flatcam/flatcamEditors/FlatCAMGrbEditor.py

5966 lines
243 KiB
Python

# ##########################################################
# FlatCAM: 2D Post-processing for Manufacturing #
# http://flatcam.org #
# File Author: Marius Adrian Stanciu (c) #
# Date: 8/17/2019 #
# MIT Licence #
# ##########################################################
from PyQt5 import QtGui, QtCore, QtWidgets
from PyQt5.QtCore import Qt, QSettings
from shapely.geometry import LineString, LinearRing, MultiLineString
# from shapely.geometry import mapping
from shapely.ops import cascaded_union, unary_union
import shapely.affinity as affinity
from numpy import arctan2, Inf, array, sqrt, sign, dot
from rtree import index as rtindex
import threading
import time
from copy import copy, deepcopy
from camlib import *
from flatcamGUI.GUIElements import FCEntry, FCComboBox, FCTable, FCDoubleSpinner, LengthEntry, RadioSet, \
SpinBoxDelegate, EvalEntry, EvalEntry2, FCInputDialog, FCButton, OptionalInputSection, FCCheckBox
from FlatCAMObj import FlatCAMGerber
from FlatCAMTool import FlatCAMTool
from numpy.linalg import norm as numpy_norm
# from vispy.io import read_png
# import pngcanvas
import gettext
import FlatCAMTranslation as fcTranslate
import builtins
fcTranslate.apply_language('strings')
if '_' not in builtins.__dict__:
_ = gettext.gettext
class DrawToolShape(object):
"""
Encapsulates "shapes" under a common class.
"""
tolerance = None
@staticmethod
def get_pts(o):
"""
Returns a list of all points in the object, where
the object can be a Polygon, Not a polygon, or a list
of such. Search is done recursively.
:param: geometric object
:return: List of points
:rtype: list
"""
pts = []
# ## Iterable: descend into each item.
try:
for sub_o in o:
pts += DrawToolShape.get_pts(sub_o)
# Non-iterable
except TypeError:
if o is not None:
# DrawToolShape: descend into .geo.
if isinstance(o, DrawToolShape):
pts += DrawToolShape.get_pts(o.geo)
# ## Descend into .exerior and .interiors
elif type(o) == Polygon:
pts += DrawToolShape.get_pts(o.exterior)
for i in o.interiors:
pts += DrawToolShape.get_pts(i)
elif type(o) == MultiLineString:
for line in o:
pts += DrawToolShape.get_pts(line)
# ## Has .coords: list them.
else:
if DrawToolShape.tolerance is not None:
pts += list(o.simplify(DrawToolShape.tolerance).coords)
else:
pts += list(o.coords)
else:
return
return pts
def __init__(self, geo=None):
# Shapely type or list of such
self.geo = geo
self.utility = False
class DrawToolUtilityShape(DrawToolShape):
"""
Utility shapes are temporary geometry in the editor
to assist in the creation of shapes. For example it
will show the outline of a rectangle from the first
point to the current mouse pointer before the second
point is clicked and the final geometry is created.
"""
def __init__(self, geo=None):
super(DrawToolUtilityShape, self).__init__(geo=geo)
self.utility = True
class DrawTool(object):
"""
Abstract Class representing a tool in the drawing
program. Can generate geometry, including temporary
utility geometry that is updated on user clicks
and mouse motion.
"""
def __init__(self, draw_app):
self.draw_app = draw_app
self.complete = False
self.points = []
self.geometry = None # DrawToolShape or None
def click(self, point):
"""
:param point: [x, y] Coordinate pair.
"""
return ""
def click_release(self, point):
"""
:param point: [x, y] Coordinate pair.
"""
return ""
def on_key(self, key):
return None
def utility_geometry(self, data=None):
return None
@staticmethod
def bounds(obj):
def bounds_rec(o):
if type(o) is list:
minx = Inf
miny = Inf
maxx = -Inf
maxy = -Inf
for k in o:
try:
minx_, miny_, maxx_, maxy_ = bounds_rec(k)
except Exception as e:
log.debug("camlib.Gerber.bounds() --> %s" % str(e))
return
minx = min(minx, minx_)
miny = min(miny, miny_)
maxx = max(maxx, maxx_)
maxy = max(maxy, maxy_)
return minx, miny, maxx, maxy
else:
# it's a Shapely object, return it's bounds
if 'solid' in o.geo:
return o.geo['solid'].bounds
return bounds_rec(obj)
class FCShapeTool(DrawTool):
"""
Abstract class for tools that create a shape.
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
def make(self):
pass
class FCPad(FCShapeTool):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'pad'
self.draw_app = draw_app
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_circle.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
try:
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
except KeyError:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("To add an Pad first select a aperture in Aperture Table"))
self.draw_app.in_action = False
self.complete = True
return
if self.radius == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size is zero. It needs to be greater than zero."))
self.dont_execute = True
return
else:
self.dont_execute = False
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
if isinstance(geo, DrawToolShape) and geo.geo is not None:
self.draw_app.draw_utility_geometry(geo=geo)
self.draw_app.app.inform.emit(_("Click to place ..."))
# Switch notebook to Selected page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab)
self.start_msg = _("Click to place ...")
def click(self, point):
self.make()
return "Done."
def utility_geometry(self, data=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
self.points = data
geo_data = self.util_shape(data)
if geo_data:
return DrawToolUtilityShape(geo_data)
else:
return None
def util_shape(self, point):
# updating values here allows us to change the aperture on the fly, after the Tool has been started
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
if point[0] is None and point[1] is None:
point_x = self.draw_app.x
point_y = self.draw_app.y
else:
point_x = point[0]
point_y = point[1]
ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type']
if ap_type == 'C':
new_geo_el = dict()
center = Point([point_x, point_y])
new_geo_el['solid'] = center.buffer(self.radius)
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'R':
new_geo_el = dict()
p1 = (point_x - self.half_width, point_y - self.half_height)
p2 = (point_x + self.half_width, point_y - self.half_height)
p3 = (point_x + self.half_width, point_y + self.half_height)
p4 = (point_x - self.half_width, point_y + self.half_height)
center = Point([point_x, point_y])
new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1])
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'O':
geo = []
new_geo_el = dict()
if self.half_height > self.half_width:
p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width)
p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width)
p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width)
p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width)
down_center = [point_x, point_y - self.half_height + self.half_width]
d_start_angle = math.pi
d_stop_angle = 0.0
down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
up_center = [point_x, point_y + self.half_height - self.half_width]
u_start_angle = 0.0
u_stop_angle = math.pi
up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
for pt in down_arc:
geo.append(pt)
geo.append(p2)
geo.append(p3)
for pt in up_arc:
geo.append(pt)
geo.append(p4)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height)
p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height)
p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height)
p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height)
left_center = [point_x - self.half_width + self.half_height, point_y]
d_start_angle = math.pi / 2
d_stop_angle = 1.5 * math.pi
left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
right_center = [point_x + self.half_width - self.half_height, point_y]
u_start_angle = 1.5 * math.pi
u_stop_angle = math.pi / 2
right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
geo.append(p2)
for pt in right_arc:
geo.append(pt)
geo.append(p3)
geo.append(p4)
for pt in left_arc:
geo.append(pt)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
self.draw_app.app.inform.emit(_(
"Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'."))
return None
def make(self):
self.draw_app.current_storage = self.storage_obj
try:
self.geometry = DrawToolShape(self.util_shape(self.points))
except Exception as e:
log.debug("FCPad.make() --> %s" % str(e))
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Adding Pad completed."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCPadArray(FCShapeTool):
"""
Resulting type: MultiPolygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'array'
self.draw_app = draw_app
try:
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
except KeyError:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("To add an Pad Array first select a aperture in Aperture Table"))
self.complete = True
self.draw_app.in_action = False
self.draw_app.array_frame.hide()
return
if self.radius == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size is zero. It needs to be greater than zero."))
self.dont_execute = True
return
else:
self.dont_execute = False
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_array.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
self.draw_app.array_frame.show()
self.selected_size = None
self.pad_axis = 'X'
self.pad_array = 'linear'
self.pad_array_size = None
self.pad_pitch = None
self.pad_linear_angle = None
self.pad_angle = None
self.pad_direction = None
self.pad_radius = None
self.origin = None
self.destination = None
self.flag_for_circ_array = None
self.last_dx = 0
self.last_dy = 0
self.pt = []
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y), static=True)
if isinstance(geo, DrawToolShape) and geo.geo is not None:
self.draw_app.draw_utility_geometry(geo=geo)
self.draw_app.app.inform.emit(_("Click on target location ..."))
# Switch notebook to Selected page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab)
def click(self, point):
if self.pad_array == 'Linear':
self.make()
return
else:
if self.flag_for_circ_array is None:
self.draw_app.in_action = True
self.pt.append(point)
self.flag_for_circ_array = True
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click on the Pad Circular Array Start position"))
else:
self.destination = point
self.make()
self.flag_for_circ_array = None
return
def set_origin(self, origin):
self.origin = origin
def utility_geometry(self, data=None, static=None):
if self.dont_execute is True:
self.draw_app.select_tool('select')
return
self.pad_axis = self.draw_app.pad_axis_radio.get_value()
self.pad_direction = self.draw_app.pad_direction_radio.get_value()
self.pad_array = self.draw_app.array_type_combo.get_value()
try:
self.pad_array_size = int(self.draw_app.pad_array_size_entry.get_value())
try:
self.pad_pitch = float(self.draw_app.pad_pitch_entry.get_value())
self.pad_linear_angle = float(self.draw_app.linear_angle_spinner.get_value())
self.pad_angle = float(self.draw_app.pad_angle_entry.get_value())
except TypeError:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("The value is not Float. Check for comma instead of dot separator."))
return
except Exception as e:
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("The value is mistyped. Check the value."))
return
if self.pad_array == 'Linear':
if data[0] is None and data[1] is None:
dx = self.draw_app.x
dy = self.draw_app.y
else:
dx = data[0]
dy = data[1]
geo_el_list = []
geo_el = []
self.points = [dx, dy]
for item in range(self.pad_array_size):
if self.pad_axis == 'X':
geo_el = self.util_shape(((dx + (self.pad_pitch * item)), dy))
if self.pad_axis == 'Y':
geo_el = self.util_shape((dx, (dy + (self.pad_pitch * item))))
if self.pad_axis == 'A':
x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle))
y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle))
geo_el = self.util_shape(
((dx + (x_adj * item)), (dy + (y_adj * item)))
)
if static is None or static is False:
new_geo_el = dict()
if 'solid' in geo_el:
new_geo_el['solid'] = affinity.translate(
geo_el['solid'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy)
)
if 'follow' in geo_el:
new_geo_el['follow'] = affinity.translate(
geo_el['follow'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy)
)
geo_el_list.append(new_geo_el)
else:
geo_el_list.append(geo_el)
# self.origin = data
self.last_dx = dx
self.last_dy = dy
return DrawToolUtilityShape(geo_el_list)
else:
if data[0] is None and data[1] is None:
cdx = self.draw_app.x
cdy = self.draw_app.y
else:
cdx = data[0]
cdy = data[1]
if len(self.pt) > 0:
temp_points = [x for x in self.pt]
temp_points.append([cdx, cdy])
return DrawToolUtilityShape(LineString(temp_points))
def util_shape(self, point):
# updating values here allows us to change the aperture on the fly, after the Tool has been started
self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2
self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"]
# if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys
try:
self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2
except KeyError:
pass
try:
self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2
except KeyError:
pass
if point[0] is None and point[1] is None:
point_x = self.draw_app.x
point_y = self.draw_app.y
else:
point_x = point[0]
point_y = point[1]
ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type']
if ap_type == 'C':
new_geo_el = dict()
center = Point([point_x, point_y])
new_geo_el['solid'] = center.buffer(self.radius)
new_geo_el['follow'] = center
return new_geo_el
elif ap_type == 'R':
new_geo_el = dict()
p1 = (point_x - self.half_width, point_y - self.half_height)
p2 = (point_x + self.half_width, point_y - self.half_height)
p3 = (point_x + self.half_width, point_y + self.half_height)
p4 = (point_x - self.half_width, point_y + self.half_height)
new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1])
new_geo_el['follow'] = Point([point_x, point_y])
return new_geo_el
elif ap_type == 'O':
geo = []
new_geo_el = dict()
if self.half_height > self.half_width:
p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width)
p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width)
p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width)
p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width)
down_center = [point_x, point_y - self.half_height + self.half_width]
d_start_angle = math.pi
d_stop_angle = 0.0
down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
up_center = [point_x, point_y + self.half_height - self.half_width]
u_start_angle = 0.0
u_stop_angle = math.pi
up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
for pt in down_arc:
geo.append(pt)
geo.append(p2)
geo.append(p3)
for pt in up_arc:
geo.append(pt)
geo.append(p4)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height)
p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height)
p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height)
p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height)
left_center = [point_x - self.half_width + self.half_height, point_y]
d_start_angle = math.pi / 2
d_stop_angle = 1.5 * math.pi
left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ)
right_center = [point_x + self.half_width - self.half_height, point_y]
u_start_angle = 1.5 * math.pi
u_stop_angle = math.pi / 2
right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ)
geo.append(p1)
geo.append(p2)
for pt in right_arc:
geo.append(pt)
geo.append(p3)
geo.append(p4)
for pt in left_arc:
geo.append(pt)
new_geo_el['solid'] = Polygon(geo)
center = Point([point_x, point_y])
new_geo_el['follow'] = center
return new_geo_el
else:
self.draw_app.app.inform.emit(_(
"Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'."))
return None
def make(self):
self.geometry = []
geo = None
self.draw_app.current_storage = self.storage_obj
if self.pad_array == 'Linear':
for item in range(self.pad_array_size):
if self.pad_axis == 'X':
geo = self.util_shape(((self.points[0] + (self.pad_pitch * item)), self.points[1]))
if self.pad_axis == 'Y':
geo = self.util_shape((self.points[0], (self.points[1] + (self.pad_pitch * item))))
if self.pad_axis == 'A':
x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle))
y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle))
geo = self.util_shape(
((self.points[0] + (x_adj * item)), (self.points[1] + (y_adj * item)))
)
self.geometry.append(DrawToolShape(geo))
else:
if (self.pad_angle * self.pad_array_size) > 360:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Too many Pads for the selected spacing angle."))
return
radius = distance(self.destination, self.origin)
initial_angle = math.asin((self.destination[1] - self.origin[1]) / radius)
for i in range(self.pad_array_size):
angle_radians = math.radians(self.pad_angle * i)
if self.pad_direction == 'CW':
x = self.origin[0] + radius * math.cos(-angle_radians + initial_angle)
y = self.origin[1] + radius * math.sin(-angle_radians + initial_angle)
else:
x = self.origin[0] + radius * math.cos(angle_radians + initial_angle)
y = self.origin[1] + radius * math.sin(angle_radians + initial_angle)
geo = self.util_shape((x, y))
if self.pad_direction == 'CW':
geo = affinity.rotate(geo, angle=(math.pi - angle_radians), use_radians=True)
else:
geo = affinity.rotate(geo, angle=(angle_radians - math.pi), use_radians=True)
self.geometry.append(DrawToolShape(geo))
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Pad Array added."))
self.draw_app.in_action = False
self.draw_app.array_frame.hide()
return
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCPoligonize(FCShapeTool):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'poligonize'
self.draw_app = draw_app
self.draw_app.app.inform.emit(_("Select shape(s) and then click ..."))
self.draw_app.in_action = True
self.make()
def click(self, point):
return ""
def make(self):
if not self.draw_app.selected:
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed. Nothing selected."))
self.draw_app.select_tool("select")
return
apid_set = set()
for elem in self.draw_app.selected:
for apid in self.draw_app.storage_dict:
if 'geometry' in self.draw_app.storage_dict[apid]:
if elem in self.draw_app.storage_dict[apid]['geometry']:
apid_set.add(apid)
break
if len(apid_set) > 1:
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' %
_("Failed. Poligonize works only on geometries belonging "
"to the same aperture."))
self.draw_app.select_tool("select")
return
# exterior_geo = [Polygon(sh.geo.exterior) for sh in self.draw_app.selected]
exterior_geo = []
for geo_shape in self.draw_app.selected:
geometric_data = geo_shape.geo
if 'solid' in geometric_data:
exterior_geo.append(Polygon(geometric_data['solid'].exterior))
fused_geo = MultiPolygon(exterior_geo)
fused_geo = fused_geo.buffer(0.0000001)
current_storage = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']
if isinstance(fused_geo, MultiPolygon):
for geo in fused_geo:
# clean-up the geo
geo = geo.buffer(0)
if len(geo.interiors) == 0:
try:
current_storage = self.draw_app.storage_dict['0']['geometry']
except KeyError:
self.draw_app.on_aperture_add(apid='0')
current_storage = self.draw_app.storage_dict['0']['geometry']
new_el = dict()
new_el['solid'] = geo
new_el['follow'] = geo.exterior
self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el)))
else:
# clean-up the geo
fused_geo = fused_geo.buffer(0)
if len(fused_geo.interiors) == 0 and len(exterior_geo) == 1:
try:
current_storage = self.draw_app.storage_dict['0']['geometry']
except KeyError:
self.draw_app.on_aperture_add(apid='0')
current_storage = self.draw_app.storage_dict['0']['geometry']
new_el = dict()
new_el['solid'] = fused_geo
new_el['follow'] = fused_geo.exterior
self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el)))
self.draw_app.delete_selected()
self.draw_app.plot_all()
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Poligonize completed."))
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.draw_app.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
# if modifier key is pressed then we add to the selected list the current shape but if it's already
# in the selected list, we removed it. Therefore first click selects, second deselects.
if key_modifier == modifier_to_use:
self.draw_app.select_tool(self.draw_app.active_tool.name)
else:
self.draw_app.select_tool("select")
return
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCRegion(FCShapeTool):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'region'
self.draw_app = draw_app
self.steps_per_circle = self.draw_app.app.defaults["gerber_circle_steps"]
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
self.temp_points = []
# this will store the inflexion point in the geometry
self.inter_point = None
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCRegion --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.inform.emit(_('Corner Mode 1: 45 degrees ...'))
self.start_msg = _("Click on 1st point ...")
def click(self, point):
self.draw_app.in_action = True
if self.inter_point is not None:
self.points.append(self.inter_point)
self.points.append(point)
if len(self.points) > 0:
self.draw_app.app.inform.emit(_("Click on next Point or click Right mouse button to complete ..."))
return "Click on next point or hit ENTER to complete ..."
return ""
def update_grid_info(self):
self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value())
self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value())
def utility_geometry(self, data=None):
new_geo_el = dict()
x = data[0]
y = data[1]
if len(self.points) == 0:
new_geo_el['solid'] = Point(data).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
if len(self.points) == 1:
self.temp_points = [x for x in self.points]
old_x = self.points[0][0]
old_y = self.points[0][1]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if mx and my:
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode != 5:
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
elif self.draw_app.bend_mode == 3:
self.inter_point = (x, old_y)
elif self.draw_app.bend_mode == 4:
self.inter_point = (old_x, y)
if self.inter_point is not None:
self.temp_points.append(self.inter_point)
else:
self.inter_point = data
else:
self.inter_point = data
self.temp_points.append(data)
new_geo_el = dict()
if len(self.temp_points) > 1:
try:
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=1)
return DrawToolUtilityShape(new_geo_el)
except Exception as e:
log.debug("FlatCAMGrbEditor.FCRegion.utility_geometry() --> %s" % str(e))
else:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
if len(self.points) > 2:
self.temp_points = [x for x in self.points]
old_x = self.points[-1][0]
old_y = self.points[-1][1]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if mx and my:
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode != 5:
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * (mx - my), old_y)
if mx < my:
if y < old_y:
self.inter_point = (old_x, old_y - self.gridy_size * (my - mx))
else:
self.inter_point = (old_x, old_y - self.gridy_size * (mx - my))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.inter_point = (old_x + self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
if x < old_x:
if mx > my:
self.inter_point = (old_x - self.gridx_size * my, y)
if mx < my:
if y < old_y:
self.inter_point = (x, old_y - self.gridy_size * mx)
else:
self.inter_point = (x, old_y + self.gridy_size * mx)
elif self.draw_app.bend_mode == 3:
self.inter_point = (x, old_y)
elif self.draw_app.bend_mode == 4:
self.inter_point = (old_x, y)
self.temp_points.append(self.inter_point)
self.temp_points.append(data)
new_geo_el = dict()
new_geo_el['solid'] = LinearRing(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=1)
new_geo_el['follow'] = LinearRing(self.temp_points)
return DrawToolUtilityShape(new_geo_el)
return None
def make(self):
# self.geometry = LinearRing(self.points)
if len(self.points) > 2:
# regions are added always in the '0' aperture
if '0' not in self.draw_app.storage_dict:
self.draw_app.on_aperture_add(apid='0')
else:
self.draw_app.last_aperture_selected = '0'
new_geo_el = dict()
new_geo_el['solid'] = Polygon(self.points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4),
join_style=2)
new_geo_el['follow'] = Polygon(self.points).exterior
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
def on_key(self, key):
if key == 'Backspace' or key == QtCore.Qt.Key_Backspace:
if len(self.points) > 0:
if self.draw_app.bend_mode == 5:
self.points = self.points[0:-1]
else:
self.points = self.points[0:-2]
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return _("Backtracked one point ...")
if key == 'T' or key == QtCore.Qt.Key_T:
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 2
msg = _('Corner Mode 2: Reverse 45 degrees ...')
elif self.draw_app.bend_mode == 2:
self.draw_app.bend_mode = 3
msg = _('Corner Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 4
msg = _('Corner Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 5
msg = _('Corner Mode 5: Free angle ...')
else:
self.draw_app.bend_mode = 1
msg = _('Corner Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
if key == 'R' or key == QtCore.Qt.Key_R:
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 5
msg = _('Corner Mode 5: Free angle ...')
elif self.draw_app.bend_mode == 5:
self.draw_app.bend_mode = 4
msg = _('Corner Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 3
msg = _('Corner Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 2
msg = _('Corner Mode 2: Reverse 45 degrees ...')
else:
self.draw_app.bend_mode = 1
msg = _('Corner Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
class FCTrack(FCRegion):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
FCRegion.__init__(self, draw_app)
self.name = 'track'
self.draw_app = draw_app
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCTrack.__init__() --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path%s.png' % self.draw_app.bend_mode))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.inform.emit(_('Track Mode 1: 45 degrees ...'))
def make(self):
new_geo_el = dict()
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
new_geo_el['follow'] = Point(self.temp_points)
else:
new_geo_el['solid'] = (LineString(self.temp_points).buffer(
self.buf_val, resolution=int(self.steps_per_circle / 4))).buffer(0)
new_geo_el['follow'] = LineString(self.temp_points)
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
def click(self, point):
self.draw_app.in_action = True
try:
if point != self.points[-1]:
self.points.append(point)
except IndexError:
self.points.append(point)
new_geo_el = dict()
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
new_geo_el['follow'] = Point(self.temp_points)
else:
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
new_geo_el['follow'] = LineString(self.temp_points)
self.draw_app.add_gerber_shape(DrawToolShape(new_geo_el),
self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'])
self.draw_app.plot_all()
if len(self.points) > 0:
self.draw_app.app.inform.emit(_("Click on next Point or click Right mouse button to complete ..."))
return "Click on next point or hit ENTER to complete ..."
return ""
def utility_geometry(self, data=None):
self.update_grid_info()
new_geo_el = dict()
if len(self.points) == 0:
new_geo_el['solid'] = Point(data).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
elif len(self.points) > 0:
self.temp_points = [self.points[-1]]
old_x = self.points[-1][0]
old_y = self.points[-1][1]
x = data[0]
y = data[1]
mx = abs(round((x - old_x) / self.gridx_size))
my = abs(round((y - old_y) / self.gridy_size))
if self.draw_app.app.ui.grid_snap_btn.isChecked():
if self.draw_app.bend_mode == 1:
if x > old_x:
if mx > my:
self.temp_points.append((old_x + self.gridx_size*(mx-my), old_y))
if mx < my:
if y < old_y:
self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx)))
else:
self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my)))
if x < old_x:
if mx > my:
self.temp_points.append((old_x - self.gridx_size*(mx-my), old_y))
if mx < my:
if y < old_y:
self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx)))
else:
self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my)))
elif self.draw_app.bend_mode == 2:
if x > old_x:
if mx > my:
self.temp_points.append((old_x + self.gridx_size*my, y))
if mx < my:
if y < old_y:
self.temp_points.append((x, old_y - self.gridy_size * mx))
else:
self.temp_points.append((x, old_y + self.gridy_size * mx))
if x < old_x:
if mx > my:
self.temp_points.append((old_x - self.gridx_size * my, y))
if mx < my:
if y < old_y:
self.temp_points.append((x, old_y - self.gridy_size * mx))
else:
self.temp_points.append((x, old_y + self.gridy_size * mx))
elif self.draw_app.bend_mode == 3:
self.temp_points.append((x, old_y))
elif self.draw_app.bend_mode == 4:
self.temp_points.append((old_x, y))
else:
pass
self.temp_points.append(data)
if len(self.temp_points) == 1:
new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val,
resolution=int(self.steps_per_circle / 4))
return DrawToolUtilityShape(new_geo_el)
def on_key(self, key):
if key == 'Backspace' or key == QtCore.Qt.Key_Backspace:
if len(self.points) > 0:
self.temp_points = self.points[0:-1]
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return _("Backtracked one point ...")
if key == 'T' or key == QtCore.Qt.Key_T:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCTrack.on_key() --> %s" % str(e))
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 2
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path2.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 2: Reverse 45 degrees ...')
elif self.draw_app.bend_mode == 2:
self.draw_app.bend_mode = 3
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path3.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 4
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path4.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 5
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path5.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 5: Free angle ...')
else:
self.draw_app.bend_mode = 1
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path1.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
if key == 'R' or key == QtCore.Qt.Key_R:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCTrack.on_key() --> %s" % str(e))
if self.draw_app.bend_mode == 1:
self.draw_app.bend_mode = 5
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path5.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 5: Free angle ...')
elif self.draw_app.bend_mode == 5:
self.draw_app.bend_mode = 4
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path4.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 4: Reverse 90 degrees ...')
elif self.draw_app.bend_mode == 4:
self.draw_app.bend_mode = 3
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path3.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 3: 90 degrees ...')
elif self.draw_app.bend_mode == 3:
self.draw_app.bend_mode = 2
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path2.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 2: Reverse 45 degrees ...')
else:
self.draw_app.bend_mode = 1
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_path1.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
msg = _('Track Mode 1: 45 degrees ...')
# Remove any previous utility shape
self.draw_app.tool_shape.clear(update=False)
geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y))
self.draw_app.draw_utility_geometry(geo=geo)
return msg
class FCDisc(FCShapeTool):
"""
Resulting type: Polygon
"""
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'disc'
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
pass
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_disc.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
if '0' in self.draw_app.storage_dict:
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
else:
self.draw_app.storage_dict['0'] = dict()
self.draw_app.storage_dict['0']['type'] = 'C'
self.draw_app.storage_dict['0']['size'] = 0.0
self.draw_app.storage_dict['0']['geometry'] = list()
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
self.draw_app.app.inform.emit(_("Click on Center point ..."))
self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"]
def click(self, point):
self.points.append(point)
if len(self.points) == 1:
self.draw_app.app.inform.emit(_("Click on Perimeter point to complete ..."))
return "Click on Perimeter to complete ..."
if len(self.points) == 2:
self.make()
return "Done."
return ""
def utility_geometry(self, data=None):
new_geo_el = dict()
if len(self.points) == 1:
p1 = self.points[0]
p2 = data
radius = sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4))
return DrawToolUtilityShape(new_geo_el)
return None
def make(self):
new_geo_el = dict()
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCDisc --> %s" % str(e))
self.draw_app.current_storage = self.storage_obj
p1 = self.points[0]
p2 = self.points[1]
radius = distance(p1, p2)
new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4))
new_geo_el['follow'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4)).exterior
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCSemiDisc(FCShapeTool):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'semidisc'
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCSemiDisc --> %s" % str(e))
self.cursor = QtGui.QCursor(QtGui.QPixmap('share/aero_semidisc.png'))
QtGui.QGuiApplication.setOverrideCursor(self.cursor)
self.draw_app.app.inform.emit(_("Click on Center point ..."))
# Direction of rotation between point 1 and 2.
# 'cw' or 'ccw'. Switch direction by hitting the
# 'o' key.
self.direction = "cw"
# Mode
# C12 = Center, p1, p2
# 12C = p1, p2, Center
# 132 = p1, p3, p2
self.mode = "c12" # Center, p1, p2
size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size'])
self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001
if '0' in self.draw_app.storage_dict:
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
else:
self.draw_app.storage_dict['0'] = dict()
self.draw_app.storage_dict['0']['type'] = 'C'
self.draw_app.storage_dict['0']['size'] = 0.0
self.draw_app.storage_dict['0']['geometry'] = list()
self.storage_obj = self.draw_app.storage_dict['0']['geometry']
self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"]
def click(self, point):
self.points.append(point)
if len(self.points) == 1:
if self.mode == 'c12':
self.draw_app.app.inform.emit(_("Click on Start point ..."))
elif self.mode == '132':
self.draw_app.app.inform.emit(_("Click on Point3 ..."))
else:
self.draw_app.app.inform.emit(_("Click on Stop point ..."))
return "Click on 1st point ..."
if len(self.points) == 2:
if self.mode == 'c12':
self.draw_app.app.inform.emit(_("Click on Stop point to complete ..."))
elif self.mode == '132':
self.draw_app.app.inform.emit(_("Click on Point2 to complete ..."))
else:
self.draw_app.app.inform.emit(_("Click on Center point to complete ..."))
return "Click on 2nd point to complete ..."
if len(self.points) == 3:
self.make()
return "Done."
return ""
def on_key(self, key):
if key == 'D' or key == QtCore.Qt.Key_D:
self.direction = 'cw' if self.direction == 'ccw' else 'ccw'
return '%s: %s' % (_('Direction'), self.direction.upper())
if key == 'M' or key == QtCore.Qt.Key_M:
# delete the possible points made before this action; we want to start anew
self.points = []
# and delete the utility geometry made up until this point
self.draw_app.delete_utility_geometry()
if self.mode == 'c12':
self.mode = '12c'
return _('Mode: Start -> Stop -> Center. Click on Start point ...')
elif self.mode == '12c':
self.mode = '132'
return _('Mode: Point1 -> Point3 -> Point2. Click on Point1 ...')
else:
self.mode = 'c12'
return _('Mode: Center -> Start -> Stop. Click on Center point ...')
def utility_geometry(self, data=None):
new_geo_el = dict()
new_geo_el_pt1 = dict()
new_geo_el_pt2 = dict()
new_geo_el_pt3 = dict()
if len(self.points) == 1: # Show the radius
center = self.points[0]
p1 = data
new_geo_el['solid'] = LineString([center, p1])
return DrawToolUtilityShape(new_geo_el)
if len(self.points) == 2: # Show the arc
if self.mode == 'c12':
center = self.points[0]
p1 = self.points[1]
p2 = data
radius = sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2) + (self.buf_val / 2)
startangle = arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ))
new_geo_el_pt1['solid'] = Point(center)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt1])
elif self.mode == '132':
p1 = array(self.points[0])
p3 = array(self.points[1])
p2 = array(data)
try:
center, radius, t = three_point_circle(p1, p2, p3)
except TypeError:
return
direction = 'cw' if sign(t) > 0 else 'ccw'
radius += (self.buf_val / 2)
startangle = arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = arctan2(p3[1] - center[1], p3[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, direction, self.steps_per_circ))
new_geo_el_pt2['solid'] = Point(center)
new_geo_el_pt1['solid'] = Point(p1)
new_geo_el_pt3['solid'] = Point(p3)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2, new_geo_el_pt1, new_geo_el_pt3])
else: # '12c'
p1 = array(self.points[0])
p2 = array(self.points[1])
# Midpoint
a = (p1 + p2) / 2.0
# Parallel vector
c = p2 - p1
# Perpendicular vector
b = dot(c, array([[0, -1], [1, 0]], dtype=float32))
b /= numpy_norm(b)
# Distance
t = distance(data, a)
# Which side? Cross product with c.
# cross(M-A, B-A), where line is AB and M is test point.
side = (data[0] - p1[0]) * c[1] - (data[1] - p1[1]) * c[0]
t *= sign(side)
# Center = a + bt
center = a + b * t
radius = numpy_norm(center - p1) + (self.buf_val / 2)
startangle = arctan2(p1[1] - center[1], p1[0] - center[0])
stopangle = arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = LineString(
arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ))
new_geo_el_pt2['solid'] = Point(center)
return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2])
return None
def make(self):
self.draw_app.current_storage = self.storage_obj
new_geo_el = dict()
if self.mode == 'c12':
center = self.points[0]
p1 = self.points[1]
p2 = self.points[2]
radius = distance(center, p1) + (self.buf_val / 2)
start_angle = arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
elif self.mode == '132':
p1 = array(self.points[0])
p3 = array(self.points[1])
p2 = array(self.points[2])
center, radius, t = three_point_circle(p1, p2, p3)
direction = 'cw' if sign(t) > 0 else 'ccw'
radius += (self.buf_val / 2)
start_angle = arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = arctan2(p3[1] - center[1], p3[0] - center[0])
new_geo_el['solid'] = Polygon(arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
else: # self.mode == '12c'
p1 = array(self.points[0])
p2 = array(self.points[1])
pc = array(self.points[2])
# Midpoint
a = (p1 + p2) / 2.0
# Parallel vector
c = p2 - p1
# Perpendicular vector
b = dot(c, array([[0, -1], [1, 0]], dtype=float32))
b /= numpy_norm(b)
# Distance
t = distance(pc, a)
# Which side? Cross product with c.
# cross(M-A, B-A), where line is AB and M is test point.
side = (pc[0] - p1[0]) * c[1] - (pc[1] - p1[1]) * c[0]
t *= sign(side)
# Center = a + bt
center = a + b * t
radius = numpy_norm(center - p1) + (self.buf_val / 2)
start_angle = arctan2(p1[1] - center[1], p1[0] - center[0])
stop_angle = arctan2(p2[1] - center[1], p2[0] - center[0])
new_geo_el['solid'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ))
new_geo_el['follow'] = Polygon(
arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior
self.geometry = DrawToolShape(new_geo_el)
self.draw_app.in_action = False
self.complete = True
self.draw_app.app.inform.emit('[success] %s' %
_("Done."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCScale(FCShapeTool):
def __init__(self, draw_app):
FCShapeTool.__init__(self, draw_app)
self.name = 'scale'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Scale the selected Gerber apertures ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_scale()
def activate_scale(self):
self.draw_app.hide_tool('all')
self.draw_app.scale_tool_frame.show()
try:
self.draw_app.scale_button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.scale_button.clicked.connect(self.on_scale_click)
def deactivate_scale(self):
self.draw_app.scale_button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_scale_click(self):
self.draw_app.on_scale()
self.deactivate_scale()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCBuffer(FCShapeTool):
def __init__(self, draw_app):
FCShapeTool.__init__(self, draw_app)
self.name = 'buffer'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Buffer the selected apertures ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_buffer()
def activate_buffer(self):
self.draw_app.hide_tool('all')
self.draw_app.buffer_tool_frame.show()
try:
self.draw_app.buffer_button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.buffer_button.clicked.connect(self.on_buffer_click)
def deactivate_buffer(self):
self.draw_app.buffer_button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_buffer_click(self):
self.draw_app.on_buffer()
self.deactivate_buffer()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCMarkArea(FCShapeTool):
def __init__(self, draw_app):
FCShapeTool.__init__(self, draw_app)
self.name = 'markarea'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.draw_app.app.inform.emit(_("Mark polygon areas in the edited Gerber ..."))
self.origin = (0, 0)
if self.draw_app.app.ui.splitter.sizes()[0] == 0:
self.draw_app.app.ui.splitter.setSizes([1, 1])
self.activate_markarea()
def activate_markarea(self):
self.draw_app.hide_tool('all')
self.draw_app.ma_tool_frame.show()
# clear previous marking
self.draw_app.ma_annotation.clear(update=True)
try:
self.draw_app.ma_threshold__button.clicked.disconnect()
except (TypeError, AttributeError):
pass
self.draw_app.ma_threshold__button.clicked.connect(self.on_markarea_click)
def deactivate_markarea(self):
self.draw_app.ma_threshold__button.clicked.disconnect()
self.complete = True
self.draw_app.select_tool("select")
self.draw_app.hide_tool(self.name)
def on_markarea_click(self):
self.draw_app.on_markarea()
self.deactivate_markarea()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FCApertureMove(FCShapeTool):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'move'
# self.shape_buffer = self.draw_app.shape_buffer
self.origin = None
self.destination = None
self.selected_apertures = []
if len(self.draw_app.get_selected()) == 0:
self.draw_app.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Nothing selected to move"))
self.complete = True
self.draw_app.select_tool("select")
return
if self.draw_app.launched_from_shortcuts is True:
self.draw_app.launched_from_shortcuts = False
self.draw_app.app.inform.emit(_("Click on target location ..."))
else:
self.draw_app.app.inform.emit(_("Click on reference location ..."))
self.current_storage = None
self.geometry = []
for index in self.draw_app.apertures_table.selectedIndexes():
row = index.row()
# on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings
aperture_on_row = self.draw_app.apertures_table.item(row, 1).text()
self.selected_apertures.append(aperture_on_row)
# Switch notebook to Selected page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab)
self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"]
self.selection_shape = self.selection_bbox()
def set_origin(self, origin):
self.origin = origin
def click(self, point):
if len(self.draw_app.get_selected()) == 0:
return "Nothing to move."
if self.origin is None:
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click on target location ..."))
return
else:
self.destination = point
self.make()
# MS: always return to the Select Tool
self.draw_app.select_tool("select")
return
# def create_png(self):
# """
# Create a PNG file out of a list of Shapely polygons
# :return:
# """
# if len(self.draw_app.get_selected()) == 0:
# return None
#
# geo_list = [geoms.geo for geoms in self.draw_app.get_selected()]
# xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list)
#
# iwidth = (xmax - xmin)
# iwidth = int(round(iwidth))
# iheight = (ymax - ymin)
# iheight = int(round(iheight))
# c = pngcanvas.PNGCanvas(iwidth, iheight)
#
# pixels = []
# for geom in self.draw_app.get_selected():
# m = mapping(geom.geo.exterior)
# pixels += [[coord[0], coord[1]] for coord in m['coordinates']]
# for g in geom.geo.interiors:
# m = mapping(g)
# pixels += [[coord[0], coord[1]] for coord in m['coordinates']]
# c.polyline(pixels)
# pixels = []
#
# f = open("%s.png" % 'D:\\shapely_image', "wb")
# f.write(c.dump())
# f.close()
def selection_bbox(self):
geo_list = []
for select_shape in self.draw_app.get_selected():
geometric_data = select_shape.geo
geo_list.append(geometric_data['solid'])
xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list)
pt1 = (xmin, ymin)
pt2 = (xmax, ymin)
pt3 = (xmax, ymax)
pt4 = (xmin, ymax)
return Polygon([pt1, pt2, pt3, pt4])
def make(self):
# Create new geometry
dx = self.destination[0] - self.origin[0]
dy = self.destination[1] - self.origin[1]
sel_shapes_to_be_deleted = []
for sel_dia in self.selected_apertures:
self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry']
for select_shape in self.draw_app.get_selected():
if select_shape in self.current_storage:
geometric_data = select_shape.geo
new_geo_el = dict()
if 'solid' in geometric_data:
new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy)
if 'follow' in geometric_data:
new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy)
if 'clear' in geometric_data:
new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy)
self.geometry.append(DrawToolShape(new_geo_el))
self.current_storage.remove(select_shape)
sel_shapes_to_be_deleted.append(select_shape)
self.draw_app.on_grb_shape_complete(self.current_storage, no_plot=True)
self.geometry = []
for shp in sel_shapes_to_be_deleted:
self.draw_app.selected.remove(shp)
sel_shapes_to_be_deleted = []
self.draw_app.plot_all()
self.draw_app.build_ui()
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Apertures Move completed."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
def utility_geometry(self, data=None):
"""
Temporary geometry on screen while using this tool.
:param data:
:return:
"""
geo_list = []
if self.origin is None:
return None
if len(self.draw_app.get_selected()) == 0:
return None
dx = data[0] - self.origin[0]
dy = data[1] - self.origin[1]
if len(self.draw_app.get_selected()) <= self.sel_limit:
for geom in self.draw_app.get_selected():
new_geo_el = dict()
if 'solid' in geom.geo:
new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy)
if 'follow' in geom.geo:
new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy)
if 'clear' in geom.geo:
new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy)
geo_list.append(deepcopy(new_geo_el))
return DrawToolUtilityShape(geo_list)
else:
ss_el = dict()
ss_el['solid'] = affinity.translate(self.selection_shape, xoff=dx, yoff=dy)
return DrawToolUtilityShape(ss_el)
class FCApertureCopy(FCApertureMove):
def __init__(self, draw_app):
FCApertureMove.__init__(self, draw_app)
self.name = 'copy'
def make(self):
# Create new geometry
dx = self.destination[0] - self.origin[0]
dy = self.destination[1] - self.origin[1]
sel_shapes_to_be_deleted = []
for sel_dia in self.selected_apertures:
self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry']
for select_shape in self.draw_app.get_selected():
if select_shape in self.current_storage:
geometric_data = select_shape.geo
new_geo_el = dict()
if 'solid' in geometric_data:
new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy)
if 'follow' in geometric_data:
new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy)
if 'clear' in geometric_data:
new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy)
self.geometry.append(DrawToolShape(new_geo_el))
sel_shapes_to_be_deleted.append(select_shape)
self.draw_app.on_grb_shape_complete(self.current_storage)
self.geometry = []
for shp in sel_shapes_to_be_deleted:
self.draw_app.selected.remove(shp)
sel_shapes_to_be_deleted = []
self.draw_app.build_ui()
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Apertures copied."))
class FCEraser(FCShapeTool):
def __init__(self, draw_app):
DrawTool.__init__(self, draw_app)
self.name = 'eraser'
self.origin = None
self.destination = None
self.selected_apertures = []
if len(self.draw_app.get_selected()) == 0:
if self.draw_app.launched_from_shortcuts is True:
self.draw_app.launched_from_shortcuts = False
self.draw_app.app.inform.emit(_("Select a shape to act as deletion area ..."))
else:
self.draw_app.app.inform.emit(_("Click to pick-up the erase shape..."))
self.current_storage = None
self.geometry = []
for index in self.draw_app.apertures_table.selectedIndexes():
row = index.row()
# on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings
aperture_on_row = self.draw_app.apertures_table.item(row, 1).text()
self.selected_apertures.append(aperture_on_row)
# Switch notebook to Selected page
self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab)
self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"]
def set_origin(self, origin):
self.origin = origin
def click(self, point):
if len(self.draw_app.get_selected()) == 0:
self.draw_app.apertures_table.clearSelection()
sel_aperture = set()
for storage in self.draw_app.storage_dict:
try:
for geo_el in self.draw_app.storage_dict[storage]['geometry']:
if 'solid' in geo_el.geo:
geometric_data = geo_el.geo['solid']
if Point(point).within(geometric_data):
self.draw_app.selected = []
self.draw_app.selected.append(geo_el)
sel_aperture.add(storage)
except KeyError:
pass
# select the aperture in the Apertures Table that is associated with the selected shape
try:
self.draw_app.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCEraser.click_release() --> %s" % str(e))
self.draw_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
for aper in sel_aperture:
for row in range(self.draw_app.apertures_table.rowCount()):
if str(aper) == self.draw_app.apertures_table.item(row, 1).text():
self.draw_app.apertures_table.selectRow(row)
self.draw_app.last_aperture_selected = aper
self.draw_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self.draw_app.apertures_table.cellPressed.connect(self.draw_app.on_row_selected)
if len(self.draw_app.get_selected()) == 0:
return "Nothing to ersase."
if self.origin is None:
self.set_origin(point)
self.draw_app.app.inform.emit(_("Click to erase ..."))
return
else:
self.destination = point
self.make()
# self.draw_app.select_tool("select")
return
def make(self):
eraser_sel_shapes = []
# create the eraser shape from selection
for eraser_shape in self.utility_geometry(data=self.destination).geo:
temp_shape = eraser_shape['solid'].buffer(0.0000001)
temp_shape = Polygon(temp_shape.exterior)
eraser_sel_shapes.append(temp_shape)
eraser_sel_shapes = cascaded_union(eraser_sel_shapes)
for storage in self.draw_app.storage_dict:
try:
for geo_el in self.draw_app.storage_dict[storage]['geometry']:
if 'solid' in geo_el.geo:
geometric_data = geo_el.geo['solid']
if eraser_sel_shapes.within(geometric_data) or eraser_sel_shapes.intersects(geometric_data):
geos = geometric_data.difference(eraser_sel_shapes)
geos = geos.buffer(0)
geo_el.geo['solid'] = deepcopy(geos)
except KeyError:
pass
self.draw_app.delete_utility_geometry()
self.draw_app.plot_all()
self.draw_app.app.inform.emit('[success] %s' %
_("Done. Eraser tool action completed."))
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
def utility_geometry(self, data=None):
"""
Temporary geometry on screen while using this tool.
:param data:
:return:
"""
geo_list = []
if self.origin is None:
return None
if len(self.draw_app.get_selected()) == 0:
return None
dx = data[0] - self.origin[0]
dy = data[1] - self.origin[1]
for geom in self.draw_app.get_selected():
new_geo_el = dict()
if 'solid' in geom.geo:
new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy)
if 'follow' in geom.geo:
new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy)
if 'clear' in geom.geo:
new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy)
geo_list.append(deepcopy(new_geo_el))
return DrawToolUtilityShape(geo_list)
class FCApertureSelect(DrawTool):
def __init__(self, grb_editor_app):
DrawTool.__init__(self, grb_editor_app)
self.name = 'select'
self.origin = None
self.grb_editor_app = grb_editor_app
self.storage = self.grb_editor_app.storage_dict
# self.selected = self.grb_editor_app.selected
# here we store all shapes that were selected
self.sel_storage = []
# since FCApertureSelect tool is activated whenever a tool is exited I place here the reinitialization of the
# bending modes using in FCRegion and FCTrack
self.draw_app.bend_mode = 1
# here store the selected apertures
self.sel_aperture = set()
try:
self.grb_editor_app.apertures_table.clearSelection()
except Exception as e:
log.error("FlatCAMGerbEditor.FCApertureSelect.__init__() --> %s" % str(e))
self.grb_editor_app.hide_tool('all')
self.grb_editor_app.hide_tool('select')
self.grb_editor_app.array_frame.hide()
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCApertureSelect --> %s" % str(e))
def set_origin(self, origin):
self.origin = origin
def click(self, point):
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if key_modifier == QtCore.Qt.ShiftModifier:
mod_key = 'Shift'
elif key_modifier == QtCore.Qt.ControlModifier:
mod_key = 'Control'
else:
mod_key = None
if mod_key == self.draw_app.app.defaults["global_mselect_key"]:
pass
else:
self.grb_editor_app.selected = []
def click_release(self, point):
self.grb_editor_app.apertures_table.clearSelection()
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if key_modifier == QtCore.Qt.ShiftModifier:
mod_key = 'Shift'
elif key_modifier == QtCore.Qt.ControlModifier:
mod_key = 'Control'
else:
mod_key = None
for storage in self.grb_editor_app.storage_dict:
try:
for geo_el in self.grb_editor_app.storage_dict[storage]['geometry']:
if 'solid' in geo_el.geo:
geometric_data = geo_el.geo['solid']
if Point(point).within(geometric_data):
if mod_key == self.grb_editor_app.app.defaults["global_mselect_key"]:
if geo_el in self.draw_app.selected:
self.draw_app.selected.remove(geo_el)
self.sel_aperture.remove(storage)
else:
# add the object to the selected shapes
self.draw_app.selected.append(geo_el)
self.sel_aperture.add(storage)
else:
self.draw_app.selected.append(geo_el)
self.sel_aperture.add(storage)
except KeyError:
pass
# select the aperture in the Apertures Table that is associated with the selected shape
try:
self.draw_app.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("FlatCAMGrbEditor.FCApertureSelect.click_release() --> %s" % str(e))
self.grb_editor_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
for aper in self.sel_aperture:
for row in range(self.grb_editor_app.apertures_table.rowCount()):
if str(aper) == self.grb_editor_app.apertures_table.item(row, 1).text():
self.grb_editor_app.apertures_table.selectRow(row)
self.draw_app.last_aperture_selected = aper
self.grb_editor_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self.draw_app.apertures_table.cellPressed.connect(self.draw_app.on_row_selected)
return ""
def clean_up(self):
self.draw_app.plot_all()
class FCTransform(FCShapeTool):
def __init__(self, draw_app):
FCShapeTool.__init__(self, draw_app)
self.name = 'transformation'
# self.shape_buffer = self.draw_app.shape_buffer
self.draw_app = draw_app
self.app = draw_app.app
self.start_msg = _("Shape transformations ...")
self.origin = (0, 0)
self.draw_app.transform_tool.run()
def clean_up(self):
self.draw_app.selected = []
self.draw_app.apertures_table.clearSelection()
self.draw_app.plot_all()
class FlatCAMGrbEditor(QtCore.QObject):
draw_shape_idx = -1
plot_finished = QtCore.pyqtSignal()
def __init__(self, app):
assert isinstance(app, FlatCAMApp.App), \
"Expected the app to be a FlatCAMApp.App, got %s" % type(app)
super(FlatCAMGrbEditor, self).__init__()
self.app = app
self.canvas = self.app.plotcanvas
# Current application units in Upper Case
self.units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
self.grb_edit_widget = QtWidgets.QWidget()
layout = QtWidgets.QVBoxLayout()
self.grb_edit_widget.setLayout(layout)
# Page Title box (spacing between children)
self.title_box = QtWidgets.QHBoxLayout()
layout.addLayout(self.title_box)
# Page Title icon
pixmap = QtGui.QPixmap('share/flatcam_icon32.png')
self.icon = QtWidgets.QLabel()
self.icon.setPixmap(pixmap)
self.title_box.addWidget(self.icon, stretch=0)
# Title label
self.title_label = QtWidgets.QLabel("<font size=5><b>%s</b></font>" % _('Gerber Editor'))
self.title_label.setAlignment(QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter)
self.title_box.addWidget(self.title_label, stretch=1)
# Object name
self.name_box = QtWidgets.QHBoxLayout()
layout.addLayout(self.name_box)
name_label = QtWidgets.QLabel(_("Name:"))
self.name_box.addWidget(name_label)
self.name_entry = FCEntry()
self.name_box.addWidget(self.name_entry)
# Box for custom widgets
# This gets populated in offspring implementations.
self.custom_box = QtWidgets.QVBoxLayout()
layout.addLayout(self.custom_box)
# #########################
# ### Gerber Apertures ####
# #########################
self.apertures_table_label = QtWidgets.QLabel('<b>%s:</b>' % _('Apertures'))
self.apertures_table_label.setToolTip(
_("Apertures Table for the Gerber Object.")
)
self.custom_box.addWidget(self.apertures_table_label)
self.apertures_table = FCTable()
# delegate = SpinBoxDelegate(units=self.units)
# self.apertures_table.setItemDelegateForColumn(1, delegate)
self.custom_box.addWidget(self.apertures_table)
self.apertures_table.setColumnCount(5)
self.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')])
self.apertures_table.setSortingEnabled(False)
self.apertures_table.horizontalHeaderItem(0).setToolTip(
_("Index"))
self.apertures_table.horizontalHeaderItem(1).setToolTip(
_("Aperture Code"))
self.apertures_table.horizontalHeaderItem(2).setToolTip(
_("Type of aperture: circular, rectangle, macros etc"))
self.apertures_table.horizontalHeaderItem(4).setToolTip(
_("Aperture Size:"))
self.apertures_table.horizontalHeaderItem(4).setToolTip(
_("Aperture Dimensions:\n"
" - (width, height) for R, O type.\n"
" - (dia, nVertices) for P type"))
self.empty_label = QtWidgets.QLabel('')
self.custom_box.addWidget(self.empty_label)
# add a frame and inside add a vertical box layout. Inside this vbox layout I add all the Apertures widgets
# this way I can hide/show the frame
self.apertures_frame = QtWidgets.QFrame()
self.apertures_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.apertures_frame)
self.apertures_box = QtWidgets.QVBoxLayout()
self.apertures_box.setContentsMargins(0, 0, 0, 0)
self.apertures_frame.setLayout(self.apertures_box)
# # ## Add/Delete an new Aperture ## ##
grid1 = QtWidgets.QGridLayout()
self.apertures_box.addLayout(grid1)
apcode_lbl = QtWidgets.QLabel('%s:' % _('Aperture Code'))
apcode_lbl.setToolTip(
_("Code for the new aperture")
)
grid1.addWidget(apcode_lbl, 1, 0)
self.apcode_entry = FCEntry()
self.apcode_entry.setValidator(QtGui.QIntValidator(0, 999))
grid1.addWidget(self.apcode_entry, 1, 1)
apsize_lbl = QtWidgets.QLabel('%s:' % _('Aperture Size'))
apsize_lbl.setToolTip(
_("Size for the new aperture.\n"
"If aperture type is 'R' or 'O' then\n"
"this value is automatically\n"
"calculated as:\n"
"sqrt(width**2 + height**2)")
)
grid1.addWidget(apsize_lbl, 2, 0)
self.apsize_entry = FCEntry()
self.apsize_entry.setValidator(QtGui.QDoubleValidator(0.0001, 99.9999, 4))
grid1.addWidget(self.apsize_entry, 2, 1)
aptype_lbl = QtWidgets.QLabel('%s:' % _('Aperture Type'))
aptype_lbl.setToolTip(
_("Select the type of new aperture. Can be:\n"
"C = circular\n"
"R = rectangular\n"
"O = oblong")
)
grid1.addWidget(aptype_lbl, 3, 0)
self.aptype_cb = FCComboBox()
self.aptype_cb.addItems(['C', 'R', 'O'])
grid1.addWidget(self.aptype_cb, 3, 1)
self.apdim_lbl = QtWidgets.QLabel('%s:' % _('Aperture Dim'))
self.apdim_lbl.setToolTip(
_("Dimensions for the new aperture.\n"
"Active only for rectangular apertures (type R).\n"
"The format is (width, height)")
)
grid1.addWidget(self.apdim_lbl, 4, 0)
self.apdim_entry = EvalEntry2()
grid1.addWidget(self.apdim_entry, 4, 1)
apadd_del_lbl = QtWidgets.QLabel('<b>%s:</b>' % _('Add/Delete Aperture'))
apadd_del_lbl.setToolTip(
_("Add/Delete an aperture in the aperture table")
)
self.apertures_box.addWidget(apadd_del_lbl)
hlay_ad = QtWidgets.QHBoxLayout()
self.apertures_box.addLayout(hlay_ad)
self.addaperture_btn = QtWidgets.QPushButton(_('Add'))
self.addaperture_btn.setToolTip(
_( "Add a new aperture to the aperture list.")
)
self.delaperture_btn = QtWidgets.QPushButton(_('Delete'))
self.delaperture_btn.setToolTip(
_( "Delete a aperture in the aperture list")
)
hlay_ad.addWidget(self.addaperture_btn)
hlay_ad.addWidget(self.delaperture_btn)
# ###################
# ### BUFFER TOOL ###
# ###################
self.buffer_tool_frame = QtWidgets.QFrame()
self.buffer_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.buffer_tool_frame)
self.buffer_tools_box = QtWidgets.QVBoxLayout()
self.buffer_tools_box.setContentsMargins(0, 0, 0, 0)
self.buffer_tool_frame.setLayout(self.buffer_tools_box)
self.buffer_tool_frame.hide()
# Title
buf_title_lbl = QtWidgets.QLabel('<b>%s:</b>' % _('Buffer Aperture'))
buf_title_lbl.setToolTip(
_("Buffer a aperture in the aperture list")
)
self.buffer_tools_box.addWidget(buf_title_lbl)
# Form Layout
buf_form_layout = QtWidgets.QFormLayout()
self.buffer_tools_box.addLayout(buf_form_layout)
# Buffer distance
self.buffer_distance_entry = FCEntry()
buf_form_layout.addRow('%s:' % _("Buffer distance"), self.buffer_distance_entry)
self.buffer_corner_lbl = QtWidgets.QLabel('%s:' % _("Buffer corner"))
self.buffer_corner_lbl.setToolTip(
_("There are 3 types of corners:\n"
" - 'Round': the corner is rounded.\n"
" - 'Square:' the corner is met in a sharp angle.\n"
" - 'Beveled:' the corner is a line that directly connects the features meeting in the corner")
)
self.buffer_corner_cb = FCComboBox()
self.buffer_corner_cb.addItem(_("Round"))
self.buffer_corner_cb.addItem(_("Square"))
self.buffer_corner_cb.addItem(_("Beveled"))
buf_form_layout.addRow(self.buffer_corner_lbl, self.buffer_corner_cb)
# Buttons
hlay_buf = QtWidgets.QHBoxLayout()
self.buffer_tools_box.addLayout(hlay_buf)
self.buffer_button = QtWidgets.QPushButton(_("Buffer"))
hlay_buf.addWidget(self.buffer_button)
# ##################
# ### SCALE TOOL ###
# ##################
self.scale_tool_frame = QtWidgets.QFrame()
self.scale_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.scale_tool_frame)
self.scale_tools_box = QtWidgets.QVBoxLayout()
self.scale_tools_box.setContentsMargins(0, 0, 0, 0)
self.scale_tool_frame.setLayout(self.scale_tools_box)
self.scale_tool_frame.hide()
# Title
scale_title_lbl = QtWidgets.QLabel('<b>%s:</b>' % _('Scale Aperture'))
scale_title_lbl.setToolTip(
_("Scale a aperture in the aperture list")
)
self.scale_tools_box.addWidget(scale_title_lbl)
# Form Layout
scale_form_layout = QtWidgets.QFormLayout()
self.scale_tools_box.addLayout(scale_form_layout)
self.scale_factor_lbl = QtWidgets.QLabel('%s:' % _("Scale factor"))
self.scale_factor_lbl.setToolTip(
_("The factor by which to scale the selected aperture.\n"
"Values can be between 0.0000 and 999.9999")
)
self.scale_factor_entry = FCEntry()
self.scale_factor_entry.setValidator(QtGui.QDoubleValidator(0.0000, 999.9999, 4))
scale_form_layout.addRow(self.scale_factor_lbl, self.scale_factor_entry)
# Buttons
hlay_scale = QtWidgets.QHBoxLayout()
self.scale_tools_box.addLayout(hlay_scale)
self.scale_button = QtWidgets.QPushButton(_("Scale"))
hlay_scale.addWidget(self.scale_button)
# ######################
# ### Mark Area TOOL ###
# ######################
self.ma_tool_frame = QtWidgets.QFrame()
self.ma_tool_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.ma_tool_frame)
self.ma_tools_box = QtWidgets.QVBoxLayout()
self.ma_tools_box.setContentsMargins(0, 0, 0, 0)
self.ma_tool_frame.setLayout(self.ma_tools_box)
self.ma_tool_frame.hide()
# Title
ma_title_lbl = QtWidgets.QLabel('<b>%s:</b>' % _('Mark polygon areas'))
ma_title_lbl.setToolTip(
_("Mark the polygon areas.")
)
self.ma_tools_box.addWidget(ma_title_lbl)
# Form Layout
ma_form_layout = QtWidgets.QFormLayout()
self.ma_tools_box.addLayout(ma_form_layout)
self.ma_upper_threshold_lbl = QtWidgets.QLabel('%s:' % _("Area UPPER threshold"))
self.ma_upper_threshold_lbl.setToolTip(
_("The threshold value, all areas less than this are marked.\n"
"Can have a value between 0.0000 and 9999.9999")
)
self.ma_upper_threshold_entry = FCEntry()
self.ma_upper_threshold_entry.setValidator(QtGui.QDoubleValidator(0.0000, 9999.9999, 4))
self.ma_lower_threshold_lbl = QtWidgets.QLabel('%s:' % _("Area LOWER threshold"))
self.ma_lower_threshold_lbl.setToolTip(
_("The threshold value, all areas more than this are marked.\n"
"Can have a value between 0.0000 and 9999.9999")
)
self.ma_lower_threshold_entry = FCEntry()
self.ma_lower_threshold_entry.setValidator(QtGui.QDoubleValidator(0.0000, 9999.9999, 4))
ma_form_layout.addRow(self.ma_upper_threshold_lbl, self.ma_upper_threshold_entry)
ma_form_layout.addRow(self.ma_lower_threshold_lbl, self.ma_lower_threshold_entry)
# Buttons
hlay_ma = QtWidgets.QHBoxLayout()
self.ma_tools_box.addLayout(hlay_ma)
self.ma_threshold__button = QtWidgets.QPushButton(_("Go"))
hlay_ma.addWidget(self.ma_threshold__button)
# ######################
# ### Add Pad Array ####
# ######################
# add a frame and inside add a vertical box layout. Inside this vbox layout I add
# all the add Pad array widgets
# this way I can hide/show the frame
self.array_frame = QtWidgets.QFrame()
self.array_frame.setContentsMargins(0, 0, 0, 0)
self.custom_box.addWidget(self.array_frame)
self.array_box = QtWidgets.QVBoxLayout()
self.array_box.setContentsMargins(0, 0, 0, 0)
self.array_frame.setLayout(self.array_box)
self.emptyarray_label = QtWidgets.QLabel('')
self.array_box.addWidget(self.emptyarray_label)
self.padarray_label = QtWidgets.QLabel('<b>%s</b>' % _("Add Pad Array"))
self.padarray_label.setToolTip(
_("Add an array of pads (linear or circular array)")
)
self.array_box.addWidget(self.padarray_label)
self.array_type_combo = FCComboBox()
self.array_type_combo.setToolTip(
_( "Select the type of pads array to create.\n"
"It can be Linear X(Y) or Circular")
)
self.array_type_combo.addItem(_("Linear"))
self.array_type_combo.addItem(_("Circular"))
self.array_box.addWidget(self.array_type_combo)
self.array_form = QtWidgets.QFormLayout()
self.array_box.addLayout(self.array_form)
self.pad_array_size_label = QtWidgets.QLabel('%s:' % _('Nr of pads'))
self.pad_array_size_label.setToolTip(
_("Specify how many pads to be in the array.")
)
self.pad_array_size_label.setMinimumWidth(100)
self.pad_array_size_entry = LengthEntry()
self.array_form.addRow(self.pad_array_size_label, self.pad_array_size_entry)
self.array_linear_frame = QtWidgets.QFrame()
self.array_linear_frame.setContentsMargins(0, 0, 0, 0)
self.array_box.addWidget(self.array_linear_frame)
self.linear_box = QtWidgets.QVBoxLayout()
self.linear_box.setContentsMargins(0, 0, 0, 0)
self.array_linear_frame.setLayout(self.linear_box)
self.linear_form = QtWidgets.QFormLayout()
self.linear_box.addLayout(self.linear_form)
self.pad_axis_label = QtWidgets.QLabel('%s:' % _('Direction'))
self.pad_axis_label.setToolTip(
_("Direction on which the linear array is oriented:\n"
"- 'X' - horizontal axis \n"
"- 'Y' - vertical axis or \n"
"- 'Angle' - a custom angle for the array inclination")
)
self.pad_axis_label.setMinimumWidth(100)
self.pad_axis_radio = RadioSet([{'label': _('X'), 'value': 'X'},
{'label': _('Y'), 'value': 'Y'},
{'label': _('Angle'), 'value': 'A'}])
self.pad_axis_radio.set_value('X')
self.linear_form.addRow(self.pad_axis_label, self.pad_axis_radio)
self.pad_pitch_label = QtWidgets.QLabel('%s:' % _('Pitch'))
self.pad_pitch_label.setToolTip(
_("Pitch = Distance between elements of the array.")
)
self.pad_pitch_label.setMinimumWidth(100)
self.pad_pitch_entry = LengthEntry()
self.linear_form.addRow(self.pad_pitch_label, self.pad_pitch_entry)
self.linear_angle_label = QtWidgets.QLabel('%s:' % _('Angle'))
self.linear_angle_label.setToolTip(
_( "Angle at which the linear array is placed.\n"
"The precision is of max 2 decimals.\n"
"Min value is: -359.99 degrees.\n"
"Max value is: 360.00 degrees.")
)
self.linear_angle_label.setMinimumWidth(100)
self.linear_angle_spinner = FCDoubleSpinner()
self.linear_angle_spinner.set_precision(2)
self.linear_angle_spinner.setRange(-359.99, 360.00)
self.linear_form.addRow(self.linear_angle_label, self.linear_angle_spinner)
self.array_circular_frame = QtWidgets.QFrame()
self.array_circular_frame.setContentsMargins(0, 0, 0, 0)
self.array_box.addWidget(self.array_circular_frame)
self.circular_box = QtWidgets.QVBoxLayout()
self.circular_box.setContentsMargins(0, 0, 0, 0)
self.array_circular_frame.setLayout(self.circular_box)
self.pad_direction_label = QtWidgets.QLabel('%s:' % _('Direction'))
self.pad_direction_label.setToolTip(
_("Direction for circular array."
"Can be CW = clockwise or CCW = counter clockwise.")
)
self.pad_direction_label.setMinimumWidth(100)
self.circular_form = QtWidgets.QFormLayout()
self.circular_box.addLayout(self.circular_form)
self.pad_direction_radio = RadioSet([{'label': _('CW'), 'value': 'CW'},
{'label': _('CCW'), 'value': 'CCW'}])
self.pad_direction_radio.set_value('CW')
self.circular_form.addRow(self.pad_direction_label, self.pad_direction_radio)
self.pad_angle_label = QtWidgets.QLabel('%s:' % _('Angle'))
self.pad_angle_label.setToolTip(
_("Angle at which each element in circular array is placed.")
)
self.pad_angle_label.setMinimumWidth(100)
self.pad_angle_entry = LengthEntry()
self.circular_form.addRow(self.pad_angle_label, self.pad_angle_entry)
self.array_circular_frame.hide()
self.linear_angle_spinner.hide()
self.linear_angle_label.hide()
self.array_frame.hide()
self.custom_box.addStretch()
# Toolbar events and properties
self.tools_gerber = {
"select": {"button": self.app.ui.grb_select_btn,
"constructor": FCApertureSelect},
"pad": {"button": self.app.ui.grb_add_pad_btn,
"constructor": FCPad},
"array": {"button": self.app.ui.add_pad_ar_btn,
"constructor": FCPadArray},
"track": {"button": self.app.ui.grb_add_track_btn,
"constructor": FCTrack},
"region": {"button": self.app.ui.grb_add_region_btn,
"constructor": FCRegion},
"poligonize": {"button": self.app.ui.grb_convert_poly_btn,
"constructor": FCPoligonize},
"semidisc": {"button": self.app.ui.grb_add_semidisc_btn,
"constructor": FCSemiDisc},
"disc": {"button": self.app.ui.grb_add_disc_btn,
"constructor": FCDisc},
"buffer": {"button": self.app.ui.aperture_buffer_btn,
"constructor": FCBuffer},
"scale": {"button": self.app.ui.aperture_scale_btn,
"constructor": FCScale},
"markarea": {"button": self.app.ui.aperture_markarea_btn,
"constructor": FCMarkArea},
"eraser": {"button": self.app.ui.aperture_eraser_btn,
"constructor": FCEraser},
"copy": {"button": self.app.ui.aperture_copy_btn,
"constructor": FCApertureCopy},
"transform": {"button": self.app.ui.grb_transform_btn,
"constructor": FCTransform},
"move": {"button": self.app.ui.aperture_move_btn,
"constructor": FCApertureMove},
}
# # ## Data
self.active_tool = None
self.storage_dict = {}
self.current_storage = []
self.sorted_apid = []
self.new_apertures = {}
self.new_aperture_macros = {}
# store here the plot promises, if empty the delayed plot will be activated
self.grb_plot_promises = []
# dictionary to store the tool_row and aperture codes in Tool_table
# it will be updated everytime self.build_ui() is called
self.olddia_newdia = {}
self.tool2tooldia = {}
# this will store the value for the last selected tool, for use after clicking on canvas when the selection
# is cleared but as a side effect also the selected tool is cleared
self.last_aperture_selected = None
self.utility = []
# this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False)
self.launched_from_shortcuts = False
# this var will store the state of the toolbar before starting the editor
self.toolbar_old_state = False
# Init GUI
self.apdim_lbl.hide()
self.apdim_entry.hide()
self.gerber_obj = None
self.gerber_obj_options = dict()
# VisPy Visuals
if self.app.is_legacy is False:
self.shapes = self.canvas.new_shape_collection(layers=1)
self.tool_shape = self.canvas.new_shape_collection(layers=1)
self.ma_annotation = self.canvas.new_text_group()
else:
from flatcamGUI.PlotCanvasLegacy import ShapeCollectionLegacy
self.shapes = ShapeCollectionLegacy()
self.tool_shape = ShapeCollectionLegacy()
self.ma_annotation = ShapeCollectionLegacy()
self.app.pool_recreated.connect(self.pool_recreated)
# Remove from scene
self.shapes.enabled = False
self.tool_shape.enabled = False
# List of selected geometric elements.
self.selected = []
self.key = None # Currently pressed key
self.modifiers = None
self.x = None # Current mouse cursor pos
self.y = None
# Current snapped mouse pos
self.snap_x = None
self.snap_y = None
self.pos = None
# used in FCRegion and FCTrack. Will store the bending mode
self.bend_mode = 1
# signal that there is an action active like polygon or path
self.in_action = False
# this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False)
self.launched_from_shortcuts = False
if self.units == 'MM':
self.tolerance = float(self.app.defaults["global_tolerance"])
else:
self.tolerance = float(self.app.defaults["global_tolerance"]) / 20
def make_callback(the_tool):
def f():
self.on_tool_select(the_tool)
return f
for tool in self.tools_gerber:
self.tools_gerber[tool]["button"].triggered.connect(make_callback(tool)) # Events
self.tools_gerber[tool]["button"].setCheckable(True)
self.options = {
"global_gridx": 0.1,
"global_gridy": 0.1,
"snap_max": 0.05,
"grid_snap": True,
"corner_snap": False,
"grid_gap_link": True
}
self.app.options_read_form()
for option in self.options:
if option in self.app.options:
self.options[option] = self.app.options[option]
# flag to show if the object was modified
self.is_modified = False
self.edited_obj_name = ""
self.tool_row = 0
# A QTimer
self.plot_thread = None
# store the status of the editor so the Delete at object level will not work until the edit is finished
self.editor_active = False
# def entry2option(option, entry):
# self.options[option] = float(entry.text())
self.transform_tool = TransformEditorTool(self.app, self)
# Signals
self.buffer_button.clicked.connect(self.on_buffer)
self.scale_button.clicked.connect(self.on_scale)
self.app.ui.aperture_delete_btn.triggered.connect(self.on_delete_btn)
self.name_entry.returnPressed.connect(self.on_name_activate)
self.aptype_cb.currentIndexChanged[str].connect(self.on_aptype_changed)
self.addaperture_btn.clicked.connect(self.on_aperture_add)
self.apsize_entry.returnPressed.connect(self.on_aperture_add)
self.apdim_entry.returnPressed.connect(self.on_aperture_add)
self.delaperture_btn.clicked.connect(self.on_aperture_delete)
self.apertures_table.cellPressed.connect(self.on_row_selected)
self.app.ui.grb_add_pad_menuitem.triggered.connect(self.on_pad_add)
self.app.ui.grb_add_pad_array_menuitem.triggered.connect(self.on_pad_add_array)
self.app.ui.grb_add_track_menuitem.triggered.connect(self.on_track_add)
self.app.ui.grb_add_region_menuitem.triggered.connect(self.on_region_add)
self.app.ui.grb_convert_poly_menuitem.triggered.connect(self.on_poligonize)
self.app.ui.grb_add_semidisc_menuitem.triggered.connect(self.on_add_semidisc)
self.app.ui.grb_add_disc_menuitem.triggered.connect(self.on_disc_add)
self.app.ui.grb_add_buffer_menuitem.triggered.connect(self.on_buffer)
self.app.ui.grb_add_scale_menuitem.triggered.connect(self.on_scale)
self.app.ui.grb_add_eraser_menuitem.triggered.connect(self.on_eraser)
self.app.ui.grb_add_markarea_menuitem.triggered.connect(self.on_markarea)
self.app.ui.grb_transform_menuitem.triggered.connect(self.transform_tool.run)
self.app.ui.grb_copy_menuitem.triggered.connect(self.on_copy_button)
self.app.ui.grb_delete_menuitem.triggered.connect(self.on_delete_btn)
self.app.ui.grb_move_menuitem.triggered.connect(self.on_move_button)
self.array_type_combo.currentIndexChanged.connect(self.on_array_type_combo)
self.pad_axis_radio.activated_custom.connect(self.on_linear_angle_radio)
# store the status of the editor so the Delete at object level will not work until the edit is finished
self.editor_active = False
self.conversion_factor = 1
self.set_ui()
log.debug("Initialization of the FlatCAM Gerber Editor is finished ...")
def pool_recreated(self, pool):
self.shapes.pool = pool
self.tool_shape.pool = pool
def set_ui(self):
# updated units
self.units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
self.olddia_newdia.clear()
self.tool2tooldia.clear()
# update the olddia_newdia dict to make sure we have an updated state of the tool_table
for key in self.storage_dict:
self.olddia_newdia[key] = key
sort_temp = []
for aperture in self.olddia_newdia:
sort_temp.append(int(aperture))
self.sorted_apid = sorted(sort_temp)
# populate self.intial_table_rows dict with the tool number as keys and aperture codes as values
for i in range(len(self.sorted_apid)):
tt_aperture = self.sorted_apid[i]
self.tool2tooldia[i + 1] = tt_aperture
# Init GUI
self.buffer_distance_entry.set_value(self.app.defaults["gerber_editor_buff_f"])
self.scale_factor_entry.set_value(self.app.defaults["gerber_editor_scale_f"])
self.ma_upper_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_low"])
self.ma_lower_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_high"])
self.apsize_entry.set_value(self.app.defaults["gerber_editor_newsize"])
self.aptype_cb.set_value(self.app.defaults["gerber_editor_newtype"])
self.apdim_entry.set_value(self.app.defaults["gerber_editor_newdim"])
self.pad_array_size_entry.set_value(self.app.defaults["gerber_editor_array_size"])
# linear array
self.pad_axis_radio.set_value(self.app.defaults["gerber_editor_lin_axis"])
self.pad_pitch_entry.set_value(self.app.defaults["gerber_editor_lin_pitch"])
self.linear_angle_spinner.set_value(self.app.defaults["gerber_editor_lin_angle"])
# circular array
self.pad_direction_radio.set_value(self.app.defaults["gerber_editor_circ_dir"])
self.pad_angle_entry.set_value(self.app.defaults["gerber_editor_circ_angle"])
def build_ui(self, first_run=None):
try:
# if connected, disconnect the signal from the slot on item_changed as it creates issues
self.apertures_table.itemChanged.disconnect()
except (TypeError, AttributeError):
pass
try:
self.apertures_table.cellPressed.disconnect()
except (TypeError, AttributeError):
pass
# updated units
self.units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
# make a new name for the new Excellon object (the one with edited content)
self.edited_obj_name = self.gerber_obj.options['name']
self.name_entry.set_value(self.edited_obj_name)
self.apertures_row = 0
# aper_no = self.apertures_row + 1
sort = []
for k, v in list(self.storage_dict.items()):
sort.append(int(k))
sorted_apertures = sorted(sort)
# sort = []
# for k, v in list(self.gerber_obj.aperture_macros.items()):
# sort.append(k)
# sorted_macros = sorted(sort)
# n = len(sorted_apertures) + len(sorted_macros)
n = len(sorted_apertures)
self.apertures_table.setRowCount(n)
for ap_code in sorted_apertures:
ap_code = str(ap_code)
ap_id_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1))
ap_id_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
self.apertures_table.setItem(self.apertures_row, 0, ap_id_item) # Tool name/id
ap_code_item = QtWidgets.QTableWidgetItem(ap_code)
ap_code_item.setFlags(QtCore.Qt.ItemIsEnabled)
ap_type_item = QtWidgets.QTableWidgetItem(str(self.storage_dict[ap_code]['type']))
ap_type_item.setFlags(QtCore.Qt.ItemIsEnabled)
if str(self.storage_dict[ap_code]['type']) == 'R' or str(self.storage_dict[ap_code]['type']) == 'O':
ap_dim_item = QtWidgets.QTableWidgetItem(
'%.4f, %.4f' % (self.storage_dict[ap_code]['width'],
self.storage_dict[ap_code]['height']
)
)
ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled)
elif str(self.storage_dict[ap_code]['type']) == 'P':
ap_dim_item = QtWidgets.QTableWidgetItem(
'%.4f, %.4f' % (self.storage_dict[ap_code]['diam'],
self.storage_dict[ap_code]['nVertices'])
)
ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled)
else:
ap_dim_item = QtWidgets.QTableWidgetItem('')
ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled)
try:
if self.storage_dict[ap_code]['size'] is not None:
ap_size_item = QtWidgets.QTableWidgetItem('%.4f' % float(
self.storage_dict[ap_code]['size']))
else:
ap_size_item = QtWidgets.QTableWidgetItem('')
except KeyError:
ap_size_item = QtWidgets.QTableWidgetItem('')
ap_size_item.setFlags(QtCore.Qt.ItemIsEnabled)
self.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code
self.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type
self.apertures_table.setItem(self.apertures_row, 3, ap_size_item) # Aperture Dimensions
self.apertures_table.setItem(self.apertures_row, 4, ap_dim_item) # Aperture Dimensions
self.apertures_row += 1
if first_run is True:
# set now the last aperture selected
self.last_aperture_selected = ap_code
# for ap_code in sorted_macros:
# ap_code = str(ap_code)
#
# ap_id_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1))
# ap_id_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled)
# self.apertures_table.setItem(self.apertures_row, 0, ap_id_item) # Tool name/id
#
# ap_code_item = QtWidgets.QTableWidgetItem(ap_code)
#
# ap_type_item = QtWidgets.QTableWidgetItem('AM')
# ap_type_item.setFlags(QtCore.Qt.ItemIsEnabled)
#
# self.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code
# self.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type
#
# self.apertures_row += 1
# if first_run is True:
# # set now the last aperture selected
# self.last_aperture_selected = ap_code
self.apertures_table.selectColumn(0)
self.apertures_table.resizeColumnsToContents()
self.apertures_table.resizeRowsToContents()
vertical_header = self.apertures_table.verticalHeader()
# vertical_header.setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents)
vertical_header.hide()
self.apertures_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
horizontal_header = self.apertures_table.horizontalHeader()
horizontal_header.setMinimumSectionSize(10)
horizontal_header.setDefaultSectionSize(70)
horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed)
horizontal_header.resizeSection(0, 27)
horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(2, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents)
horizontal_header.setSectionResizeMode(4, QtWidgets.QHeaderView.Stretch)
self.apertures_table.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
self.apertures_table.setSortingEnabled(False)
self.apertures_table.setMinimumHeight(self.apertures_table.getHeight())
self.apertures_table.setMaximumHeight(self.apertures_table.getHeight())
# make sure no rows are selected so the user have to click the correct row, meaning selecting the correct tool
self.apertures_table.clearSelection()
# Remove anything else in the GUI Selected Tab
self.app.ui.selected_scroll_area.takeWidget()
# Put ourselves in the GUI Selected Tab
self.app.ui.selected_scroll_area.setWidget(self.grb_edit_widget)
# Switch notebook to Selected page
self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab)
# we reactivate the signals after the after the tool adding as we don't need to see the tool been populated
self.apertures_table.itemChanged.connect(self.on_tool_edit)
self.apertures_table.cellPressed.connect(self.on_row_selected)
# for convenience set the next aperture code in the apcode field
try:
self.apcode_entry.set_value(max(self.tool2tooldia.values()) + 1)
except ValueError:
# this means that the edited object has no apertures so we start with 10 (Gerber specifications)
self.apcode_entry.set_value(self.app.defaults["gerber_editor_newcode"])
def on_aperture_add(self, apid=None):
self.is_modified = True
if apid:
ap_id = apid
else:
try:
ap_id = str(self.apcode_entry.get_value())
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture code value is missing or wrong format. Add it and retry."))
return
if ap_id == '':
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture code value is missing or wrong format. Add it and retry."))
return
if ap_id == '0':
if ap_id not in self.tool2tooldia:
self.storage_dict[ap_id] = {}
self.storage_dict[ap_id]['type'] = 'REG'
size_val = 0
self.apsize_entry.set_value(size_val)
self.storage_dict[ap_id]['size'] = size_val
self.storage_dict[ap_id]['geometry'] = []
# self.olddia_newdia dict keeps the evidence on current aperture codes as keys and gets updated on values
# each time a aperture code is edited or added
self.olddia_newdia[ap_id] = ap_id
else:
if ap_id not in self.olddia_newdia:
self.storage_dict[ap_id] = {}
type_val = self.aptype_cb.currentText()
self.storage_dict[ap_id]['type'] = type_val
if type_val == 'R' or type_val == 'O':
try:
dims = self.apdim_entry.get_value()
self.storage_dict[ap_id]['width'] = dims[0]
self.storage_dict[ap_id]['height'] = dims[1]
size_val = math.sqrt((dims[0] ** 2) + (dims[1] ** 2))
self.apsize_entry.set_value(size_val)
except Exception as e:
log.error("FlatCAMGrbEditor.on_aperture_add() --> the R or O aperture dims has to be in a "
"tuple format (x,y)\nError: %s" % str(e))
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture dimensions value is missing or wrong format. "
"Add it in format (width, height) and retry."))
return
else:
try:
size_val = float(self.apsize_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
size_val = float(self.apsize_entry.get_value().replace(',', '.'))
self.apsize_entry.set_value(size_val)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture size value is missing or wrong format. Add it and retry."))
return
self.storage_dict[ap_id]['size'] = size_val
self.storage_dict[ap_id]['geometry'] = []
# self.olddia_newdia dict keeps the evidence on current aperture codes as keys and gets updated on
# values each time a aperture code is edited or added
self.olddia_newdia[ap_id] = ap_id
else:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Aperture already in the aperture table."))
return
# since we add a new tool, we update also the initial state of the tool_table through it's dictionary
# we add a new entry in the tool2tooldia dict
self.tool2tooldia[len(self.olddia_newdia)] = int(ap_id)
self.app.inform.emit('[success] %s: %s' %
(_("Added new aperture with code"), str(ap_id)))
self.build_ui()
self.last_aperture_selected = ap_id
# make a quick sort through the tool2tooldia dict so we find which row to select
row_to_be_selected = None
for key in sorted(self.tool2tooldia):
if self.tool2tooldia[key] == int(ap_id):
row_to_be_selected = int(key) - 1
break
self.apertures_table.selectRow(row_to_be_selected)
def on_aperture_delete(self, ap_id=None):
self.is_modified = True
deleted_apcode_list = []
try:
if ap_id:
if isinstance(ap_id, list):
for dd in ap_id:
deleted_apcode_list.append(dd)
else:
deleted_apcode_list.append(ap_id)
else:
# deleted_tool_dia = float(self.apertures_table.item(self.apertures_table.currentRow(), 1).text())
if len(self.apertures_table.selectionModel().selectedRows()) == 0:
self.app.inform.emit('[WARNING_NOTCL]%s' %
_(" Select an aperture in Aperture Table"))
return
for index in self.apertures_table.selectionModel().selectedRows():
row = index.row()
deleted_apcode_list.append(self.apertures_table.item(row, 1).text())
except Exception as exc:
self.app.inform.emit('[WARNING_NOTCL] %s %s' %
(_("Select an aperture in Aperture Table -->", str(exc))))
return
if deleted_apcode_list:
for deleted_aperture in deleted_apcode_list:
# delete the storage used for that tool
self.storage_dict.pop(deleted_aperture, None)
# I've added this flag_del variable because dictionary don't like
# having keys deleted while iterating through them
flag_del = []
for deleted_tool in self.tool2tooldia:
if self.tool2tooldia[deleted_tool] == deleted_aperture:
flag_del.append(deleted_tool)
if flag_del:
for aperture_to_be_deleted in flag_del:
# delete the tool
self.tool2tooldia.pop(aperture_to_be_deleted, None)
flag_del = []
self.olddia_newdia.pop(deleted_aperture, None)
self.app.inform.emit('[success] %s: %s' %
(_("Deleted aperture with code"), str(deleted_aperture)))
self.plot_all()
self.build_ui()
# if last aperture selected was in the apertures deleted than make sure to select a
# 'new' last aperture selected because there are tools who depend on it.
# if there is no aperture left, then add a default one :)
if self.last_aperture_selected in deleted_apcode_list:
if self.apertures_table.rowCount() == 0:
self.on_aperture_add('10')
else:
self.last_aperture_selected = self.apertures_table.item(0, 1).text()
def on_tool_edit(self):
# if connected, disconnect the signal from the slot on item_changed as it creates issues
self.apertures_table.itemChanged.disconnect()
# self.apertures_table.cellPressed.disconnect()
self.is_modified = True
current_table_dia_edited = None
if self.apertures_table.currentItem() is not None:
try:
current_table_dia_edited = float(self.apertures_table.currentItem().text())
except ValueError as e:
log.debug("FlatCAMExcEditor.on_tool_edit() --> %s" % str(e))
self.apertures_table.setCurrentItem(None)
return
row_of_item_changed = self.apertures_table.currentRow()
# rows start with 0, tools start with 1 so we adjust the value by 1
key_in_tool2tooldia = row_of_item_changed + 1
dia_changed = self.tool2tooldia[key_in_tool2tooldia]
# aperture code is not used so we create a new tool with the desired diameter
if current_table_dia_edited not in self.olddia_newdia.values():
# update the dict that holds as keys our initial diameters and as values the edited diameters
self.olddia_newdia[dia_changed] = current_table_dia_edited
# update the dict that holds tool_no as key and tool_dia as value
self.tool2tooldia[key_in_tool2tooldia] = current_table_dia_edited
# update the tool offset
modified_offset = self.gerber_obj.tool_offset.pop(dia_changed)
self.gerber_obj.tool_offset[current_table_dia_edited] = modified_offset
self.plot_all()
else:
# aperture code is already in use so we move the pads from the prior tool to the new tool
factor = current_table_dia_edited / dia_changed
geometry = []
for geo_el in self.storage_dict[dia_changed]:
geometric_data = geo_el.geo
new_geo_el = dict()
if 'solid' in geometric_data:
new_geo_el['solid'] = deepcopy(affinity.scale(geometric_data['solid'],
xfact=factor, yfact=factor))
if 'follow' in geometric_data:
new_geo_el['follow'] = deepcopy(affinity.scale(geometric_data['follow'],
xfact=factor, yfact=factor))
if 'clear' in geometric_data:
new_geo_el['clear'] = deepcopy(affinity.scale(geometric_data['clear'],
xfact=factor, yfact=factor))
geometry.append(new_geo_el)
self.add_gerber_shape(geometry, self.storage_dict[current_table_dia_edited])
self.on_aperture_delete(apid=dia_changed)
# delete the tool offset
self.gerber_obj.tool_offset.pop(dia_changed, None)
# we reactivate the signals after the after the tool editing
self.apertures_table.itemChanged.connect(self.on_tool_edit)
# self.apertures_table.cellPressed.connect(self.on_row_selected)
def on_name_activate(self):
self.edited_obj_name = self.name_entry.get_value()
def on_aptype_changed(self, current_text):
# 'O' is letter O not zero.
if current_text == 'R' or current_text == 'O':
self.apdim_lbl.show()
self.apdim_entry.show()
self.apsize_entry.setDisabled(True)
else:
self.apdim_lbl.hide()
self.apdim_entry.hide()
self.apsize_entry.setDisabled(False)
def activate_grb_editor(self):
# adjust the status of the menu entries related to the editor
self.app.ui.menueditedit.setDisabled(True)
self.app.ui.menueditok.setDisabled(False)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(False)
self.app.ui.popmenu_save.setVisible(True)
self.connect_canvas_event_handlers()
# init working objects
self.storage_dict = {}
self.current_storage = []
self.sorted_apid = []
self.new_apertures = {}
self.new_aperture_macros = {}
self.grb_plot_promises = []
self.olddia_newdia = {}
self.tool2tooldia = {}
self.shapes.enabled = True
self.tool_shape.enabled = True
self.app.ui.snap_max_dist_entry.setEnabled(True)
self.app.ui.corner_snap_btn.setEnabled(True)
self.app.ui.snap_magnet.setVisible(True)
self.app.ui.corner_snap_btn.setVisible(True)
self.app.ui.grb_editor_menu.setDisabled(False)
self.app.ui.grb_editor_menu.menuAction().setVisible(True)
self.app.ui.update_obj_btn.setEnabled(True)
self.app.ui.grb_editor_cmenu.setEnabled(True)
self.app.ui.grb_edit_toolbar.setDisabled(False)
self.app.ui.grb_edit_toolbar.setVisible(True)
# self.app.ui.snap_toolbar.setDisabled(False)
# start with GRID toolbar activated
if self.app.ui.grid_snap_btn.isChecked() is False:
self.app.ui.grid_snap_btn.trigger()
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(False)
self.app.ui.popmenu_save.setVisible(True)
self.app.ui.popmenu_disable.setVisible(False)
self.app.ui.cmenu_newmenu.menuAction().setVisible(False)
self.app.ui.popmenu_properties.setVisible(False)
self.app.ui.grb_editor_cmenu.menuAction().setVisible(True)
# Tell the App that the editor is active
self.editor_active = True
def deactivate_grb_editor(self):
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.deactivate_grb_editor() --> %s" % str(e))
# adjust the status of the menu entries related to the editor
self.app.ui.menueditedit.setDisabled(False)
self.app.ui.menueditok.setDisabled(True)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(True)
self.app.ui.popmenu_save.setVisible(False)
self.disconnect_canvas_event_handlers()
self.clear()
self.app.ui.grb_edit_toolbar.setDisabled(True)
settings = QSettings("Open Source", "FlatCAM")
if settings.contains("layout"):
layout = settings.value('layout', type=str)
if layout == 'standard':
# self.app.ui.exc_edit_toolbar.setVisible(False)
self.app.ui.snap_max_dist_entry.setEnabled(False)
self.app.ui.corner_snap_btn.setEnabled(False)
self.app.ui.snap_magnet.setVisible(False)
self.app.ui.corner_snap_btn.setVisible(False)
elif layout == 'compact':
# self.app.ui.exc_edit_toolbar.setVisible(True)
self.app.ui.snap_max_dist_entry.setEnabled(False)
self.app.ui.corner_snap_btn.setEnabled(False)
self.app.ui.snap_magnet.setVisible(True)
self.app.ui.corner_snap_btn.setVisible(True)
else:
# self.app.ui.exc_edit_toolbar.setVisible(False)
self.app.ui.snap_max_dist_entry.setEnabled(False)
self.app.ui.corner_snap_btn.setEnabled(False)
self.app.ui.snap_magnet.setVisible(False)
self.app.ui.corner_snap_btn.setVisible(False)
# set the Editor Toolbar visibility to what was before entering in the Editor
self.app.ui.grb_edit_toolbar.setVisible(False) if self.toolbar_old_state is False \
else self.app.ui.grb_edit_toolbar.setVisible(True)
# Disable visuals
self.shapes.enabled = False
self.tool_shape.enabled = False
# self.app.app_cursor.enabled = False
# Tell the app that the editor is no longer active
self.editor_active = False
self.app.ui.grb_editor_menu.setDisabled(True)
self.app.ui.grb_editor_menu.menuAction().setVisible(False)
self.app.ui.update_obj_btn.setEnabled(False)
# adjust the visibility of some of the canvas context menu
self.app.ui.popmenu_edit.setVisible(True)
self.app.ui.popmenu_save.setVisible(False)
self.app.ui.popmenu_disable.setVisible(True)
self.app.ui.cmenu_newmenu.menuAction().setVisible(True)
self.app.ui.popmenu_properties.setVisible(True)
self.app.ui.g_editor_cmenu.menuAction().setVisible(False)
self.app.ui.e_editor_cmenu.menuAction().setVisible(False)
self.app.ui.grb_editor_cmenu.menuAction().setVisible(False)
# Show original geometry
if self.gerber_obj:
self.gerber_obj.visible = True
def connect_canvas_event_handlers(self):
# Canvas events
# make sure that the shortcuts key and mouse events will no longer be linked to the methods from FlatCAMApp
# but those from FlatCAMGeoEditor
# first connect to new, then disconnect the old handlers
# don't ask why but if there is nothing connected I've seen issues
self.mp = self.canvas.graph_event_connect('mouse_press', self.on_canvas_click)
self.mm = self.canvas.graph_event_connect('mouse_move', self.on_canvas_move)
self.mr = self.canvas.graph_event_connect('mouse_release', self.on_grb_click_release)
if self.app.is_legacy is False:
self.canvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot)
self.canvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot)
self.canvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot)
self.canvas.graph_event_disconnect('mouse_double_click', self.app.on_double_click_over_plot)
else:
self.canvas.graph_event_disconnect(self.app.mp)
self.canvas.graph_event_disconnect(self.app.mm)
self.canvas.graph_event_disconnect(self.app.mr)
self.canvas.graph_event_disconnect(self.app.mdc)
self.app.collection.view.clicked.disconnect()
self.app.ui.popmenu_copy.triggered.disconnect()
self.app.ui.popmenu_delete.triggered.disconnect()
self.app.ui.popmenu_move.triggered.disconnect()
self.app.ui.popmenu_copy.triggered.connect(self.on_copy_button)
self.app.ui.popmenu_delete.triggered.connect(self.on_delete_btn)
self.app.ui.popmenu_move.triggered.connect(self.on_move_button)
# Gerber Editor
self.app.ui.grb_draw_pad.triggered.connect(self.on_pad_add)
self.app.ui.grb_draw_pad_array.triggered.connect(self.on_pad_add_array)
self.app.ui.grb_draw_track.triggered.connect(self.on_track_add)
self.app.ui.grb_draw_region.triggered.connect(self.on_region_add)
self.app.ui.grb_draw_poligonize.triggered.connect(self.on_poligonize)
self.app.ui.grb_draw_semidisc.triggered.connect(self.on_add_semidisc)
self.app.ui.grb_draw_disc.triggered.connect(self.on_disc_add)
self.app.ui.grb_draw_buffer.triggered.connect(lambda: self.select_tool("buffer"))
self.app.ui.grb_draw_scale.triggered.connect(lambda: self.select_tool("scale"))
self.app.ui.grb_draw_markarea.triggered.connect(lambda: self.select_tool("markarea"))
self.app.ui.grb_draw_eraser.triggered.connect(self.on_eraser)
self.app.ui.grb_draw_transformations.triggered.connect(self.on_transform)
def disconnect_canvas_event_handlers(self):
# we restore the key and mouse control to FlatCAMApp method
# first connect to new, then disconnect the old handlers
# don't ask why but if there is nothing connected I've seen issues
self.app.mp = self.canvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot)
self.app.mm = self.canvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot)
self.app.mr = self.canvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot)
self.app.mdc = self.canvas.graph_event_connect('mouse_double_click', self.app.on_double_click_over_plot)
self.app.collection.view.clicked.connect(self.app.collection.on_mouse_down)
if self.app.is_legacy is False:
self.canvas.graph_event_disconnect('mouse_press', self.on_canvas_click)
self.canvas.graph_event_disconnect('mouse_move', self.on_canvas_move)
self.canvas.graph_event_disconnect('mouse_release', self.on_grb_click_release)
else:
self.canvas.graph_event_disconnect(self.mp)
self.canvas.graph_event_disconnect(self.mm)
self.canvas.graph_event_disconnect(self.mr)
try:
self.app.ui.popmenu_copy.triggered.disconnect(self.on_copy_button)
except (TypeError, AttributeError):
pass
try:
self.app.ui.popmenu_delete.triggered.disconnect(self.on_delete_btn)
except (TypeError, AttributeError):
pass
try:
self.app.ui.popmenu_move.triggered.disconnect(self.on_move_button)
except (TypeError, AttributeError):
pass
self.app.ui.popmenu_copy.triggered.connect(self.app.on_copy_object)
self.app.ui.popmenu_delete.triggered.connect(self.app.on_delete)
self.app.ui.popmenu_move.triggered.connect(self.app.obj_move)
# Gerber Editor
try:
self.app.ui.grb_draw_pad.triggered.disconnect(self.on_pad_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_pad_array.triggered.disconnect(self.on_pad_add_array)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_track.triggered.disconnect(self.on_track_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_region.triggered.disconnect(self.on_region_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_poligonize.triggered.disconnect(self.on_poligonize)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_semidisc.triggered.diconnect(self.on_add_semidisc)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_disc.triggered.disconnect(self.on_disc_add)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_buffer.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_scale.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_markarea.triggered.disconnect()
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_eraser.triggered.disconnect(self.on_eraser)
except (TypeError, AttributeError):
pass
try:
self.app.ui.grb_draw_transformations.triggered.disconnect(self.on_transform)
except (TypeError, AttributeError):
pass
def clear(self):
self.active_tool = None
self.selected = []
self.shapes.clear(update=True)
self.tool_shape.clear(update=True)
self.ma_annotation.clear(update=True)
def edit_fcgerber(self, orig_grb_obj):
"""
Imports the geometry found in self.apertures from the given FlatCAM Gerber object
into the editor.
:param orig_grb_obj: FlatCAMExcellon
:return: None
"""
self.deactivate_grb_editor()
self.activate_grb_editor()
# create a reference to the source object
self.gerber_obj = orig_grb_obj
self.gerber_obj_options = orig_grb_obj.options
file_units = self.gerber_obj.gerber_units if self.gerber_obj.gerber_units else 'IN'
app_units = self.app.defaults['units']
self.conversion_factor = 25.4 if file_units == 'IN' else (1 / 25.4) if file_units != app_units else 1
# Hide original geometry
orig_grb_obj.visible = False
# Set selection tolerance
# DrawToolShape.tolerance = fc_excellon.drawing_tolerance * 10
self.select_tool("select")
try:
# we activate this after the initial build as we don't need to see the tool been populated
self.apertures_table.itemChanged.connect(self.on_tool_edit)
except Exception as e:
log.debug("FlatCAMGrbEditor.edit_fcgerber() --> %s" % str(e))
# apply the conversion factor on the obj.apertures
conv_apertures = deepcopy(self.gerber_obj.apertures)
for apid in self.gerber_obj.apertures:
for key in self.gerber_obj.apertures[apid]:
if key == 'width':
conv_apertures[apid]['width'] = self.gerber_obj.apertures[apid]['width'] * self.conversion_factor
elif key == 'height':
conv_apertures[apid]['height'] = self.gerber_obj.apertures[apid]['height'] * self.conversion_factor
elif key == 'diam':
conv_apertures[apid]['diam'] = self.gerber_obj.apertures[apid]['diam'] * self.conversion_factor
elif key == 'size':
conv_apertures[apid]['size'] = self.gerber_obj.apertures[apid]['size'] * self.conversion_factor
else:
conv_apertures[apid][key] = self.gerber_obj.apertures[apid][key]
self.gerber_obj.apertures = conv_apertures
self.gerber_obj.gerber_units = app_units
# ############################################################# ##
# APPLY CLEAR_GEOMETRY on the SOLID_GEOMETRY
# ############################################################# ##
# log.warning("Applying clear geometry in the apertures dict.")
# list of clear geos that are to be applied to the entire file
global_clear_geo = []
# create one big geometry made out of all 'negative' (clear) polygons
for apid in self.gerber_obj.apertures:
# first check if we have any clear_geometry (LPC) and if yes added it to the global_clear_geo
if 'geometry' in self.gerber_obj.apertures[apid]:
for elem in self.gerber_obj.apertures[apid]['geometry']:
if 'clear' in elem:
global_clear_geo.append(elem['clear'])
log.warning("Found %d clear polygons." % len(global_clear_geo))
global_clear_geo = MultiPolygon(global_clear_geo)
if isinstance(global_clear_geo, Polygon):
global_clear_geo = list(global_clear_geo)
# for debugging
# for geo in global_clear_geo:
# self.shapes.add(shape=geo, color='black', face_color='#000000'+'AF', layer=0, tolerance=self.tolerance)
# self.shapes.redraw()
# we subtract the big "negative" (clear) geometry from each solid polygon but only the part of clear geometry
# that fits inside the solid. otherwise we may loose the solid
for apid in self.gerber_obj.apertures:
temp_solid_geometry= []
if 'geometry' in self.gerber_obj.apertures[apid]:
# for elem in self.gerber_obj.apertures[apid]['geometry']:
# if 'solid' in elem:
# solid_geo = elem['solid']
# for clear_geo in global_clear_geo:
# # Make sure that the clear_geo is within the solid_geo otherwise we loose
# # the solid_geometry. We want for clear_geometry just to cut into solid_geometry not to
# # delete it
# if clear_geo.within(solid_geo):
# solid_geo = solid_geo.difference(clear_geo)
# try:
# for poly in solid_geo:
# new_elem = dict()
#
# new_elem['solid'] = poly
# if 'clear' in elem:
# new_elem['clear'] = poly
# if 'follow' in elem:
# new_elem['follow'] = poly
# temp_elem.append(deepcopy(new_elem))
# except TypeError:
# new_elem = dict()
# new_elem['solid'] = solid_geo
# if 'clear' in elem:
# new_elem['clear'] = solid_geo
# if 'follow' in elem:
# new_elem['follow'] = solid_geo
# temp_elem.append(deepcopy(new_elem))
for elem in self.gerber_obj.apertures[apid]['geometry']:
new_elem = dict()
if 'solid' in elem:
solid_geo = elem['solid']
for clear_geo in global_clear_geo:
# Make sure that the clear_geo is within the solid_geo otherwise we loose
# the solid_geometry. We want for clear_geometry just to cut into solid_geometry not to
# delete it
if clear_geo.within(solid_geo):
solid_geo = solid_geo.difference(clear_geo)
new_elem['solid'] = solid_geo
if 'clear' in elem:
new_elem['clear'] = elem['clear']
if 'follow' in elem:
new_elem['follow'] = elem['follow']
temp_solid_geometry.append(deepcopy(new_elem))
self.gerber_obj.apertures[apid]['geometry'] = deepcopy(temp_solid_geometry)
log.warning("Polygon difference done for %d apertures." % len(self.gerber_obj.apertures))
# and then add it to the storage elements (each storage elements is a member of a list
def job_thread(aperture_id):
with self.app.proc_container.new('%s: %s %s...' %
(_("Adding aperture"), str(aperture_id), _("geo"))):
storage_elem = []
self.storage_dict[aperture_id] = {}
# add the Gerber geometry to editor storage
for k, v in self.gerber_obj.apertures[aperture_id].items():
try:
if k == 'geometry':
for geo_el in v:
if geo_el:
self.add_gerber_shape(DrawToolShape(geo_el), storage_elem)
self.storage_dict[aperture_id][k] = storage_elem
else:
self.storage_dict[aperture_id][k] = self.gerber_obj.apertures[aperture_id][k]
except Exception as e:
log.debug("FlatCAMGrbEditor.edit_fcgerber().job_thread() --> %s" % str(e))
# Check promises and clear if exists
while True:
try:
self.grb_plot_promises.remove(aperture_id)
time.sleep(0.5)
except ValueError:
break
# we create a job work each aperture, job that work in a threaded way to store the geometry in local storage
# as DrawToolShapes
for ap_id in self.gerber_obj.apertures:
self.grb_plot_promises.append(ap_id)
self.app.worker_task.emit({'fcn': job_thread, 'params': [ap_id]})
self.set_ui()
# do the delayed plot only if there is something to plot (the gerber is not empty)
try:
if bool(self.gerber_obj.apertures):
self.start_delayed_plot(check_period=1000)
else:
raise AttributeError
except AttributeError:
# now that we have data (empty data actually), create the GUI interface and add it to the Tool Tab
self.build_ui(first_run=True)
# and add the first aperture to have something to play with
self.on_aperture_add('10')
def update_fcgerber(self):
"""
Create a new Gerber object that contain the edited content of the source Gerber object
:return: None
"""
new_grb_name = self.edited_obj_name
# if the 'delayed plot' malfunctioned stop the QTimer
try:
self.plot_thread.stop()
except Exception as e:
log.debug("FlatCAMGrbEditor.update_fcgerber() --> %s" % str(e))
if "_edit" in self.edited_obj_name:
try:
_id = int(self.edited_obj_name[-1]) + 1
new_grb_name = self.edited_obj_name[:-1] + str(_id)
except ValueError:
new_grb_name += "_1"
else:
new_grb_name = self.edited_obj_name + "_edit"
self.app.worker_task.emit({'fcn': self.new_edited_gerber,
'params': [new_grb_name]})
# reset the tool table
self.apertures_table.clear()
self.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')])
self.last_aperture_selected = None
# restore GUI to the Selected TAB
# Remove anything else in the GUI
self.app.ui.selected_scroll_area.takeWidget()
# Switch notebook to Selected page
self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab)
@staticmethod
def update_options(obj):
try:
if not obj.options:
obj.options = dict()
obj.options['xmin'] = 0
obj.options['ymin'] = 0
obj.options['xmax'] = 0
obj.options['ymax'] = 0
return True
else:
return False
except AttributeError:
obj.options = dict()
return True
def new_edited_gerber(self, outname):
"""
Creates a new Gerber object for the edited Gerber. Thread-safe.
:param outname: Name of the resulting object. None causes the name to be that of the file.
:type outname: str
:return: None
"""
self.app.log.debug("Update the Gerber object with edited content. Source is: %s" %
self.gerber_obj.options['name'].upper())
out_name = outname
local_storage_dict = dict()
for aperture in self.storage_dict:
if 'geometry' in self.storage_dict[aperture]:
# add aperture only if it has geometry
if len(self.storage_dict[aperture]['geometry']) > 0:
local_storage_dict[aperture] = deepcopy(self.storage_dict[aperture])
# How the object should be initialized
def obj_init(grb_obj, app_obj):
poly_buffer = []
follow_buffer = []
for storage_apid, storage_val in local_storage_dict.items():
grb_obj.apertures[storage_apid] = {}
for k, val in storage_val.items():
if k == 'geometry':
grb_obj.apertures[storage_apid][k] = []
for geo_el in val:
geometric_data = geo_el.geo
new_geo_el = dict()
if 'solid' in geometric_data:
new_geo_el['solid'] = geometric_data['solid']
poly_buffer.append(deepcopy(new_geo_el['solid']))
if 'follow' in geometric_data:
# if isinstance(geometric_data['follow'], Polygon):
# buff_val = -(int(storage_val['size']) / 2)
# geo_f = (geometric_data['follow'].buffer(buff_val)).exterior
# new_geo_el['follow'] = geo_f
# else:
# new_geo_el['follow'] = geometric_data['follow']
new_geo_el['follow'] = geometric_data['follow']
follow_buffer.append(deepcopy(new_geo_el['follow']))
else:
if 'solid' in geometric_data:
geo_f = geometric_data['solid'].exterior
new_geo_el['follow'] = geo_f
follow_buffer.append(deepcopy(new_geo_el['follow']))
if 'clear' in geometric_data:
new_geo_el['clear'] = geometric_data['clear']
if new_geo_el:
grb_obj.apertures[storage_apid][k].append(deepcopy(new_geo_el))
else:
grb_obj.apertures[storage_apid][k] = val
grb_obj.aperture_macros = deepcopy(self.gerber_obj.aperture_macros)
new_poly = MultiPolygon(poly_buffer)
new_poly = new_poly.buffer(0.00000001)
new_poly = new_poly.buffer(-0.00000001)
# for ad in grb_obj.apertures:
# print(ad, grb_obj.apertures[ad])
try:
__ = iter(new_poly)
except TypeError:
new_poly = [new_poly]
grb_obj.solid_geometry = deepcopy(new_poly)
grb_obj.follow_geometry = deepcopy(follow_buffer)
for k, v in self.gerber_obj_options.items():
if k == 'name':
grb_obj.options[k] = out_name
else:
grb_obj.options[k] = deepcopy(v)
grb_obj.multigeo = False
grb_obj.follow = False
grb_obj.gerber_units = app_obj.defaults['units']
try:
grb_obj.create_geometry()
except KeyError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("There are no Aperture definitions in the file. Aborting Gerber creation."))
except Exception as e:
msg = '[ERROR] %s' % \
_("An internal error has occurred. See shell.\n")
msg += traceback.format_exc()
app_obj.inform.emit(msg)
raise
grb_obj.source_file = self.app.export_gerber(obj_name=out_name, filename=None,
local_use=grb_obj, use_thread=False)
with self.app.proc_container.new(_("Creating Gerber.")):
try:
self.app.new_object("gerber", outname, obj_init)
except Exception as e:
log.error("Error on object creation: %s" % str(e))
self.app.progress.emit(100)
return
self.app.inform.emit('[success] %s' %
_("Done. Gerber editing finished."))
def on_tool_select(self, tool):
"""
Behavior of the toolbar. Tool initialization.
:rtype : None
"""
current_tool = tool
self.app.log.debug("on_tool_select('%s')" % tool)
if self.last_aperture_selected is None and current_tool is not 'select':
# self.draw_app.select_tool('select')
self.complete = True
current_tool = 'select'
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Cancelled. No aperture is selected"))
# This is to make the group behave as radio group
if current_tool in self.tools_gerber:
if self.tools_gerber[current_tool]["button"].isChecked():
self.app.log.debug("%s is checked." % current_tool)
for t in self.tools_gerber:
if t != current_tool:
self.tools_gerber[t]["button"].setChecked(False)
# this is where the Editor toolbar classes (button's) are instantiated
self.active_tool = self.tools_gerber[current_tool]["constructor"](self)
# self.app.inform.emit(self.active_tool.start_msg)
else:
self.app.log.debug("%s is NOT checked." % current_tool)
for t in self.tools_gerber:
self.tools_gerber[t]["button"].setChecked(False)
self.select_tool('select')
self.active_tool = FCApertureSelect(self)
def on_row_selected(self, row, col):
if col == 0:
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
if key_modifier == modifier_to_use:
pass
else:
self.selected = []
try:
selected_ap_id = self.apertures_table.item(row, 1).text()
self.last_aperture_selected = copy(selected_ap_id)
for obj in self.storage_dict[selected_ap_id]['geometry']:
self.selected.append(obj)
except Exception as e:
self.app.log.debug(str(e))
self.plot_all()
def toolbar_tool_toggle(self, key):
"""
:param key: key to update in self.options dictionary
:return:
"""
self.options[key] = self.sender().isChecked()
return self.options[key]
def on_grb_shape_complete(self, storage=None, specific_shape=None, no_plot=False):
"""
:param storage: where to store the shape
:param specific_shape: optional, the shape to be stored
:param no_plot: use this if you want the added shape not plotted
:return:
"""
self.app.log.debug("on_grb_shape_complete()")
if specific_shape:
geo = specific_shape
else:
geo = self.active_tool.geometry
if geo is None:
return
if storage is not None:
# Add shape
self.add_gerber_shape(geo, storage)
else:
stora = self.storage_dict[self.last_aperture_selected]['geometry']
self.add_gerber_shape(geo, storage=stora)
# Remove any utility shapes
self.delete_utility_geometry()
self.tool_shape.clear(update=True)
if no_plot is False:
# Re-plot and reset tool.
self.plot_all()
def add_gerber_shape(self, shape_element, storage):
"""
Adds a shape to the shape storage.
:param shape_element: Shape to be added.
:type shape_element: DrawToolShape or DrawToolUtilityShape Geometry is stored as a dict with keys: solid,
follow, clear, each value being a list of Shapely objects. The dict can have at least one of the mentioned keys
:param storage: Where to store the shape
:return: None
"""
# List of DrawToolShape?
if isinstance(shape_element, list):
for subshape in shape_element:
self.add_gerber_shape(subshape, storage)
return
assert isinstance(shape_element, DrawToolShape), \
"Expected a DrawToolShape, got %s" % str(type(shape_element))
assert shape_element.geo is not None, \
"Shape object has empty geometry (None)"
assert(isinstance(shape_element.geo, list) and len(shape_element.geo) > 0) or not \
isinstance(shape_element.geo, list), "Shape objects has empty geometry ([])"
if isinstance(shape_element, DrawToolUtilityShape):
self.utility.append(shape_element)
else:
storage.append(shape_element)
def on_canvas_click(self, event):
"""
event.x and .y have canvas coordinates
event.xdata and .ydata have plot coordinates
:param event: Event object dispatched by VisPy
:return: None
"""
self.pos = self.canvas.translate_coords(event.pos)
if self.app.grid_status() == True:
self.pos = self.app.geo_editor.snap(self.pos[0], self.pos[1])
# Update cursor
self.app.app_cursor.set_data(np.asarray([(self.pos[0], self.pos[1])]), symbol='++', edge_color='black',
size=20)
else:
self.pos = (self.pos[0], self.pos[1])
if event.button is 1:
self.app.ui.rel_position_label.setText("<b>Dx</b>: %.4f&nbsp;&nbsp; <b>Dy</b>: "
"%.4f&nbsp;&nbsp;&nbsp;&nbsp;" % (0, 0))
# Selection with left mouse button
if self.active_tool is not None:
modifiers = QtWidgets.QApplication.keyboardModifiers()
# If the SHIFT key is pressed when LMB is clicked then the coordinates are copied to clipboard
if modifiers == QtCore.Qt.ShiftModifier:
self.app.clipboard.setText(
self.app.defaults["global_point_clipboard_format"] % (self.pos[0], self.pos[1])
)
self.app.inform.emit('[success] %s' %
_("Coordinates copied to clipboard."))
return
# Dispatch event to active_tool
self.active_tool.click(self.app.geo_editor.snap(self.pos[0], self.pos[1]))
# If it is a shape generating tool
if isinstance(self.active_tool, FCShapeTool) and self.active_tool.complete:
if self.current_storage is not None:
self.on_grb_shape_complete(self.current_storage)
self.build_ui()
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if self.app.defaults["global_mselect_key"] == 'Control':
modifier_to_use = Qt.ControlModifier
else:
modifier_to_use = Qt.ShiftModifier
# if modifier key is pressed then we add to the selected list the current shape but if it's already
# in the selected list, we removed it. Therefore first click selects, second deselects.
if key_modifier == modifier_to_use:
self.select_tool(self.active_tool.name)
else:
# return to Select tool but not for FCPad
if isinstance(self.active_tool, FCPad):
self.select_tool(self.active_tool.name)
else:
self.select_tool("select")
return
if isinstance(self.active_tool, FCApertureSelect):
self.plot_all()
else:
self.app.log.debug("No active tool to respond to click!")
def on_grb_click_release(self, event):
self.modifiers = QtWidgets.QApplication.keyboardModifiers()
pos_canvas = self.canvas.translate_coords(event.pos)
if self.app.grid_status() == True:
pos = self.app.geo_editor.snap(pos_canvas[0], pos_canvas[1])
else:
pos = (pos_canvas[0], pos_canvas[1])
# if the released mouse button was RMB then test if it was a panning motion or not, if not it was a context
# canvas menu
try:
if event.button == 2: # right click
if self.app.ui.popMenu.mouse_is_panning is False:
if self.in_action is False:
try:
QtGui.QGuiApplication.restoreOverrideCursor()
except Exception as e:
log.debug("FlatCAMGrbEditor.on_grb_click_release() --> %s" % str(e))
if self.active_tool.complete is False and not isinstance(self.active_tool, FCApertureSelect):
self.active_tool.complete = True
self.in_action = False
self.delete_utility_geometry()
self.app.inform.emit('[success] %s' %
_("Done."))
self.select_tool('select')
else:
self.app.cursor = QtGui.QCursor()
self.app.populate_cmenu_grids()
self.app.ui.popMenu.popup(self.app.cursor.pos())
else:
# if right click on canvas and the active tool need to be finished (like Path or Polygon)
# right mouse click will finish the action
if isinstance(self.active_tool, FCShapeTool):
self.active_tool.click(self.app.geo_editor.snap(self.x, self.y))
self.active_tool.make()
if self.active_tool.complete:
self.on_grb_shape_complete()
self.app.inform.emit('[success] %s' %
_("Done."))
# MS: always return to the Select Tool if modifier key is not pressed
# else return to the current tool but not for FCTrack
if isinstance(self.active_tool, FCTrack):
self.select_tool(self.active_tool.name)
else:
key_modifier = QtWidgets.QApplication.keyboardModifiers()
if (self.app.defaults["global_mselect_key"] == 'Control' and
key_modifier == Qt.ControlModifier) or \
(self.app.defaults["global_mselect_key"] == 'Shift' and
key_modifier == Qt.ShiftModifier):
self.select_tool(self.active_tool.name)
else:
self.select_tool("select")
except Exception as e:
log.warning("Error: %s" % str(e))
raise
# if the released mouse button was LMB then test if we had a right-to-left selection or a left-to-right
# selection and then select a type of selection ("enclosing" or "touching")
try:
if event.button == 1: # left click
if self.app.selection_type is not None:
self.draw_selection_area_handler(self.pos, pos, self.app.selection_type)
self.app.selection_type = None
elif isinstance(self.active_tool, FCApertureSelect):
self.active_tool.click_release((self.pos[0], self.pos[1]))
# if there are selected objects then plot them
if self.selected:
self.plot_all()
except Exception as e:
log.warning("Error: %s" % str(e))
raise
def draw_selection_area_handler(self, start_pos, end_pos, sel_type):
"""
:param start_pos: mouse position when the selection LMB click was done
:param end_pos: mouse position when the left mouse button is released
:param sel_type: if True it's a left to right selection (enclosure), if False it's a 'touch' selection
:return:
"""
poly_selection = Polygon([start_pos, (end_pos[0], start_pos[1]), end_pos, (start_pos[0], end_pos[1])])
sel_aperture = set()
self.apertures_table.clearSelection()
self.app.delete_selection_shape()
for storage in self.storage_dict:
for obj in self.storage_dict[storage]['geometry']:
if 'solid' in obj.geo:
geometric_data = obj.geo['solid']
if (sel_type is True and poly_selection.contains(geometric_data)) or \
(sel_type is False and poly_selection.intersects(geometric_data)):
if self.key == self.app.defaults["global_mselect_key"]:
if obj in self.selected:
self.selected.remove(obj)
else:
# add the object to the selected shapes
self.selected.append(obj)
sel_aperture.add(storage)
else:
self.selected.append(obj)
sel_aperture.add(storage)
try:
self.apertures_table.cellPressed.disconnect()
except Exception as e:
log.debug("FlatCAMGrbEditor.draw_selection_Area_handler() --> %s" % str(e))
# select the aperture code of the selected geometry, in the tool table
self.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection)
for aper in sel_aperture:
for row_to_sel in range(self.apertures_table.rowCount()):
if str(aper) == self.apertures_table.item(row_to_sel, 1).text():
if row_to_sel not in set(index.row() for index in self.apertures_table.selectedIndexes()):
self.apertures_table.selectRow(row_to_sel)
self.last_aperture_selected = aper
self.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self.apertures_table.cellPressed.connect(self.on_row_selected)
self.plot_all()
def on_canvas_move(self, event):
"""
Called on 'mouse_move' event
event.pos have canvas screen coordinates
:param event: Event object dispatched by VisPy SceneCavas
:return: None
"""
pos_canvas = self.canvas.translate_coords(event.pos)
event.xdata, event.ydata = pos_canvas[0], pos_canvas[1]
self.x = event.xdata
self.y = event.ydata
self.app.ui.popMenu.mouse_is_panning = False
# if the RMB is clicked and mouse is moving over plot then 'panning_action' is True
if event.button == 2 and event.is_dragging == 1:
self.app.ui.popMenu.mouse_is_panning = True
return
try:
x = float(event.xdata)
y = float(event.ydata)
except TypeError:
return
if self.active_tool is None:
return
# # ## Snap coordinates
if self.app.grid_status() == True:
x, y = self.app.geo_editor.snap(x, y)
# Update cursor
self.app.app_cursor.set_data(np.asarray([(x, y)]), symbol='++', edge_color='black', size=20)
self.snap_x = x
self.snap_y = y
# update the position label in the infobar since the APP mouse event handlers are disconnected
self.app.ui.position_label.setText("&nbsp;&nbsp;&nbsp;&nbsp;<b>X</b>: %.4f&nbsp;&nbsp; "
"<b>Y</b>: %.4f" % (x, y))
if self.pos is None:
self.pos = (0, 0)
dx = x - self.pos[0]
dy = y - self.pos[1]
# update the reference position label in the infobar since the APP mouse event handlers are disconnected
self.app.ui.rel_position_label.setText("<b>Dx</b>: %.4f&nbsp;&nbsp; <b>Dy</b>: "
"%.4f&nbsp;&nbsp;&nbsp;&nbsp;" % (dx, dy))
# # ## Utility geometry (animated)
geo = self.active_tool.utility_geometry(data=(x, y))
if isinstance(geo, DrawToolShape) and geo.geo is not None:
# Remove any previous utility shape
self.tool_shape.clear(update=True)
self.draw_utility_geometry(geo=geo)
# # ## Selection area on canvas section # ##
if event.is_dragging == 1 and event.button == 1:
# I make an exception for FCRegion and FCTrack because clicking and dragging while making regions can
# create strange issues like missing a point in a track/region
if isinstance(self.active_tool, FCRegion) or isinstance(self.active_tool, FCTrack):
pass
else:
dx = pos_canvas[0] - self.pos[0]
self.app.delete_selection_shape()
if dx < 0:
self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y),
color=self.app.defaults["global_alt_sel_line"],
face_color=self.app.defaults['global_alt_sel_fill'])
self.app.selection_type = False
else:
self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y))
self.app.selection_type = True
else:
self.app.selection_type = None
def draw_utility_geometry(self, geo):
if type(geo.geo) == list:
for el in geo.geo:
geometric_data = el['solid']
# Add the new utility shape
self.tool_shape.add(
shape=geometric_data, color=(self.app.defaults["global_draw_color"] + '80'),
# face_color=self.app.defaults['global_alt_sel_fill'],
update=False, layer=0, tolerance=None
)
else:
geometric_data = geo.geo['solid']
# Add the new utility shape
self.tool_shape.add(
shape=geometric_data,
color=(self.app.defaults["global_draw_color"] + '80'),
# face_color=self.app.defaults['global_alt_sel_fill'],
update=False, layer=0, tolerance=None
)
self.tool_shape.redraw()
def plot_all(self):
"""
Plots all shapes in the editor.
:return: None
:rtype: None
"""
with self.app.proc_container.new("Plotting"):
self.shapes.clear(update=True)
for storage in self.storage_dict:
for elem in self.storage_dict[storage]['geometry']:
if 'solid' in elem.geo:
geometric_data = elem.geo['solid']
if geometric_data is None:
continue
if elem in self.selected:
self.plot_shape(geometry=geometric_data,
color=self.app.defaults['global_sel_draw_color'],
linewidth=2)
else:
self.plot_shape(geometry=geometric_data,
color=self.app.defaults['global_draw_color'])
if self.utility:
for elem in self.utility:
geometric_data = elem.geo['solid']
self.plot_shape(geometry=geometric_data, linewidth=1)
continue
self.shapes.redraw()
def plot_shape(self, geometry=None, color='black', linewidth=1):
"""
Plots a geometric object or list of objects without rendering. Plotted objects
are returned as a list. This allows for efficient/animated rendering.
:param geometry: Geometry to be plotted (Any Shapely.geom kind or list of such)
:param color: Shape color
:param linewidth: Width of lines in # of pixels.
:return: List of plotted elements.
"""
if geometry is None:
geometry = self.active_tool.geometry
try:
self.shapes.add(shape=geometry.geo, color=color, face_color=color, layer=0, tolerance=self.tolerance)
except AttributeError:
if type(geometry) == Point:
return
self.shapes.add(shape=geometry, color=color, face_color=color+'AF', layer=0, tolerance=self.tolerance)
def start_delayed_plot(self, check_period):
"""
This function starts an QTImer and it will periodically check if all the workers finish the plotting functions
:param check_period: time at which to check periodically if all plots finished to be plotted
:return:
"""
# self.plot_thread = threading.Thread(target=lambda: self.check_plot_finished(check_period))
# self.plot_thread.start()
log.debug("FlatCAMGrbEditor --> Delayed Plot started.")
self.plot_thread = QtCore.QTimer()
self.plot_thread.setInterval(check_period)
self.plot_finished.connect(self.setup_ui_after_delayed_plot)
self.plot_thread.timeout.connect(self.check_plot_finished)
self.plot_thread.start()
def check_plot_finished(self):
"""
If all the promises made are finished then all the shapes are in shapes_storage and can be plotted safely and
then the UI is rebuilt accordingly.
:return:
"""
try:
if not self.grb_plot_promises:
self.plot_thread.stop()
self.plot_finished.emit()
log.debug("FlatCAMGrbEditor --> delayed_plot finished")
except Exception as e:
traceback.print_exc()
def setup_ui_after_delayed_plot(self):
self.plot_finished.disconnect()
# now that we have data, create the GUI interface and add it to the Tool Tab
self.build_ui(first_run=True)
self.plot_all()
# HACK: enabling/disabling the cursor seams to somehow update the shapes making them more 'solid'
# - perhaps is a bug in VisPy implementation
self.app.app_cursor.enabled = False
self.app.app_cursor.enabled = True
def get_selected(self):
"""
Returns list of shapes that are selected in the editor.
:return: List of shapes.
"""
# return [shape for shape in self.shape_buffer if shape["selected"]]
return self.selected
def delete_selected(self):
temp_ref = [s for s in self.selected]
if len(temp_ref) == 0:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Failed. No aperture geometry is selected."))
return
for shape_sel in temp_ref:
self.delete_shape(shape_sel)
self.selected = []
self.build_ui()
self.app.inform.emit('[success] %s' %
_("Done. Apertures geometry deleted."))
def delete_shape(self, geo_el):
self.is_modified = True
if geo_el in self.utility:
self.utility.remove(geo_el)
return
for storage in self.storage_dict:
try:
if geo_el in self.storage_dict[storage]['geometry']:
self.storage_dict[storage]['geometry'].remove(geo_el)
except KeyError:
pass
if geo_el in self.selected:
self.selected.remove(geo_el) # TODO: Check performance
def delete_utility_geometry(self):
# for_deletion = [shape for shape in self.shape_buffer if shape.utility]
# for_deletion = [shape for shape in self.storage.get_objects() if shape.utility]
for_deletion = [geo_el for geo_el in self.utility]
for geo_el in for_deletion:
self.delete_shape(geo_el)
self.tool_shape.clear(update=True)
self.tool_shape.redraw()
def on_delete_btn(self):
self.delete_selected()
self.plot_all()
def select_tool(self, toolname):
"""
Selects a drawing tool. Impacts the object and GUI.
:param toolname: Name of the tool.
:return: None
"""
self.tools_gerber[toolname]["button"].setChecked(True)
self.on_tool_select(toolname)
def set_selected(self, geo_el):
# Remove and add to the end.
if geo_el in self.selected:
self.selected.remove(geo_el)
self.selected.append(geo_el)
def set_unselected(self, geo_el):
if geo_el in self.selected:
self.selected.remove(geo_el)
def on_array_type_combo(self):
if self.array_type_combo.currentIndex() == 0:
self.array_circular_frame.hide()
self.array_linear_frame.show()
else:
self.delete_utility_geometry()
self.array_circular_frame.show()
self.array_linear_frame.hide()
self.app.inform.emit(_("Click on the circular array Center position"))
def on_linear_angle_radio(self):
val = self.pad_axis_radio.get_value()
if val == 'A':
self.linear_angle_spinner.show()
self.linear_angle_label.show()
else:
self.linear_angle_spinner.hide()
self.linear_angle_label.hide()
def on_copy_button(self):
self.select_tool('copy')
return
def on_move_button(self):
self.select_tool('move')
return
def on_pad_add(self):
self.select_tool('pad')
def on_pad_add_array(self):
self.select_tool('array')
def on_track_add(self):
self.select_tool('track')
def on_region_add(self):
self.select_tool('region')
def on_poligonize(self):
self.select_tool('poligonize')
def on_disc_add(self):
self.select_tool('disc')
def on_add_semidisc(self):
self.select_tool('semidisc')
def on_buffer(self):
buff_value = 0.01
log.debug("FlatCAMGrbEditor.on_buffer()")
try:
buff_value = float(self.buffer_distance_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
buff_value = float(self.buffer_distance_entry.get_value().replace(',', '.'))
self.buffer_distance_entry.set_value(buff_value)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Buffer distance value is missing or wrong format. Add it and retry."))
return
# the cb index start from 0 but the join styles for the buffer start from 1 therefore the adjustment
# I populated the combobox such that the index coincide with the join styles value (which is really an INT)
join_style = self.buffer_corner_cb.currentIndex() + 1
def buffer_recursion(geom_el, selection):
if type(geom_el) == list:
geoms = list()
for local_geom in geom_el:
geoms.append(buffer_recursion(local_geom, selection=selection))
return geoms
else:
if geom_el in selection:
geometric_data = geom_el.geo
buffered_geom_el = dict()
if 'solid' in geometric_data:
buffered_geom_el['solid'] = geometric_data['solid'].buffer(buff_value, join_style=join_style)
if 'follow' in geometric_data:
buffered_geom_el['follow'] = geometric_data['follow'].buffer(buff_value, join_style=join_style)
if 'clear' in geometric_data:
buffered_geom_el['clear'] = geometric_data['clear'].buffer(buff_value, join_style=join_style)
return DrawToolShape(buffered_geom_el)
else:
return geom_el
if not self.apertures_table.selectedItems():
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No aperture to buffer. Select at least one aperture and try again."))
return
for x in self.apertures_table.selectedItems():
try:
apid = self.apertures_table.item(x.row(), 1).text()
temp_storage = deepcopy(buffer_recursion(self.storage_dict[apid]['geometry'], self.selected))
self.storage_dict[apid]['geometry'] = []
self.storage_dict[apid]['geometry'] = temp_storage
except Exception as e:
log.debug("FlatCAMGrbEditor.buffer() --> %s\n%s" % str(e))
self.app.inform.emit('[ERROR_NOTCL] %s\n%s' %
(_("Failed."), str(traceback.print_exc())))
return
self.plot_all()
self.app.inform.emit('[success] %s' %
_("Done. Buffer Tool completed."))
def on_scale(self):
scale_factor = 1.0
log.debug("FlatCAMGrbEditor.on_scale()")
try:
scale_factor = float(self.scale_factor_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
scale_factor = float(self.scale_factor_entry.get_value().replace(',', '.'))
self.scale_factor_entry.set_value(scale_factor)
except ValueError:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Scale factor value is missing or wrong format. Add it and retry."))
return
def scale_recursion(geom_el, selection):
if type(geom_el) == list:
geoms = list()
for local_geom in geom_el:
geoms.append(scale_recursion(local_geom, selection=selection))
return geoms
else:
if geom_el in selection:
geometric_data = geom_el.geo
scaled_geom_el = dict()
if 'solid' in geometric_data:
scaled_geom_el['solid'] = affinity.scale(
geometric_data['solid'], scale_factor, scale_factor, origin='center'
)
if 'follow' in geometric_data:
scaled_geom_el['follow'] = affinity.scale(
geometric_data['follow'], scale_factor, scale_factor, origin='center'
)
if 'clear' in geometric_data:
scaled_geom_el['clear'] = affinity.scale(
geometric_data['clear'], scale_factor, scale_factor, origin='center'
)
return DrawToolShape(scaled_geom_el)
else:
return geom_el
if not self.apertures_table.selectedItems():
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No aperture to scale. Select at least one aperture and try again."))
return
for x in self.apertures_table.selectedItems():
try:
apid = self.apertures_table.item(x.row(), 1).text()
temp_storage = deepcopy(scale_recursion(self.storage_dict[apid]['geometry'], self.selected))
self.storage_dict[apid]['geometry'] = []
self.storage_dict[apid]['geometry'] = temp_storage
except Exception as e:
log.debug("FlatCAMGrbEditor.on_scale() --> %s" % str(e))
self.plot_all()
self.app.inform.emit('[success] %s' %
_("Done. Scale Tool completed."))
def on_markarea(self):
# clear previous marking
self.ma_annotation.clear(update=True)
self.units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
upper_threshold_val = None
lower_threshold_val = None
text = []
position = []
for apid in self.gerber_obj.apertures:
if 'geometry' in self.gerber_obj.apertures[apid]:
for geo_el in self.gerber_obj.apertures[apid]['geometry']:
if 'solid' in geo_el:
area = geo_el['solid'].area
try:
upper_threshold_val = self.ma_upper_threshold_entry.get_value()
except Exception as e:
return
try:
lower_threshold_val = self.ma_lower_threshold_entry.get_value()
except Exception as e:
lower_threshold_val = 0.0
if area < float(upper_threshold_val) and area > float(lower_threshold_val):
current_pos = geo_el['solid'].exterior.coords[-1]
text_elem = '%.4f' % area
text.append(text_elem)
position.append(current_pos)
if text:
self.ma_annotation.set(text=text, pos=position, visible=True,
font_size=self.app.defaults["cncjob_annotation_fontsize"],
color=self.app.defaults["global_sel_draw_color"])
self.app.inform.emit('[success] %s' %
_("Polygon areas marked."))
else:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("There are no polygons to mark area."))
def on_eraser(self):
self.select_tool('eraser')
def on_transform(self):
if type(self.active_tool) == FCTransform:
self.select_tool('select')
else:
self.select_tool('transform')
def hide_tool(self, tool_name):
# self.app.ui.notebook.setTabText(2, _("Tools"))
try:
if tool_name == 'all':
self.apertures_frame.hide()
if tool_name == 'select':
self.apertures_frame.show()
if tool_name == 'buffer' or tool_name == 'all':
self.buffer_tool_frame.hide()
if tool_name == 'scale' or tool_name == 'all':
self.scale_tool_frame.hide()
if tool_name == 'markarea' or tool_name == 'all':
self.ma_tool_frame.hide()
except Exception as e:
log.debug("FlatCAMGrbEditor.hide_tool() --> %s" % str(e))
self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab)
class TransformEditorTool(FlatCAMTool):
"""
Inputs to specify how to paint the selected polygons.
"""
toolName = _("Transform Tool")
rotateName = _("Rotate")
skewName = _("Skew/Shear")
scaleName = _("Scale")
flipName = _("Mirror (Flip)")
offsetName = _("Offset")
def __init__(self, app, draw_app):
FlatCAMTool.__init__(self, app)
self.app = app
self.draw_app = draw_app
self.transform_lay = QtWidgets.QVBoxLayout()
self.layout.addLayout(self.transform_lay)
# Title
title_label = QtWidgets.QLabel("%s %s" % (_('Editor'), self.toolName))
title_label.setStyleSheet("""
QLabel
{
font-size: 16px;
font-weight: bold;
}
""")
self.transform_lay.addWidget(title_label)
self.empty_label = QtWidgets.QLabel("")
self.empty_label.setMinimumWidth(50)
self.empty_label1 = QtWidgets.QLabel("")
self.empty_label1.setMinimumWidth(70)
self.empty_label2 = QtWidgets.QLabel("")
self.empty_label2.setMinimumWidth(70)
self.empty_label3 = QtWidgets.QLabel("")
self.empty_label3.setMinimumWidth(70)
self.empty_label4 = QtWidgets.QLabel("")
self.empty_label4.setMinimumWidth(70)
self.transform_lay.addWidget(self.empty_label)
# Rotate Title
rotate_title_label = QtWidgets.QLabel("<font size=3><b>%s</b></font>" % self.rotateName)
self.transform_lay.addWidget(rotate_title_label)
# Layout
form_layout = QtWidgets.QFormLayout()
self.transform_lay.addLayout(form_layout)
form_child = QtWidgets.QHBoxLayout()
self.rotate_label = QtWidgets.QLabel(_("Angle:"))
self.rotate_label.setToolTip(
_("Angle for Rotation action, in degrees.\n"
"Float number between -360 and 359.\n"
"Positive numbers for CW motion.\n"
"Negative numbers for CCW motion.")
)
self.rotate_label.setMinimumWidth(50)
self.rotate_entry = FCEntry()
# self.rotate_entry.setFixedWidth(60)
self.rotate_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
self.rotate_button = FCButton()
self.rotate_button.set_value(_("Rotate"))
self.rotate_button.setToolTip(
_("Rotate the selected shape(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected shapes.")
)
self.rotate_button.setMinimumWidth(60)
form_child.addWidget(self.rotate_entry)
form_child.addWidget(self.rotate_button)
form_layout.addRow(self.rotate_label, form_child)
self.transform_lay.addWidget(self.empty_label1)
# Skew Title
skew_title_label = QtWidgets.QLabel("<font size=3><b>%s</b></font>" % self.skewName)
self.transform_lay.addWidget(skew_title_label)
# Form Layout
form1_layout = QtWidgets.QFormLayout()
self.transform_lay.addLayout(form1_layout)
form1_child_1 = QtWidgets.QHBoxLayout()
form1_child_2 = QtWidgets.QHBoxLayout()
self.skewx_label = QtWidgets.QLabel(_("Angle X:"))
self.skewx_label.setToolTip(
_("Angle for Skew action, in degrees.\n"
"Float number between -360 and 359.")
)
self.skewx_label.setMinimumWidth(50)
self.skewx_entry = FCEntry()
self.skewx_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.skewx_entry.setFixedWidth(60)
self.skewx_button = FCButton()
self.skewx_button.set_value(_("Skew X"))
self.skewx_button.setToolTip(
_("Skew/shear the selected shape(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected shapes."))
self.skewx_button.setMinimumWidth(60)
self.skewy_label = QtWidgets.QLabel(_("Angle Y:"))
self.skewy_label.setToolTip(
_("Angle for Skew action, in degrees.\n"
"Float number between -360 and 359.")
)
self.skewy_label.setMinimumWidth(50)
self.skewy_entry = FCEntry()
self.skewy_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.skewy_entry.setFixedWidth(60)
self.skewy_button = FCButton()
self.skewy_button.set_value(_("Skew Y"))
self.skewy_button.setToolTip(
_("Skew/shear the selected shape(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected shapes."))
self.skewy_button.setMinimumWidth(60)
form1_child_1.addWidget(self.skewx_entry)
form1_child_1.addWidget(self.skewx_button)
form1_child_2.addWidget(self.skewy_entry)
form1_child_2.addWidget(self.skewy_button)
form1_layout.addRow(self.skewx_label, form1_child_1)
form1_layout.addRow(self.skewy_label, form1_child_2)
self.transform_lay.addWidget(self.empty_label2)
# Scale Title
scale_title_label = QtWidgets.QLabel("<font size=3><b>%s</b></font>" % self.scaleName)
self.transform_lay.addWidget(scale_title_label)
# Form Layout
form2_layout = QtWidgets.QFormLayout()
self.transform_lay.addLayout(form2_layout)
form2_child_1 = QtWidgets.QHBoxLayout()
form2_child_2 = QtWidgets.QHBoxLayout()
self.scalex_label = QtWidgets.QLabel(_("Factor X:"))
self.scalex_label.setToolTip(
_("Factor for Scale action over X axis.")
)
self.scalex_label.setMinimumWidth(50)
self.scalex_entry = FCEntry()
self.scalex_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.scalex_entry.setFixedWidth(60)
self.scalex_button = FCButton()
self.scalex_button.set_value(_("Scale X"))
self.scalex_button.setToolTip(
_("Scale the selected shape(s).\n"
"The point of reference depends on \n"
"the Scale reference checkbox state."))
self.scalex_button.setMinimumWidth(60)
self.scaley_label = QtWidgets.QLabel(_("Factor Y:"))
self.scaley_label.setToolTip(
_("Factor for Scale action over Y axis.")
)
self.scaley_label.setMinimumWidth(50)
self.scaley_entry = FCEntry()
self.scaley_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.scaley_entry.setFixedWidth(60)
self.scaley_button = FCButton()
self.scaley_button.set_value(_("Scale Y"))
self.scaley_button.setToolTip(
_("Scale the selected shape(s).\n"
"The point of reference depends on \n"
"the Scale reference checkbox state."))
self.scaley_button.setMinimumWidth(60)
self.scale_link_cb = FCCheckBox()
self.scale_link_cb.set_value(True)
self.scale_link_cb.setText(_("Link"))
self.scale_link_cb.setToolTip(
_("Scale the selected shape(s)\n"
"using the Scale Factor X for both axis."))
self.scale_link_cb.setMinimumWidth(50)
self.scale_zero_ref_cb = FCCheckBox()
self.scale_zero_ref_cb.set_value(True)
self.scale_zero_ref_cb.setText(_("Scale Reference"))
self.scale_zero_ref_cb.setToolTip(
_("Scale the selected shape(s)\n"
"using the origin reference when checked,\n"
"and the center of the biggest bounding box\n"
"of the selected shapes when unchecked."))
form2_child_1.addWidget(self.scalex_entry)
form2_child_1.addWidget(self.scalex_button)
form2_child_2.addWidget(self.scaley_entry)
form2_child_2.addWidget(self.scaley_button)
form2_layout.addRow(self.scalex_label, form2_child_1)
form2_layout.addRow(self.scaley_label, form2_child_2)
form2_layout.addRow(self.scale_link_cb, self.scale_zero_ref_cb)
self.ois_scale = OptionalInputSection(self.scale_link_cb, [self.scaley_entry, self.scaley_button],
logic=False)
self.transform_lay.addWidget(self.empty_label3)
# Offset Title
offset_title_label = QtWidgets.QLabel("<font size=3><b>%s</b></font>" % self.offsetName)
self.transform_lay.addWidget(offset_title_label)
# Form Layout
form3_layout = QtWidgets.QFormLayout()
self.transform_lay.addLayout(form3_layout)
form3_child_1 = QtWidgets.QHBoxLayout()
form3_child_2 = QtWidgets.QHBoxLayout()
self.offx_label = QtWidgets.QLabel(_("Value X:"))
self.offx_label.setToolTip(
_("Value for Offset action on X axis.")
)
self.offx_label.setMinimumWidth(50)
self.offx_entry = FCEntry()
self.offx_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.offx_entry.setFixedWidth(60)
self.offx_button = FCButton()
self.offx_button.set_value(_("Offset X"))
self.offx_button.setToolTip(
_("Offset the selected shape(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected shapes.\n")
)
self.offx_button.setMinimumWidth(60)
self.offy_label = QtWidgets.QLabel(_("Value Y:"))
self.offy_label.setToolTip(
_("Value for Offset action on Y axis.")
)
self.offy_label.setMinimumWidth(50)
self.offy_entry = FCEntry()
self.offy_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.offy_entry.setFixedWidth(60)
self.offy_button = FCButton()
self.offy_button.set_value(_("Offset Y"))
self.offy_button.setToolTip(
_("Offset the selected shape(s).\n"
"The point of reference is the middle of\n"
"the bounding box for all selected shapes.\n")
)
self.offy_button.setMinimumWidth(60)
form3_child_1.addWidget(self.offx_entry)
form3_child_1.addWidget(self.offx_button)
form3_child_2.addWidget(self.offy_entry)
form3_child_2.addWidget(self.offy_button)
form3_layout.addRow(self.offx_label, form3_child_1)
form3_layout.addRow(self.offy_label, form3_child_2)
self.transform_lay.addWidget(self.empty_label4)
# Flip Title
flip_title_label = QtWidgets.QLabel("<font size=3><b>%s</b></font>" % self.flipName)
self.transform_lay.addWidget(flip_title_label)
# Form Layout
form4_layout = QtWidgets.QFormLayout()
form4_child_hlay = QtWidgets.QHBoxLayout()
self.transform_lay.addLayout(form4_child_hlay)
self.transform_lay.addLayout(form4_layout)
form4_child_1 = QtWidgets.QHBoxLayout()
self.flipx_button = FCButton()
self.flipx_button.set_value(_("Flip on X"))
self.flipx_button.setToolTip(
_("Flip the selected shape(s) over the X axis.\n"
"Does not create a new shape.")
)
self.flipx_button.setMinimumWidth(60)
self.flipy_button = FCButton()
self.flipy_button.set_value(_("Flip on Y"))
self.flipy_button.setToolTip(
_("Flip the selected shape(s) over the X axis.\n"
"Does not create a new shape.")
)
self.flipy_button.setMinimumWidth(60)
self.flip_ref_cb = FCCheckBox()
self.flip_ref_cb.set_value(True)
self.flip_ref_cb.setText(_("Ref Pt"))
self.flip_ref_cb.setToolTip(
_("Flip the selected shape(s)\n"
"around the point in Point Entry Field.\n"
"\n"
"The point coordinates can be captured by\n"
"left click on canvas together with pressing\n"
"SHIFT key. \n"
"Then click Add button to insert coordinates.\n"
"Or enter the coords in format (x, y) in the\n"
"Point Entry field and click Flip on X(Y)")
)
self.flip_ref_cb.setMinimumWidth(50)
self.flip_ref_label = QtWidgets.QLabel(_("Point:"))
self.flip_ref_label.setToolTip(
_("Coordinates in format (x, y) used as reference for mirroring.\n"
"The 'x' in (x, y) will be used when using Flip on X and\n"
"the 'y' in (x, y) will be used when using Flip on Y.")
)
self.flip_ref_label.setMinimumWidth(50)
self.flip_ref_entry = EvalEntry2("(0, 0)")
self.flip_ref_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter)
# self.flip_ref_entry.setFixedWidth(60)
self.flip_ref_button = FCButton()
self.flip_ref_button.set_value(_("Add"))
self.flip_ref_button.setToolTip(
_("The point coordinates can be captured by\n"
"left click on canvas together with pressing\n"
"SHIFT key. Then click Add button to insert.")
)
self.flip_ref_button.setMinimumWidth(60)
form4_child_hlay.addStretch()
form4_child_hlay.addWidget(self.flipx_button)
form4_child_hlay.addWidget(self.flipy_button)
form4_child_1.addWidget(self.flip_ref_entry)
form4_child_1.addWidget(self.flip_ref_button)
form4_layout.addRow(self.flip_ref_cb)
form4_layout.addRow(self.flip_ref_label, form4_child_1)
self.ois_flip = OptionalInputSection(self.flip_ref_cb,
[self.flip_ref_entry, self.flip_ref_button], logic=True)
self.transform_lay.addStretch()
# Signals
self.rotate_button.clicked.connect(self.on_rotate)
self.skewx_button.clicked.connect(self.on_skewx)
self.skewy_button.clicked.connect(self.on_skewy)
self.scalex_button.clicked.connect(self.on_scalex)
self.scaley_button.clicked.connect(self.on_scaley)
self.offx_button.clicked.connect(self.on_offx)
self.offy_button.clicked.connect(self.on_offy)
self.flipx_button.clicked.connect(self.on_flipx)
self.flipy_button.clicked.connect(self.on_flipy)
self.flip_ref_button.clicked.connect(self.on_flip_add_coords)
self.rotate_entry.returnPressed.connect(self.on_rotate)
self.skewx_entry.returnPressed.connect(self.on_skewx)
self.skewy_entry.returnPressed.connect(self.on_skewy)
self.scalex_entry.returnPressed.connect(self.on_scalex)
self.scaley_entry.returnPressed.connect(self.on_scaley)
self.offx_entry.returnPressed.connect(self.on_offx)
self.offy_entry.returnPressed.connect(self.on_offy)
self.set_tool_ui()
def run(self, toggle=True):
self.app.report_usage("Geo Editor Transform Tool()")
# if the splitter is hidden, display it, else hide it but only if the current widget is the same
if self.app.ui.splitter.sizes()[0] == 0:
self.app.ui.splitter.setSizes([1, 1])
if toggle:
try:
if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName:
self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab)
else:
self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab)
except AttributeError:
pass
FlatCAMTool.run(self)
self.set_tool_ui()
self.app.ui.notebook.setTabText(2, _("Transform Tool"))
def install(self, icon=None, separator=None, **kwargs):
FlatCAMTool.install(self, icon, separator, shortcut='ALT+T', **kwargs)
def set_tool_ui(self):
# Initialize form
if self.app.defaults["tools_transform_rotate"]:
self.rotate_entry.set_value(self.app.defaults["tools_transform_rotate"])
else:
self.rotate_entry.set_value(0.0)
if self.app.defaults["tools_transform_skew_x"]:
self.skewx_entry.set_value(self.app.defaults["tools_transform_skew_x"])
else:
self.skewx_entry.set_value(0.0)
if self.app.defaults["tools_transform_skew_y"]:
self.skewy_entry.set_value(self.app.defaults["tools_transform_skew_y"])
else:
self.skewy_entry.set_value(0.0)
if self.app.defaults["tools_transform_scale_x"]:
self.scalex_entry.set_value(self.app.defaults["tools_transform_scale_x"])
else:
self.scalex_entry.set_value(1.0)
if self.app.defaults["tools_transform_scale_y"]:
self.scaley_entry.set_value(self.app.defaults["tools_transform_scale_y"])
else:
self.scaley_entry.set_value(1.0)
if self.app.defaults["tools_transform_scale_link"]:
self.scale_link_cb.set_value(self.app.defaults["tools_transform_scale_link"])
else:
self.scale_link_cb.set_value(True)
if self.app.defaults["tools_transform_scale_reference"]:
self.scale_zero_ref_cb.set_value(self.app.defaults["tools_transform_scale_reference"])
else:
self.scale_zero_ref_cb.set_value(True)
if self.app.defaults["tools_transform_offset_x"]:
self.offx_entry.set_value(self.app.defaults["tools_transform_offset_x"])
else:
self.offx_entry.set_value(0.0)
if self.app.defaults["tools_transform_offset_y"]:
self.offy_entry.set_value(self.app.defaults["tools_transform_offset_y"])
else:
self.offy_entry.set_value(0.0)
if self.app.defaults["tools_transform_mirror_reference"]:
self.flip_ref_cb.set_value(self.app.defaults["tools_transform_mirror_reference"])
else:
self.flip_ref_cb.set_value(False)
if self.app.defaults["tools_transform_mirror_point"]:
self.flip_ref_entry.set_value(self.app.defaults["tools_transform_mirror_point"])
else:
self.flip_ref_entry.set_value((0, 0))
def template(self):
if not self.fcdraw.selected:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("Transformation cancelled. No shape selected."))
return
self.draw_app.select_tool("select")
self.app.ui.notebook.setTabText(2, "Tools")
self.app.ui.notebook.setCurrentWidget(self.app.ui.project_tab)
self.app.ui.splitter.setSizes([0, 1])
def on_rotate(self, sig=None, val=None):
if val:
value = val
else:
try:
value = float(self.rotate_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
value = float(self.rotate_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
self.app.worker_task.emit({'fcn': self.on_rotate_action,
'params': [value]})
# self.on_rotate_action(value)
return
def on_flipx(self):
# self.on_flip("Y")
axis = 'Y'
self.app.worker_task.emit({'fcn': self.on_flip,
'params': [axis]})
return
def on_flipy(self):
# self.on_flip("X")
axis = 'X'
self.app.worker_task.emit({'fcn': self.on_flip,
'params': [axis]})
return
def on_flip_add_coords(self):
val = self.app.clipboard.text()
self.flip_ref_entry.set_value(val)
def on_skewx(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to skew on the X axis
:return:
"""
if val:
value = val
else:
try:
value = float(self.skewx_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
value = float(self.skewx_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# self.on_skew("X", value)
axis = 'X'
self.app.worker_task.emit({'fcn': self.on_skew,
'params': [axis, value]})
return
def on_skewy(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to sckew on the Y axis
:return:
"""
if val:
value = val
else:
try:
value = float(self.skewy_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
value = float(self.skewy_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# self.on_skew("Y", value)
axis = 'Y'
self.app.worker_task.emit({'fcn': self.on_skew,
'params': [axis, value]})
return
def on_scalex(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to scale on the X axis
:return:
"""
if val:
x_value = val
else:
try:
x_value = float(self.scalex_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
x_value = float(self.scalex_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# scaling to zero has no sense so we remove it, because scaling with 1 does nothing
if x_value == 0:
x_value = 1
if self.scale_link_cb.get_value():
y_value = x_value
else:
y_value = 1
axis = 'X'
point = (0, 0)
if self.scale_zero_ref_cb.get_value():
self.app.worker_task.emit({'fcn': self.on_scale,
'params': [axis, x_value, y_value, point]})
# self.on_scale("X", xvalue, yvalue, point=(0,0))
else:
# self.on_scale("X", xvalue, yvalue)
self.app.worker_task.emit({'fcn': self.on_scale,
'params': [axis, x_value, y_value]})
def on_scaley(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to scale on the Y axis
:return:
"""
x_value = 1
if val:
y_value = val
else:
try:
y_value = float(self.scaley_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
y_value = float(self.scaley_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# scaling to zero has no sense so we remove it, because scaling with 1 does nothing
if y_value == 0:
y_value = 1
axis = 'Y'
point = (0, 0)
if self.scale_zero_ref_cb.get_value():
self.app.worker_task.emit({'fcn': self.on_scale,
'params': [axis, x_value, y_value, point]})
# self.on_scale("Y", xvalue, yvalue, point=(0,0))
else:
# self.on_scale("Y", xvalue, yvalue)
self.app.worker_task.emit({'fcn': self.on_scale,
'params': [axis, x_value, y_value]})
return
def on_offx(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to offset on the X axis
:return:
"""
if val:
value = val
else:
try:
value = float(self.offx_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
value = float(self.offx_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# self.on_offset("X", value)
axis = 'X'
self.app.worker_task.emit({'fcn': self.on_offset,
'params': [axis, value]})
def on_offy(self, sig=None, val=None):
"""
:param sig: here we can get the value passed by the signal
:param val: the amount to offset on the Y axis
:return:
"""
if val:
value = val
else:
try:
value = float(self.offy_entry.get_value())
except ValueError:
# try to convert comma to decimal point. if it's still not working error message and return
try:
value = float(self.offy_entry.get_value().replace(',', '.'))
except ValueError:
self.app.inform.emit('[ERROR_NOTCL] %s' %
_("Wrong value format entered, use a number."))
return
# self.on_offset("Y", value)
axis = 'Y'
self.app.worker_task.emit({'fcn': self.on_offset,
'params': [axis, value]})
return
def on_rotate_action(self, num):
"""
:param num: the angle by which to rotate
:return:
"""
elem_list = self.draw_app.selected
xminlist = []
yminlist = []
xmaxlist = []
ymaxlist = []
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No shape selected. Please Select a shape to rotate!"))
return
with self.app.proc_container.new(_("Appying Rotate")):
try:
# first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest
# bounding box
for el_shape in elem_list:
el = el_shape.geo
if 'solid' in el:
xmin, ymin, xmax, ymax = el['solid'].bounds
xminlist.append(xmin)
yminlist.append(ymin)
xmaxlist.append(xmax)
ymaxlist.append(ymax)
# get the minimum x,y and maximum x,y for all objects selected
xminimal = min(xminlist)
yminimal = min(yminlist)
xmaximal = max(xmaxlist)
ymaximal = max(ymaxlist)
self.app.progress.emit(20)
px = 0.5 * (xminimal + xmaximal)
py = 0.5 * (yminimal + ymaximal)
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if 'solid' in sel_el:
sel_el['solid'] = affinity.rotate(sel_el['solid'], angle=-num, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.rotate(sel_el['follow'], angle=-num, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.rotate(sel_el['clear'], angle=-num, origin=(px, py))
self.draw_app.plot_all()
self.app.inform.emit('[success] %s' %
_("Done. Rotate completed."))
self.app.progress.emit(100)
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_("Rotation action was not executed."), str(e)))
return
def on_flip(self, axis):
"""
:param axis: axis to be used as reference for mirroring(flip)
:return:
"""
elem_list = self.draw_app.selected
xminlist = []
yminlist = []
xmaxlist = []
ymaxlist = []
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No shape selected. Please Select a shape to flip!"))
return
with self.app.proc_container.new(_("Applying Flip")):
try:
# get mirroring coords from the point entry
if self.flip_ref_cb.isChecked():
px, py = eval('{}'.format(self.flip_ref_entry.text()))
# get mirroing coords from the center of an all-enclosing bounding box
else:
# first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest
# bounding box
for el_shape in elem_list:
el = el_shape.geo
if 'solid' in el:
xmin, ymin, xmax, ymax = el['solid'].bounds
xminlist.append(xmin)
yminlist.append(ymin)
xmaxlist.append(xmax)
ymaxlist.append(ymax)
# get the minimum x,y and maximum x,y for all objects selected
xminimal = min(xminlist)
yminimal = min(yminlist)
xmaximal = max(xmaxlist)
ymaximal = max(ymaxlist)
px = 0.5 * (xminimal + xmaximal)
py = 0.5 * (yminimal + ymaximal)
self.app.progress.emit(20)
# execute mirroring
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if axis is 'X':
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=1, yfact=-1, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=1, yfact=-1, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=1, yfact=-1, origin=(px, py))
self.app.inform.emit('[success] %s...' %
_('Flip on the Y axis done'))
elif axis is 'Y':
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=-1, yfact=1, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=-1, yfact=1, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=-1, yfact=1, origin=(px, py))
self.app.inform.emit('[success] %s...' %
_('Flip on the X axis done'))
self.draw_app.plot_all()
self.app.progress.emit(100)
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_("Flip action was not executed."), str(e)))
return
def on_skew(self, axis, num):
"""
:param axis: axis by which to do the skeweing
:param num: angle value for skew
:return:
"""
elem_list = self.draw_app.selected
xminlist = []
yminlist = []
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No shape selected. Please Select a shape to shear/skew!"))
return
else:
with self.app.proc_container.new(_("Applying Skew")):
try:
# first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest
# bounding box
for el_shape in elem_list:
el = el_shape.geo
if 'solid' in el:
xmin, ymin, xmax, ymax = el['solid'].bounds
xminlist.append(xmin)
yminlist.append(ymin)
# get the minimum x,y and maximum x,y for all objects selected
xminimal = min(xminlist)
yminimal = min(yminlist)
self.app.progress.emit(20)
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if axis is 'X':
if 'solid' in sel_el:
sel_el['solid'] = affinity.skew(sel_el['solid'], num, 0, origin=(xminimal, yminimal))
if 'follow' in sel_el:
sel_el['follow'] = affinity.skew(sel_el['follow'], num, 0, origin=(xminimal, yminimal))
if 'clear' in sel_el:
sel_el['clear'] = affinity.skew(sel_el['clear'], num, 0, origin=(xminimal, yminimal))
elif axis is 'Y':
if 'solid' in sel_el:
sel_el['solid'] = affinity.skew(sel_el['solid'], 0, num, origin=(xminimal, yminimal))
if 'follow' in sel_el:
sel_el['follow'] = affinity.skew(sel_el['follow'], 0, num, origin=(xminimal, yminimal))
if 'clear' in sel_el:
sel_el['clear'] = affinity.skew(sel_el['clear'], 0, num, origin=(xminimal, yminimal))
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' %
_('Skew on the X axis done'))
else:
self.app.inform.emit('[success] %s...' %
_('Skew on the Y axis done'))
self.app.progress.emit(100)
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_("Skew action was not executed."), str(e)))
return
def on_scale(self, axis, xfactor, yfactor, point=None):
"""
:param axis: axis by which to scale
:param xfactor: the scale factor on X axis
:param yfactor: the scale factor on Y axis
:param point: point of reference for scaling
:return:
"""
elem_list = self.draw_app.selected
xminlist = []
yminlist = []
xmaxlist = []
ymaxlist = []
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No shape selected. Please Select a shape to scale!"))
return
else:
with self.app.proc_container.new(_("Applying Scale")):
try:
# first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest
# bounding box
for el_shape in elem_list:
el = el_shape.geo
if 'solid' in el:
xmin, ymin, xmax, ymax = el['solid'].bounds
xminlist.append(xmin)
yminlist.append(ymin)
xmaxlist.append(xmax)
ymaxlist.append(ymax)
# get the minimum x,y and maximum x,y for all objects selected
xminimal = min(xminlist)
yminimal = min(yminlist)
xmaximal = max(xmaxlist)
ymaximal = max(ymaxlist)
self.app.progress.emit(20)
if point is None:
px = 0.5 * (xminimal + xmaximal)
py = 0.5 * (yminimal + ymaximal)
else:
px = 0
py = 0
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if 'solid' in sel_el:
sel_el['solid'] = affinity.scale(sel_el['solid'], xfactor, yfactor, origin=(px, py))
if 'follow' in sel_el:
sel_el['follow'] = affinity.scale(sel_el['follow'], xfactor, yfactor, origin=(px, py))
if 'clear' in sel_el:
sel_el['clear'] = affinity.scale(sel_el['clear'], xfactor, yfactor, origin=(px, py))
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' %
_('Scale on the X axis done'))
else:
self.app.inform.emit('[success] %s...' %
_('Scale on the Y axis done'))
self.app.progress.emit(100)
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_("Scale action was not executed."), str(e)))
return
def on_offset(self, axis, num):
"""
:param axis: axis to be used as reference for offset
:param num: the amount by which to do the offset
:return:
"""
elem_list = self.draw_app.selected
if not elem_list:
self.app.inform.emit('[WARNING_NOTCL] %s' %
_("No shape selected. Please Select a shape to offset!"))
return
else:
with self.app.proc_container.new(_("Applying Offset")):
try:
self.app.progress.emit(20)
for sel_el_shape in elem_list:
sel_el = sel_el_shape.geo
if axis is 'X':
if 'solid' in sel_el:
sel_el['solid'] = affinity.translate(sel_el['solid'], num, 0)
if 'follow' in sel_el:
sel_el['follow'] = affinity.translate(sel_el['follow'], num, 0)
if 'clear' in sel_el:
sel_el['clear'] = affinity.translate(sel_el['clear'], num, 0)
elif axis is 'Y':
if 'solid' in sel_el:
sel_el['solid'] = affinity.translate(sel_el['solid'], 0, num)
if 'follow' in sel_el:
sel_el['follow'] = affinity.translate(sel_el['follow'], 0, num)
if 'clear' in sel_el:
sel_el['clear'] = affinity.translate(sel_el['clear'], 0, num)
self.draw_app.plot_all()
if str(axis) == 'X':
self.app.inform.emit('[success] %s...' %
_('Offset on the X axis done'))
else:
self.app.inform.emit('[success] %s...' %
_('Offset on the Y axis done'))
self.app.progress.emit(100)
except Exception as e:
self.app.inform.emit('[ERROR_NOTCL] %s: %s' %
(_("Offset action was not executed."), str(e)))
return
def on_rotate_key(self):
val_box = FCInputDialog(title=_("Rotate ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=4,
init_val=float(self.app.defaults['tools_transform_rotate']))
val_box.setWindowIcon(QtGui.QIcon('share/rotate.png'))
val, ok = val_box.get_value()
if ok:
self.on_rotate(val=val)
self.app.inform.emit('[success] %s...' %
_("Geometry shape rotate done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Geometry shape rotate cancelled"))
def on_offx_key(self):
units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().lower()
val_box = FCInputDialog(title=_("Offset on X axis ..."),
text='%s: (%s)' % (_('Enter a distance Value'), str(units)),
min=-9999.9999, max=10000.0000, decimals=4,
init_val=float(self.app.defaults['tools_transform_offset_x']))
val_box.setWindowIcon(QtGui.QIcon('share/offsetx32.png'))
val, ok = val_box.get_value()
if ok:
self.on_offx(val=val)
self.app.inform.emit('[success] %s...' %
_("Geometry shape offset on X axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Geometry shape offset X cancelled"))
def on_offy_key(self):
units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().lower()
val_box = FCInputDialog(title=_("Offset on Y axis ..."),
text='%s: (%s)' % (_('Enter a distance Value'), str(units)),
min=-9999.9999, max=10000.0000, decimals=4,
init_val=float(self.app.defaults['tools_transform_offset_y']))
val_box.setWindowIcon(QtGui.QIcon('share/offsety32.png'))
val, ok = val_box.get_value()
if ok:
self.on_offx(val=val)
self.app.inform.emit('[success] %s...' %
_("Geometry shape offset on Y axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Geometry shape offset Y cancelled"))
def on_skewx_key(self):
val_box = FCInputDialog(title=_("Skew on X axis ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=4,
init_val=float(self.app.defaults['tools_transform_skew_x']))
val_box.setWindowIcon(QtGui.QIcon('share/skewX.png'))
val, ok = val_box.get_value()
if ok:
self.on_skewx(val=val)
self.app.inform.emit('[success] %s...' %
_("Geometry shape skew on X axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Geometry shape skew X cancelled"))
def on_skewy_key(self):
val_box = FCInputDialog(title=_("Skew on Y axis ..."),
text='%s:' % _('Enter an Angle Value (degrees)'),
min=-359.9999, max=360.0000, decimals=4,
init_val=float(self.app.defaults['tools_transform_skew_y']))
val_box.setWindowIcon(QtGui.QIcon('share/skewY.png'))
val, ok = val_box.get_value()
if ok:
self.on_skewx(val=val)
self.app.inform.emit('[success] %s...' %
_("Geometry shape skew on Y axis done"))
return
else:
self.app.inform.emit('[WARNING_NOTCL] %s...' %
_("Geometry shape skew Y cancelled"))
def get_shapely_list_bounds(geometry_list):
xmin = Inf
ymin = Inf
xmax = -Inf
ymax = -Inf
for gs in geometry_list:
try:
gxmin, gymin, gxmax, gymax = gs.bounds
xmin = min([xmin, gxmin])
ymin = min([ymin, gymin])
xmax = max([xmax, gxmax])
ymax = max([ymax, gymax])
except Exception as e:
log.warning("DEVELOPMENT: Tried to get bounds of empty geometry. --> %s" % str(e))
return [xmin, ymin, xmax, ymax]