear.simplify(tolerance)
else:
target_linear = linear
gcode = ""
path = list(target_linear.coords)
p = self.pp_geometry
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
first_x = path[0][0]
first_y = path[0][1]
else:
# For Incremental coordinates type G91
first_x = path[0][0] - old_point[0]
first_y = path[0][1] - old_point[1]
# Move fast to 1st point
if not cont:
gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
# Move down to cutting depth
if down:
# Different feedrate for vertical cut?
if self.z_feedrate is not None:
gcode += self.doformat(p.z_feedrate_code)
# gcode += self.doformat(p.feedrate_code)
gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
else:
gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut) # Start cutting
# Cutting...
prev_x = first_x
prev_y = first_y
for pt in path[1:]:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
next_x = pt[0]
next_y = pt[1]
else:
# For Incremental coordinates type G91
# For Incremental coordinates type G91
# next_x = pt[0] - prev_x
# next_y = pt[1] - prev_y
self.app.inform.emit('[ERROR_NOTCL] %s' %
_('G91 coordinates not implemented ...'))
next_x = pt[0]
next_y = pt[1]
gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
prev_x = pt[0]
prev_y = pt[1]
# this line is added to create an extra cut over the first point in patch
# to make sure that we remove the copper leftovers
# Linear motion to the 1st point in the cut path
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
last_x = path[1][0]
last_y = path[1][1]
else:
# For Incremental coordinates type G91
last_x = path[1][0] - first_x
last_y = path[1][1] - first_y
gcode += self.doformat(p.linear_code, x=last_x, y=last_y)
# Up to travelling height.
if up:
gcode += self.doformat(p.lift_code, x=last_x, y=last_y, z_move=z_move) # Stop cutting
return gcode
def point2gcode(self, point, old_point=(0, 0)):
gcode = ""
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
path = list(point.coords)
p = self.pp_geometry
self.coordinates_type = self.app.defaults["cncjob_coords_type"]
if self.coordinates_type == "G90":
# For Absolute coordinates type G90
first_x = path[0][0]
first_y = path[0][1]
else:
# For Incremental coordinates type G91
# first_x = path[0][0] - old_point[0]
# first_y = path[0][1] - old_point[1]
self.app.inform.emit('[ERROR_NOTCL] %s' %
_('G91 coordinates not implemented ...'))
first_x = path[0][0]
first_y = path[0][1]
gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
if self.z_feedrate is not None:
gcode += self.doformat(p.z_feedrate_code)
gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut)
gcode += self.doformat(p.feedrate_code)
else:
gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut) # Start cutting
gcode += self.doformat(p.lift_code, x=first_x, y=first_y) # Stop cutting
return gcode
def export_svg(self, scale_factor=0.00):
"""
Exports the CNC Job as a SVG Element
:scale_factor: float
:return: SVG Element string
"""
# scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
# If not specified then try and use the tool diameter
# This way what is on screen will match what is outputed for the svg
# This is quite a useful feature for svg's used with visicut
if scale_factor <= 0:
scale_factor = self.options['tooldia'] / 2
# If still 0 then default to 0.05
# This value appears to work for zooming, and getting the output svg line width
# to match that viewed on screen with FlatCam
if scale_factor == 0:
scale_factor = 0.01
# Separate the list of cuts and travels into 2 distinct lists
# This way we can add different formatting / colors to both
cuts = []
travels = []
for g in self.gcode_parsed:
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if g['kind'][0] == 'C': cuts.append(g)
if g['kind'][0] == 'T': travels.append(g)
# Used to determine the overall board size
self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
# Convert the cuts and travels into single geometry objects we can render as svg xml
if travels:
travelsgeom = cascaded_union([geo['geom'] for geo in travels])
if self.app.abort_flag:
# graceful abort requested by the user
raise FlatCAMApp.GracefulException
if cuts:
cutsgeom = cascaded_union([geo['geom'] for geo in cuts])
# Render the SVG Xml
# The scale factor affects the size of the lines, and the stroke color adds different formatting for each set
# It's better to have the travels sitting underneath the cuts for visicut
svg_elem = ""
if travels:
svg_elem = travelsgeom.svg(scale_factor=scale_factor, stroke_color="#F0E24D")
if cuts:
svg_elem += cutsgeom.svg(scale_factor=scale_factor, stroke_color="#5E6CFF")
return svg_elem
def bounds(self):
"""
Returns coordinates of rectangular bounds
of geometry: (xmin, ymin, xmax, ymax).
"""
# fixed issue of getting bounds only for one level lists of objects
# now it can get bounds for nested lists of objects
log.debug("camlib.CNCJob.bounds()")
def bounds_rec(obj):
if type(obj) is list:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in obj:
if type(k) is dict:
for key in k:
minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
else:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
return obj.bounds
if self.multitool is False:
log.debug("CNCJob->bounds()")
if self.solid_geometry is None:
log.debug("solid_geometry is None")
return 0, 0, 0, 0
bounds_coords = bounds_rec(self.solid_geometry)
else:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k, v in self.cnc_tools.items():
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
try:
for k in v['solid_geometry']:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
except TypeError:
minx_, miny_, maxx_, maxy_ = bounds_rec(v['solid_geometry'])
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
bounds_coords = minx, miny, maxx, maxy
return bounds_coords
# TODO This function should be replaced at some point with a "real" function. Until then it's an ugly hack ...
def scale(self, xfactor, yfactor=None, point=None):
"""
Scales all the geometry on the XY plane in the object by the
given factor. Tool sizes, feedrates, or Z-axis dimensions are
not altered.
:param factor: Number by which to scale the object.
:type factor: float
:param point: the (x,y) coords for the point of origin of scale
:type tuple of floats
:return: None
:rtype: None
"""
log.debug("camlib.CNCJob.scale()")
if yfactor is None:
yfactor = xfactor
if point is None:
px = 0
py = 0
else:
px, py = point
def scale_g(g):
"""
:param g: 'g' parameter it's a gcode string
:return: scaled gcode string
"""
temp_gcode = ''
header_start = False
header_stop = False
units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
lines = StringIO(g)
for line in lines:
# this changes the GCODE header ---- UGLY HACK
if "TOOL DIAMETER" in line or "Feedrate:" in line:
header_start = True
if "G20" in line or "G21" in line:
header_start = False
header_stop = True
if header_start is True:
header_stop = False
if "in" in line:
if units == 'MM':
line = line.replace("in", "mm")
if "mm" in line:
if units == 'IN':
line = line.replace("mm", "in")
# find any float number in header (even multiple on the same line) and convert it
numbers_in_header = re.findall(self.g_nr_re, line)
if numbers_in_header:
for nr in numbers_in_header:
new_nr = float(nr) * xfactor
# replace the updated string
line = line.replace(nr, ('%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_nr))
)
# this scales all the X and Y and Z and F values and also the Tool Dia in the toolchange message
if header_stop is True:
if "G20" in line:
if units == 'MM':
line = line.replace("G20", "G21")
if "G21" in line:
if units == 'IN':
line = line.replace("G21", "G20")
# find the X group
match_x = self.g_x_re.search(line)
if match_x:
if match_x.group(1) is not None:
new_x = float(match_x.group(1)[1:]) * xfactor
# replace the updated string
line = line.replace(
match_x.group(1),
'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
)
# find the Y group
match_y = self.g_y_re.search(line)
if match_y:
if match_y.group(1) is not None:
new_y = float(match_y.group(1)[1:]) * yfactor
line = line.replace(
match_y.group(1),
'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
)
# find the Z group
match_z = self.g_z_re.search(line)
if match_z:
if match_z.group(1) is not None:
new_z = float(match_z.group(1)[1:]) * xfactor
line = line.replace(
match_z.group(1),
'Z%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_z)
)
# find the F group
match_f = self.g_f_re.search(line)
if match_f:
if match_f.group(1) is not None:
new_f = float(match_f.group(1)[1:]) * xfactor
line = line.replace(
match_f.group(1),
'F%.*f' % (self.app.defaults["cncjob_fr_decimals"], new_f)
)
# find the T group (tool dia on toolchange)
match_t = self.g_t_re.search(line)
if match_t:
if match_t.group(1) is not None:
new_t = float(match_t.group(1)[1:]) * xfactor
line = line.replace(
match_t.group(1),
'= %.*f' % (self.app.defaults["cncjob_coords_decimals"], new_t)
)
temp_gcode += line
lines.close()
header_stop = False
return temp_gcode
if self.multitool is False:
# offset Gcode
self.gcode = scale_g(self.gcode)
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.gcode_parsed:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# scale geometry
for g in self.gcode_parsed:
try:
g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
self.create_geometry()
else:
for k, v in self.cnc_tools.items():
# scale Gcode
v['gcode'] = scale_g(v['gcode'])
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in v['gcode_parsed']:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# scale gcode_parsed
for g in v['gcode_parsed']:
try:
g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
self.create_geometry()
self.app.proc_container.new_text = ''
def offset(self, vect):
"""
Offsets all the geometry on the XY plane in the object by the
given vector.
Offsets all the GCODE on the XY plane in the object by the
given vector.
g_offsetx_re, g_offsety_re, multitool, cnnc_tools are attributes of FlatCAMCNCJob class in camlib
:param vect: (x, y) offset vector.
:type vect: tuple
:return: None
"""
log.debug("camlib.CNCJob.offset()")
dx, dy = vect
def offset_g(g):
"""
:param g: 'g' parameter it's a gcode string
:return: offseted gcode string
"""
temp_gcode = ''
lines = StringIO(g)
for line in lines:
# find the X group
match_x = self.g_x_re.search(line)
if match_x:
if match_x.group(1) is not None:
# get the coordinate and add X offset
new_x = float(match_x.group(1)[1:]) + dx
# replace the updated string
line = line.replace(
match_x.group(1),
'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
)
match_y = self.g_y_re.search(line)
if match_y:
if match_y.group(1) is not None:
new_y = float(match_y.group(1)[1:]) + dy
line = line.replace(
match_y.group(1),
'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
)
temp_gcode += line
lines.close()
return temp_gcode
if self.multitool is False:
# offset Gcode
self.gcode = offset_g(self.gcode)
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.gcode_parsed:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# offset geometry
for g in self.gcode_parsed:
try:
g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
self.create_geometry()
else:
for k, v in self.cnc_tools.items():
# offset Gcode
v['gcode'] = offset_g(v['gcode'])
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in v['gcode_parsed']:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
# offset gcode_parsed
for g in v['gcode_parsed']:
try:
g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
# for the bounding box
v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
self.app.proc_container.new_text = ''
def mirror(self, axis, point):
"""
Mirror the geometrys of an object by an given axis around the coordinates of the 'point'
:param angle:
:param point: tupple of coordinates (x,y)
:return:
"""
log.debug("camlib.CNCJob.mirror()")
px, py = point
xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.gcode_parsed:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
for g in self.gcode_parsed:
try:
g['geom'] = affinity.scale(g['geom'], xscale, yscale, origin=(px, py))
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
self.create_geometry()
self.app.proc_container.new_text = ''
def skew(self, angle_x, angle_y, point):
"""
Shear/Skew the geometries of an object by angles along x and y dimensions.
Parameters
----------
angle_x, angle_y : float, float
The shear angle(s) for the x and y axes respectively. These can be
specified in either degrees (default) or radians by setting
use_radians=True.
point: tupple of coordinates (x,y)
See shapely manual for more information:
http://toblerity.org/shapely/manual.html#affine-transformations
"""
log.debug("camlib.CNCJob.skew()")
px, py = point
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.gcode_parsed:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
for g in self.gcode_parsed:
try:
g['geom'] = affinity.skew(g['geom'], angle_x, angle_y, origin=(px, py))
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
self.create_geometry()
self.app.proc_container.new_text = ''
def rotate(self, angle, point):
"""
Rotate the geometrys of an object by an given angle around the coordinates of the 'point'
:param angle:
:param point: tupple of coordinates (x,y)
:return:
"""
log.debug("camlib.CNCJob.rotate()")
px, py = point
# variables to display the percentage of work done
self.geo_len = 0
try:
for g in self.gcode_parsed:
self.geo_len += 1
except TypeError:
self.geo_len = 1
self.old_disp_number = 0
self.el_count = 0
for g in self.gcode_parsed:
try:
g['geom'] = affinity.rotate(g['geom'], angle, origin=(px, py))
except AttributeError:
return g['geom']
self.el_count += 1
disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
if self.old_disp_number < disp_number <= 100:
self.app.proc_container.update_view_text(' %d%%' % disp_number)
self.old_disp_number = disp_number
self.create_geometry()
self.app.proc_container.new_text = ''
def get_bounds(geometry_list):
xmin = Inf
ymin = Inf
xmax = -Inf
ymax = -Inf
for gs in geometry_list:
try:
gxmin, gymin, gxmax, gymax = gs.bounds()
xmin = min([xmin, gxmin])
ymin = min([ymin, gymin])
xmax = max([xmax, gxmax])
ymax = max([ymax, gymax])
except:
log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
return [xmin, ymin, xmax, ymax]
def arc(center, radius, start, stop, direction, steps_per_circ):
"""
Creates a list of point along the specified arc.
:param center: Coordinates of the center [x, y]
:type center: list
:param radius: Radius of the arc.
:type radius: float
:param start: Starting angle in radians
:type start: float
:param stop: End angle in radians
:type stop: float
:param direction: Orientation of the arc, "CW" or "CCW"
:type direction: string
:param steps_per_circ: Number of straight line segments to
represent a circle.
:type steps_per_circ: int
:return: The desired arc, as list of tuples
:rtype: list
"""
# TODO: Resolution should be established by maximum error from the exact arc.
da_sign = {"cw": -1.0, "ccw": 1.0}
points = []
if direction == "ccw" and stop <= start:
stop += 2 * pi
if direction == "cw" and stop >= start:
stop -= 2 * pi
angle = abs(stop - start)
#angle = stop-start
steps = max([int(ceil(angle / (2 * pi) * steps_per_circ)), 2])
delta_angle = da_sign[direction] * angle * 1.0 / steps
for i in range(steps + 1):
theta = start + delta_angle * i
points.append((center[0] + radius * cos(theta), center[1] + radius * sin(theta)))
return points
def arc2(p1, p2, center, direction, steps_per_circ):
r = sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
start = arctan2(p1[1] - center[1], p1[0] - center[0])
stop = arctan2(p2[1] - center[1], p2[0] - center[0])
return arc(center, r, start, stop, direction, steps_per_circ)
def arc_angle(start, stop, direction):
if direction == "ccw" and stop <= start:
stop += 2 * pi
if direction == "cw" and stop >= start:
stop -= 2 * pi
angle = abs(stop - start)
return angle
# def find_polygon(poly, point):
# """
# Find an object that object.contains(Point(point)) in
# poly, which can can be iterable, contain iterable of, or
# be itself an implementer of .contains().
#
# :param poly: See description
# :return: Polygon containing point or None.
# """
#
# if poly is None:
# return None
#
# try:
# for sub_poly in poly:
# p = find_polygon(sub_poly, point)
# if p is not None:
# return p
# except TypeError:
# try:
# if poly.contains(Point(point)):
# return poly
# except AttributeError:
# return None
#
# return None
def to_dict(obj):
"""
Makes the following types into serializable form:
* ApertureMacro
* BaseGeometry
:param obj: Shapely geometry.
:type obj: BaseGeometry
:return: Dictionary with serializable form if ``obj`` was
BaseGeometry or ApertureMacro, otherwise returns ``obj``.
"""
if isinstance(obj, ApertureMacro):
return {
"__class__": "ApertureMacro",
"__inst__": obj.to_dict()
}
if isinstance(obj, BaseGeometry):
return {
"__class__": "Shply",
"__inst__": sdumps(obj)
}
return obj
def dict2obj(d):
"""
Default deserializer.
:param d: Serializable dictionary representation of an object
to be reconstructed.
:return: Reconstructed object.
"""
if '__class__' in d and '__inst__' in d:
if d['__class__'] == "Shply":
return sloads(d['__inst__'])
if d['__class__'] == "ApertureMacro":
am = ApertureMacro()
am.from_dict(d['__inst__'])
return am
return d
else:
return d
# def plotg(geo, solid_poly=False, color="black"):
# try:
# __ = iter(geo)
# except:
# geo = [geo]
#
# for g in geo:
# if type(g) == Polygon:
# if solid_poly:
# patch = PolygonPatch(g,
# facecolor="#BBF268",
# edgecolor="#006E20",
# alpha=0.75,
# zorder=2)
# ax = subplot(111)
# ax.add_patch(patch)
# else:
# x, y = g.exterior.coords.xy
# plot(x, y, color=color)
# for ints in g.interiors:
# x, y = ints.coords.xy
# plot(x, y, color=color)
# continue
#
# if type(g) == LineString or type(g) == LinearRing:
# x, y = g.coords.xy
# plot(x, y, color=color)
# continue
#
# if type(g) == Point:
# x, y = g.coords.xy
# plot(x, y, 'o')
# continue
#
# try:
# __ = iter(g)
# plotg(g, color=color)
# except:
# log.error("Cannot plot: " + str(type(g)))
# continue
def parse_gerber_number(strnumber, int_digits, frac_digits, zeros):
"""
Parse a single number of Gerber coordinates.
:param strnumber: String containing a number in decimal digits
from a coordinate data block, possibly with a leading sign.
:type strnumber: str
:param int_digits: Number of digits used for the integer
part of the number
:type frac_digits: int
:param frac_digits: Number of digits used for the fractional
part of the number
:type frac_digits: int
:param zeros: If 'L', leading zeros are removed and trailing zeros are kept. Same situation for 'D' when
no zero suppression is done. If 'T', is in reverse.
:type zeros: str
:return: The number in floating point.
:rtype: float
"""
ret_val = None
if zeros == 'L' or zeros == 'D':
ret_val = int(strnumber) * (10 ** (-frac_digits))
if zeros == 'T':
int_val = int(strnumber)
ret_val = (int_val * (10 ** ((int_digits + frac_digits) - len(strnumber)))) * (10 ** (-frac_digits))
return ret_val
# def alpha_shape(points, alpha):
# """
# Compute the alpha shape (concave hull) of a set of points.
#
# @param points: Iterable container of points.
# @param alpha: alpha value to influence the gooeyness of the border. Smaller
# numbers don't fall inward as much as larger numbers. Too large,
# and you lose everything!
# """
# if len(points) < 4:
# # When you have a triangle, there is no sense in computing an alpha
# # shape.
# return MultiPoint(list(points)).convex_hull
#
# def add_edge(edges, edge_points, coords, i, j):
# """Add a line between the i-th and j-th points, if not in the list already"""
# if (i, j) in edges or (j, i) in edges:
# # already added
# return
# edges.add( (i, j) )
# edge_points.append(coords[ [i, j] ])
#
# coords = np.array([point.coords[0] for point in points])
#
# tri = Delaunay(coords)
# edges = set()
# edge_points = []
# # loop over triangles:
# # ia, ib, ic = indices of corner points of the triangle
# for ia, ib, ic in tri.vertices:
# pa = coords[ia]
# pb = coords[ib]
# pc = coords[ic]
#
# # Lengths of sides of triangle
# a = math.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
# b = math.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
# c = math.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
#
# # Semiperimeter of triangle
# s = (a + b + c)/2.0
#
# # Area of triangle by Heron's formula
# area = math.sqrt(s*(s-a)*(s-b)*(s-c))
# circum_r = a*b*c/(4.0*area)
#
# # Here's the radius filter.
# #print circum_r
# if circum_r < 1.0/alpha:
# add_edge(edges, edge_points, coords, ia, ib)
# add_edge(edges, edge_points, coords, ib, ic)
# add_edge(edges, edge_points, coords, ic, ia)
#
# m = MultiLineString(edge_points)
# triangles = list(polygonize(m))
# return cascaded_union(triangles), edge_points
# def voronoi(P):
# """
# Returns a list of all edges of the voronoi diagram for the given input points.
# """
# delauny = Delaunay(P)
# triangles = delauny.points[delauny.vertices]
#
# circum_centers = np.array([triangle_csc(tri) for tri in triangles])
# long_lines_endpoints = []
#
# lineIndices = []
# for i, triangle in enumerate(triangles):
# circum_center = circum_centers[i]
# for j, neighbor in enumerate(delauny.neighbors[i]):
# if neighbor != -1:
# lineIndices.append((i, neighbor))
# else:
# ps = triangle[(j+1)%3] - triangle[(j-1)%3]
# ps = np.array((ps[1], -ps[0]))
#
# middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
# di = middle - triangle[j]
#
# ps /= np.linalg.norm(ps)
# di /= np.linalg.norm(di)
#
# if np.dot(di, ps) < 0.0:
# ps *= -1000.0
# else:
# ps *= 1000.0
#
# long_lines_endpoints.append(circum_center + ps)
# lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
#
# vertices = np.vstack((circum_centers, long_lines_endpoints))
#
# # filter out any duplicate lines
# lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
# lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
# lineIndicesUnique = np.unique(lineIndicesTupled)
#
# return vertices, lineIndicesUnique
#
#
# def triangle_csc(pts):
# rows, cols = pts.shape
#
# A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
# [np.ones((1, rows)), np.zeros((1, 1))]])
#
# b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
# x = np.linalg.solve(A,b)
# bary_coords = x[:-1]
# return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
#
#
# def voronoi_cell_lines(points, vertices, lineIndices):
# """
# Returns a mapping from a voronoi cell to its edges.
#
# :param points: shape (m,2)
# :param vertices: shape (n,2)
# :param lineIndices: shape (o,2)
# :rtype: dict point index -> list of shape (n,2) with vertex indices
# """
# kd = KDTree(points)
#
# cells = collections.defaultdict(list)
# for i1, i2 in lineIndices:
# v1, v2 = vertices[i1], vertices[i2]
# mid = (v1+v2)/2
# _, (p1Idx, p2Idx) = kd.query(mid, 2)
# cells[p1Idx].append((i1, i2))
# cells[p2Idx].append((i1, i2))
#
# return cells
#
#
# def voronoi_edges2polygons(cells):
# """
# Transforms cell edges into polygons.
#
# :param cells: as returned from voronoi_cell_lines
# :rtype: dict point index -> list of vertex indices which form a polygon
# """
#
# # first, close the outer cells
# for pIdx, lineIndices_ in cells.items():
# dangling_lines = []
# for i1, i2 in lineIndices_:
# p = (i1, i2)
# connections = filter(lambda k: p != k and (p[0] == k[0] or p[0] == k[1] or p[1] == k[0] or p[1] == k[1]), lineIndices_)
# # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
# assert 1 <= len(connections) <= 2
# if len(connections) == 1:
# dangling_lines.append((i1, i2))
# assert len(dangling_lines) in [0, 2]
# if len(dangling_lines) == 2:
# (i11, i12), (i21, i22) = dangling_lines
# s = (i11, i12)
# t = (i21, i22)
#
# # determine which line ends are unconnected
# connected = filter(lambda k: k != s and (k[0] == s[0] or k[1] == s[0]), lineIndices_)
# # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
# i11Unconnected = len(connected) == 0
#
# connected = filter(lambda k: k != t and (k[0] == t[0] or k[1] == t[0]), lineIndices_)
# # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
# i21Unconnected = len(connected) == 0
#
# startIdx = i11 if i11Unconnected else i12
# endIdx = i21 if i21Unconnected else i22
#
# cells[pIdx].append((startIdx, endIdx))
#
# # then, form polygons by storing vertex indices in (counter-)clockwise order
# polys = dict()
# for pIdx, lineIndices_ in cells.items():
# # get a directed graph which contains both directions and arbitrarily follow one of both
# directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
# directedGraphMap = collections.defaultdict(list)
# for (i1, i2) in directedGraph:
# directedGraphMap[i1].append(i2)
# orderedEdges = []
# currentEdge = directedGraph[0]
# while len(orderedEdges) < len(lineIndices_):
# i1 = currentEdge[1]
# i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
# nextEdge = (i1, i2)
# orderedEdges.append(nextEdge)
# currentEdge = nextEdge
#
# polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
#
# return polys
#
#
# def voronoi_polygons(points):
# """
# Returns the voronoi polygon for each input point.
#
# :param points: shape (n,2)
# :rtype: list of n polygons where each polygon is an array of vertices
# """
# vertices, lineIndices = voronoi(points)
# cells = voronoi_cell_lines(points, vertices, lineIndices)
# polys = voronoi_edges2polygons(cells)
# polylist = []
# for i in range(len(points)):
# poly = vertices[np.asarray(polys[i])]
# polylist.append(poly)
# return polylist
#
#
# class Zprofile:
# def __init__(self):
#
# # data contains lists of [x, y, z]
# self.data = []
#
# # Computed voronoi polygons (shapely)
# self.polygons = []
# pass
#
# # def plot_polygons(self):
# # axes = plt.subplot(1, 1, 1)
# #
# # plt.axis([-0.05, 1.05, -0.05, 1.05])
# #
# # for poly in self.polygons:
# # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
# # axes.add_patch(p)
#
# def init_from_csv(self, filename):
# pass
#
# def init_from_string(self, zpstring):
# pass
#
# def init_from_list(self, zplist):
# self.data = zplist
#
# def generate_polygons(self):
# self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
#
# def normalize(self, origin):
# pass
#
# def paste(self, path):
# """
# Return a list of dictionaries containing the parts of the original
# path and their z-axis offset.
# """
#
# # At most one region/polygon will contain the path
# containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
#
# if len(containing) > 0:
# return [{"path": path, "z": self.data[containing[0]][2]}]
#
# # All region indexes that intersect with the path
# crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
#
# return [{"path": path.intersection(self.polygons[i]),
# "z": self.data[i][2]} for i in crossing]
def autolist(obj):
try:
__ = iter(obj)
return obj
except TypeError:
return [obj]
def three_point_circle(p1, p2, p3):
"""
Computes the center and radius of a circle from
3 points on its circumference.
:param p1: Point 1
:param p2: Point 2
:param p3: Point 3
:return: center, radius
"""
# Midpoints
a1 = (p1 + p2) / 2.0
a2 = (p2 + p3) / 2.0
# Normals
b1 = dot((p2 - p1), array([[0, -1], [1, 0]], dtype=float32))
b2 = dot((p3 - p2), array([[0, 1], [-1, 0]], dtype=float32))
# Params
try:
T = solve(transpose(array([-b1, b2])), a1 - a2)
except Exception as e:
log.debug("camlib.three_point_circle() --> %s" % str(e))
return
# Center
center = a1 + b1 * T[0]
# Radius
radius = np.linalg.norm(center - p1)
return center, radius, T[0]
def distance(pt1, pt2):
return sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
def distance_euclidian(x1, y1, x2, y2):
return sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
class FlatCAMRTree(object):
"""
Indexes geometry (Any object with "cooords" property containing
a list of tuples with x, y values). Objects are indexed by
all their points by default. To index by arbitrary points,
override self.points2obj.
"""
def __init__(self):
# Python RTree Index
self.rti = rtindex.Index()
# ## Track object-point relationship
# Each is list of points in object.
self.obj2points = []
# Index is index in rtree, value is index of
# object in obj2points.
self.points2obj = []
self.get_points = lambda go: go.coords
def grow_obj2points(self, idx):
"""
Increases the size of self.obj2points to fit
idx + 1 items.
:param idx: Index to fit into list.
:return: None
"""
if len(self.obj2points) > idx:
# len == 2, idx == 1, ok.
return
else:
# len == 2, idx == 2, need 1 more.
# range(2, 3)
for i in range(len(self.obj2points), idx + 1):
self.obj2points.append([])
def insert(self, objid, obj):
self.grow_obj2points(objid)
self.obj2points[objid] = []
for pt in self.get_points(obj):
self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
self.obj2points[objid].append(len(self.points2obj))
self.points2obj.append(objid)
def remove_obj(self, objid, obj):
# Use all ptids to delete from index
for i, pt in enumerate(self.get_points(obj)):
try:
self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
except IndexError:
pass
def nearest(self, pt):
"""
Will raise StopIteration if no items are found.
:param pt:
:return:
"""
return next(self.rti.nearest(pt, objects=True))
class FlatCAMRTreeStorage(FlatCAMRTree):
"""
Just like FlatCAMRTree it indexes geometry, but also serves
as storage for the geometry.
"""
def __init__(self):
# super(FlatCAMRTreeStorage, self).__init__()
super().__init__()
self.objects = []
# Optimization attempt!
self.indexes = {}
def insert(self, obj):
self.objects.append(obj)
idx = len(self.objects) - 1
# Note: Shapely objects are not hashable any more, althought
# there seem to be plans to re-introduce the feature in
# version 2.0. For now, we will index using the object's id,
# but it's important to remember that shapely geometry is
# mutable, ie. it can be modified to a totally different shape
# and continue to have the same id.
# self.indexes[obj] = idx
self.indexes[id(obj)] = idx
# super(FlatCAMRTreeStorage, self).insert(idx, obj)
super().insert(idx, obj)
# @profile
def remove(self, obj):
# See note about self.indexes in insert().
# objidx = self.indexes[obj]
objidx = self.indexes[id(obj)]
# Remove from list
self.objects[objidx] = None
# Remove from index
self.remove_obj(objidx, obj)
def get_objects(self):
return (o for o in self.objects if o is not None)
def nearest(self, pt):
"""
Returns the nearest matching points and the object
it belongs to.
:param pt: Query point.
:return: (match_x, match_y), Object owner of
matching point.
:rtype: tuple
"""
tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
# class myO:
# def __init__(self, coords):
# self.coords = coords
#
#
# def test_rti():
#
# o1 = myO([(0, 0), (0, 1), (1, 1)])
# o2 = myO([(2, 0), (2, 1), (2, 1)])
# o3 = myO([(2, 0), (2, 1), (3, 1)])
#
# os = [o1, o2]
#
# idx = FlatCAMRTree()
#
# for o in range(len(os)):
# idx.insert(o, os[o])
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
#
# idx.remove_obj(0, o1)
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
#
# idx.remove_obj(1, o2)
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
#
#
# def test_rtis():
#
# o1 = myO([(0, 0), (0, 1), (1, 1)])
# o2 = myO([(2, 0), (2, 1), (2, 1)])
# o3 = myO([(2, 0), (2, 1), (3, 1)])
#
# os = [o1, o2]
#
# idx = FlatCAMRTreeStorage()
#
# for o in range(len(os)):
# idx.insert(os[o])
#
# #os = None
# #o1 = None
# #o2 = None
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
#
# idx.remove(idx.nearest((2,0))[1])
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
#
# idx.remove(idx.nearest((0,0))[1])
#
# print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]