flatcam/appParsers/ParsePDF.py

1040 lines
50 KiB
Python

# ##########################################################
# FlatCAM: 2D Post-processing for Manufacturing #
# File Author: Marius Adrian Stanciu (c) #
# Date: 4/23/2019 #
# MIT Licence #
# ##########################################################
from PyQt5 import QtCore
from appCommon.Common import GracefulException as grace
from shapely.geometry import Polygon, LineString, MultiPolygon
from copy import copy, deepcopy
import numpy as np
import re
import logging
log = logging.getLogger('base')
class PdfParser(QtCore.QObject):
def __init__(self, app):
super().__init__()
self.app = app
self.step_per_circles = self.app.defaults["gerber_circle_steps"]
# detect stroke color change; it means a new object to be created
self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
# detect fill color change; we check here for white color (transparent geometry);
# if detected we create an Excellon from it
self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
# detect 're' command
self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
# detect 'm' command
self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
# detect 'l' command
self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
# detect 'c' command
self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
r'\s(-?\d+\.?\d*)\s*c$')
# detect 'v' command
self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
# detect 'y' command
self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
# detect 'h' command
self.end_subpath_re = re.compile(r'^h$')
# detect 'w' command
self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
# detect 'S' command
self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
# detect 's' command
self.close_stroke_path__re = re.compile(r'^s$')
# detect 'f' or 'f*' command
self.fill_path_re = re.compile(r'^[f|F][*]?$')
# detect 'B' or 'B*' command
self.fill_stroke_path_re = re.compile(r'^B[*]?$')
# detect 'b' or 'b*' command
self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
# detect 'n'
self.no_op_re = re.compile(r'^n$')
# detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
# self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
# detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
# self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
# detect combined transformation. Should always be the last
self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
# detect clipping path
self.clip_path_re = re.compile(r'^W[*]? n?$')
# detect save graphic state in graphic stack
self.save_gs_re = re.compile(r'^q.*?$')
# detect restore graphic state from graphic stack
self.restore_gs_re = re.compile(r'^.*Q.*$')
# graphic stack where we save parameters like transformation, line_width
# each element is a list composed of sublist elements
# (each sublist has 2 lists each having 2 elements: first is offset like:
# offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
self.gs = {'transform': [], 'line_width': []}
# conversion factor to INCH
self.point_to_unit_factor = 0.01388888888
def parse_pdf(self, pdf_content):
# the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
if self.app.defaults['units'].upper() == 'MM':
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
self.point_to_unit_factor = 25.4 / 72
else:
# 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
self.point_to_unit_factor = 1 / 72
path = {
'lines': [], # it's a list of lines subpaths
'bezier': [], # it's a list of bezier arcs subpaths
'rectangle': [] # it's a list of rectangle subpaths
}
subpath = {
'lines': [], # it's a list of points
'bezier': [], # it's a list of sublists each like this [start, c1, c2, stop]
'rectangle': [] # it's a list of sublists of points
}
# store the start point (when 'm' command is encountered)
current_subpath = None
# set True when 'h' command is encountered (close subpath)
close_subpath = False
start_point = None
current_point = None
size = 0
# initial values for the transformations, in case they are not encountered in the PDF file
offset_geo = [0, 0]
scale_geo = [1, 1]
# store the objects to be transformed into Gerbers
object_dict = {}
# will serve as key in the object_dict
layer_nr = 1
# create first object
object_dict[layer_nr] = {}
# store the apertures here
apertures_dict = {}
# initial aperture
aperture = 10
# store the apertures with clear geometry here
# we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
# everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
clear_apertures_dict = {
'0': {
'size': 0.0,
'type': 'C',
'geometry': []
}
}
# on stroke color change we create a new apertures dictionary and store the old one in a storage from where
# it will be transformed into Gerber object
old_color = [None, None, None]
# signal that we have clear geometry and the geometry will be added to a special layer_nr = 0
flag_clear_geo = False
line_nr = 0
lines = pdf_content.splitlines()
for pline in lines:
if self.app.abort_flag:
# graceful abort requested by the user
raise grace
line_nr += 1
log.debug("line %d: %s" % (line_nr, pline))
# COLOR DETECTION / OBJECT DETECTION
match = self.stroke_color_re.search(pline)
if match:
color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
log.debug(
"parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
(line_nr, color[0], color[1], color[2]))
if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
# same color, do nothing
continue
else:
if apertures_dict:
object_dict[layer_nr] = deepcopy(apertures_dict)
apertures_dict.clear()
layer_nr += 1
object_dict[layer_nr] = {}
old_color = copy(color)
# we make sure that the following geometry is added to the right storage
flag_clear_geo = False
continue
# CLEAR GEOMETRY detection
match = self.fill_color_re.search(pline)
if match:
fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
log.debug(
"parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
(line_nr, fill_color[0], fill_color[1], fill_color[2]))
# if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
# geometries are actually holes from which we can make an Excellon file
if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
flag_clear_geo = True
else:
flag_clear_geo = False
continue
# TRANSFORMATIONS DETECTION #
# Detect combined transformation.
match = self.combined_transform_re.search(pline)
if match:
# detect save graphic stack event
# sometimes they combine save_to_graphics_stack with the transformation on the same line
if match.group(1) == 'q':
log.debug(
"parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
(line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
self.gs['line_width'].append(deepcopy(size))
# transformation = TRANSLATION (OFFSET)
if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
(float(match.group(6)) != 0 or float(match.group(7)) != 0):
log.debug(
"parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
offset_geo[0] += float(match.group(6))
offset_geo[1] += float(match.group(7))
# log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
# transformation = SCALING
if float(match.group(2)) != 1 and float(match.group(5)) != 1:
log.debug(
"parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
scale_geo[0] *= float(match.group(2))
scale_geo[1] *= float(match.group(5))
# log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
continue
# detect save graphic stack event
match = self.save_gs_re.search(pline)
if match:
log.debug(
"parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
(line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
self.gs['line_width'].append(deepcopy(size))
# detect restore from graphic stack event
match = self.restore_gs_re.search(pline)
if match:
try:
restored_transform = self.gs['transform'].pop(-1)
offset_geo = restored_transform[0]
scale_geo = restored_transform[1]
except IndexError:
# nothing to remove
log.debug("parse_pdf() --> Nothing to restore")
pass
try:
size = self.gs['line_width'].pop(-1)
except IndexError:
log.debug("parse_pdf() --> Nothing to restore")
# nothing to remove
pass
log.debug(
"parse_pdf() --> Restore from GS found on line: %s --> "
"restored_offset=[%f, %f] ||| restored_scale=[%f, %f]" %
(line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
# log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
# log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
# PATH CONSTRUCTION #
# Start SUBPATH
match = self.start_subpath_re.search(pline)
if match:
# we just started a subpath so we mark it as not closed yet
close_subpath = False
# init subpaths
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
# detect start point to move to
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
start_point = pt
# add the start point to subpaths
subpath['lines'].append(start_point)
# subpath['bezier'].append(start_point)
# subpath['rectangle'].append(start_point)
current_point = start_point
continue
# Draw Line
match = self.draw_line_re.search(pline)
if match:
current_subpath = 'lines'
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
pt = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['lines'].append(pt)
current_point = pt
continue
# Draw Bezier 'c'
match = self.draw_arc_3pt_re.search(pline)
if match:
current_subpath = 'bezier'
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(5)) + offset_geo[0]
y = float(match.group(6)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, c1, c2, stop])
current_point = stop
continue
# Draw Bezier 'v'
match = self.draw_arc_2pt_c1start_re.search(pline)
if match:
current_subpath = 'bezier'
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c2 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, start, c2, stop])
current_point = stop
continue
# Draw Bezier 'y'
match = self.draw_arc_2pt_c2stop_re.search(pline)
if match:
start = current_point
x = float(match.group(1)) + offset_geo[0]
y = float(match.group(2)) + offset_geo[1]
c1 = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
x = float(match.group(3)) + offset_geo[0]
y = float(match.group(4)) + offset_geo[1]
stop = (x * self.point_to_unit_factor * scale_geo[0],
y * self.point_to_unit_factor * scale_geo[1])
subpath['bezier'].append([start, c1, stop, stop])
current_point = stop
continue
# Draw Rectangle 're'
match = self.rect_re.search(pline)
if match:
current_subpath = 'rectangle'
x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
pt1 = (x, y)
pt2 = (x + width, y)
pt3 = (x + width, y + height)
pt4 = (x, y + height)
subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
current_point = pt1
continue
# Detect clipping path set
# ignore this and delete the current subpath
match = self.clip_path_re.search(pline)
if match:
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
# it means that we've already added the subpath to path and we need to delete it
# clipping path is usually either rectangle or lines
if close_subpath is True:
close_subpath = False
if current_subpath == 'lines':
path['lines'].pop(-1)
if current_subpath == 'rectangle':
path['rectangle'].pop(-1)
continue
# Close SUBPATH
match = self.end_subpath_re.search(pline)
if match:
close_subpath = True
if current_subpath == 'lines':
subpath['lines'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['lines'].append(copy(subpath['lines']))
subpath['lines'] = []
elif current_subpath == 'bezier':
# subpath['bezier'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['bezier'].append(copy(subpath['bezier']))
subpath['bezier'] = []
elif current_subpath == 'rectangle':
# subpath['rectangle'].append(start_point)
# since we are closing the subpath add it to the path, a path may have chained subpaths
path['rectangle'].append(copy(subpath['rectangle']))
subpath['rectangle'] = []
continue
# PATH PAINTING #
# Detect Stroke width / aperture
match = self.strokewidth_re.search(pline)
if match:
size = float(match.group(1))
continue
# Detect No_Op command, ignore the current subpath
match = self.no_op_re.search(pline)
if match:
subpath['lines'] = []
subpath['bezier'] = []
subpath['rectangle'] = []
continue
# Stroke the path
match = self.stroke_path__re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = []
if current_subpath == 'lines':
if path['lines']:
for subp in path['lines']:
geo = copy(subp)
try:
geo = LineString(geo).buffer((float(applied_size) / 2),
resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
# the path was painted therefore initialize it
path['lines'] = []
else:
geo = copy(subpath['lines'])
try:
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
subpath['lines'] = []
if current_subpath == 'bezier':
if path['bezier']:
for subp in path['bezier']:
geo = []
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
try:
geo = LineString(geo).buffer((float(applied_size) / 2),
resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
# the path was painted therefore initialize it
path['bezier'] = []
else:
geo = []
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
try:
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
for subp in path['rectangle']:
geo = copy(subp)
try:
geo = LineString(geo).buffer((float(applied_size) / 2),
resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
# the path was painted therefore initialize it
path['rectangle'] = []
else:
geo = copy(subpath['rectangle'])
try:
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
except ValueError:
pass
subpath['rectangle'] = []
# store the found geometry
found_aperture = None
if apertures_dict:
for apid in apertures_dict:
# if we already have an aperture with the current size (rounded to 5 decimals)
if apertures_dict[apid]['size'] == round(applied_size, 5):
found_aperture = apid
break
if found_aperture:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
else:
if str(aperture) in apertures_dict.keys():
aperture += 1
apertures_dict[str(aperture)] = {}
apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
apertures_dict[str(aperture)]['type'] = 'C'
apertures_dict[str(aperture)]['geometry'] = []
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
apertures_dict[str(aperture)] = {}
apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
apertures_dict[str(aperture)]['type'] = 'C'
apertures_dict[str(aperture)]['geometry'] = []
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
continue
# Fill the path
match = self.fill_path_re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = []
if current_subpath == 'lines':
if path['lines']:
for subp in path['lines']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
# the path was painted therefore initialize it
path['lines'] = []
else:
geo = copy(subpath['lines'])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
subpath['lines'] = []
if current_subpath == 'bezier':
geo = []
if path['bezier']:
for subp in path['bezier']:
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
# close the subpath if it was not closed already
if close_subpath is False:
new_g = geo[0]
geo.append(new_g)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
# the path was painted therefore initialize it
path['bezier'] = []
else:
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
if close_subpath is False:
geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
for subp in path['rectangle']:
geo = copy(subp)
# # close the subpath if it was not closed already
# if close_subpath is False and start_point is not None:
# geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
# the path was painted therefore initialize it
path['rectangle'] = []
else:
geo = copy(subpath['rectangle'])
# # close the subpath if it was not closed already
# if close_subpath is False and start_point is not None:
# geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
path_geo.append(geo_el)
except ValueError:
pass
subpath['rectangle'] = []
# we finished painting and also closed the path if it was the case
close_subpath = True
# in case that a color change to white (transparent) occurred
if flag_clear_geo is True:
# if there was a fill color change we look for circular geometries from which we can make
# drill holes for the Excellon file
if current_subpath == 'bezier':
# if there are geometries in the list
if path_geo:
try:
for g in path_geo:
new_el = {'clear': g}
clear_apertures_dict['0']['geometry'].append(new_el)
except TypeError:
new_el = {'clear': path_geo}
clear_apertures_dict['0']['geometry'].append(new_el)
# now that we finished searching for drill holes (this is not very precise because holes in the
# polygon pours may appear as drill too, but .. hey you can't have it all ...) we add
# clear_geometry
try:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'clear': poly}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'clear': pdf_geo}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['size'] = applied_size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['geometry'] = []
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'clear': poly}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'clear': pdf_geo}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
# else, add the geometry as usual
try:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {}
apertures_dict['0']['size'] = applied_size
apertures_dict['0']['type'] = 'C'
apertures_dict['0']['geometry'] = []
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
continue
# Fill and Stroke the path
match = self.fill_stroke_path_re.search(pline)
if match:
# scale the size here; some PDF printers apply transformation after the size is declared
applied_size = size * scale_geo[0] * self.point_to_unit_factor
path_geo = []
fill_geo = []
if current_subpath == 'lines':
if path['lines']:
# fill
for subp in path['lines']:
geo = copy(subp)
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
for subp in path['lines']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['lines'] = []
else:
# fill
geo = copy(subpath['lines'])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
geo = copy(subpath['lines'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['lines'] = []
subpath['lines'] = []
if current_subpath == 'bezier':
geo = []
if path['bezier']:
# fill
for subp in path['bezier']:
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
# close the subpath if it was not closed already
if close_subpath is False:
geo.append(geo[0])
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
for subp in path['bezier']:
geo = []
for b in subp:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['bezier'] = []
else:
# fill
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
if close_subpath is False:
geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
geo = []
for b in subpath['bezier']:
geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['bezier'] = []
if current_subpath == 'rectangle':
if path['rectangle']:
# fill
for subp in path['rectangle']:
geo = copy(subp)
# # close the subpath if it was not closed already
# if close_subpath is False:
# geo.append(geo[0])
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
for subp in path['rectangle']:
geo = copy(subp)
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
# the path was painted therefore initialize it
path['rectangle'] = []
else:
# fill
geo = copy(subpath['rectangle'])
# # close the subpath if it was not closed already
# if close_subpath is False:
# geo.append(start_point)
try:
geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
fill_geo.append(geo_el)
except ValueError:
pass
# stroke
geo = copy(subpath['rectangle'])
geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
path_geo.append(geo)
subpath['rectangle'] = []
# we finished painting and also closed the path if it was the case
close_subpath = True
# store the found geometry for stroking the path
found_aperture = None
if apertures_dict:
for apid in apertures_dict:
# if we already have an aperture with the current size (rounded to 5 decimals)
if apertures_dict[apid]['size'] == round(applied_size, 5):
found_aperture = apid
break
if found_aperture:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
else:
if str(aperture) in apertures_dict.keys():
aperture += 1
apertures_dict[str(aperture)] = {
'size': round(applied_size, 5),
'type': 'C',
'geometry': []
}
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
apertures_dict[str(aperture)] = {
'size': round(applied_size, 5),
'type': 'C',
'geometry': []
}
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
# ############################################# ##
# store the found geometry for filling the path #
# ############################################# ##
# in case that a color change to white (transparent) occurred
if flag_clear_geo is True:
try:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in fill_geo:
new_el = {'clear': poly}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'clear': pdf_geo}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {
'size': round(applied_size, 5),
'type': 'C',
'geometry': []
}
for pdf_geo in fill_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'clear': poly}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'clear': pdf_geo}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
try:
for pdf_geo in path_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in fill_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
except KeyError:
# in case there is no stroke width yet therefore no aperture
apertures_dict['0'] = {
'size': round(applied_size, 5),
'type': 'C',
'geometry': []
}
for pdf_geo in fill_geo:
if isinstance(pdf_geo, MultiPolygon):
for poly in pdf_geo:
new_el = {'solid': poly, 'follow': poly.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
else:
new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
apertures_dict['0']['geometry'].append(deepcopy(new_el))
continue
# tidy up. copy the current aperture dict to the object dict but only if it is not empty
if apertures_dict:
object_dict[layer_nr] = deepcopy(apertures_dict)
if clear_apertures_dict['0']['geometry']:
object_dict[0] = deepcopy(clear_apertures_dict)
# delete keys (layers) with empty values
empty_layers = []
for layer in object_dict:
if not object_dict[layer]:
empty_layers.append(layer)
for x in empty_layers:
if x in object_dict:
object_dict.pop(x)
if self.app.abort_flag:
# graceful abort requested by the user
raise grace
return object_dict
def bezier_to_points(self, start, c1, c2, stop):
"""
# Equation Bezier, page 184 PDF 1.4 reference
# https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
# Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
# in the following equation:
# R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
# When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
# with the final point P3. Intermediate values of t generate intermediate points along the curve.
# The curve does not, in general, pass through the two control points P1 and P2
:return: A list of point coordinates tuples (x, y)
"""
# here we store the geometric points
points = []
nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
for t in nr_points:
term_p0 = (1 - t) ** 3
term_p1 = 3 * t * (1 - t) ** 2
term_p2 = 3 * (1 - t) * t ** 2
term_p3 = t ** 3
x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
points.append([x, y])
return points
# def bezier_to_circle(self, path):
# lst = []
# for el in range(len(path)):
# if type(path) is list:
# for coord in path[el]:
# lst.append(coord)
# else:
# lst.append(el)
#
# if lst:
# minx = min(lst, key=lambda t: t[0])[0]
# miny = min(lst, key=lambda t: t[1])[1]
# maxx = max(lst, key=lambda t: t[0])[0]
# maxy = max(lst, key=lambda t: t[1])[1]
# center = (maxx-minx, maxy-miny)
# radius = (maxx-minx) / 2
# return [center, radius]
#
# def circle_to_points(self, center, radius):
# geo = Point(center).buffer(radius, resolution=self.step_per_circles)
# return LineString(list(geo.exterior.coords))
#