# ########################################################## # FlatCAM: 2D Post-processing for Manufacturing # # File Author: Marius Adrian Stanciu (c) # # Date: 8/17/2019 # # MIT Licence # # ########################################################## from PyQt5 import QtGui, QtCore, QtWidgets from PyQt5.QtCore import Qt, QSettings from shapely.geometry import LineString, LinearRing, MultiLineString, Point, Polygon, MultiPolygon from shapely.ops import cascaded_union import shapely.affinity as affinity import threading import time from copy import copy, deepcopy import logging from camlib import distance, arc, three_point_circle from flatcamGUI.GUIElements import FCEntry, FCComboBox, FCTable, FCDoubleSpinner, FCSpinner, RadioSet, \ EvalEntry2, FCInputDialog, FCButton, OptionalInputSection, FCCheckBox from FlatCAMTool import FlatCAMTool import FlatCAMApp import numpy as np from numpy.linalg import norm as numpy_norm import math # from vispy.io import read_png # import pngcanvas import traceback import gettext import FlatCAMTranslation as fcTranslate import builtins fcTranslate.apply_language('strings') if '_' not in builtins.__dict__: _ = gettext.gettext log = logging.getLogger('base') class DrawToolShape(object): """ Encapsulates "shapes" under a common class. """ tolerance = None @staticmethod def get_pts(o): """ Returns a list of all points in the object, where the object can be a Polygon, Not a polygon, or a list of such. Search is done recursively. :param: geometric object :return: List of points :rtype: list """ pts = [] # ## Iterable: descend into each item. try: for sub_o in o: pts += DrawToolShape.get_pts(sub_o) # Non-iterable except TypeError: if o is not None: # DrawToolShape: descend into .geo. if isinstance(o, DrawToolShape): pts += DrawToolShape.get_pts(o.geo) # ## Descend into .exerior and .interiors elif type(o) == Polygon: pts += DrawToolShape.get_pts(o.exterior) for i in o.interiors: pts += DrawToolShape.get_pts(i) elif type(o) == MultiLineString: for line in o: pts += DrawToolShape.get_pts(line) # ## Has .coords: list them. else: if DrawToolShape.tolerance is not None: pts += list(o.simplify(DrawToolShape.tolerance).coords) else: pts += list(o.coords) else: return return pts def __init__(self, geo=None): # Shapely type or list of such self.geo = geo self.utility = False class DrawToolUtilityShape(DrawToolShape): """ Utility shapes are temporary geometry in the editor to assist in the creation of shapes. For example it will show the outline of a rectangle from the first point to the current mouse pointer before the second point is clicked and the final geometry is created. """ def __init__(self, geo=None): super(DrawToolUtilityShape, self).__init__(geo=geo) self.utility = True class DrawTool(object): """ Abstract Class representing a tool in the drawing program. Can generate geometry, including temporary utility geometry that is updated on user clicks and mouse motion. """ def __init__(self, draw_app): self.draw_app = draw_app self.complete = False self.points = [] self.geometry = None # DrawToolShape or None def click(self, point): """ :param point: [x, y] Coordinate pair. """ return "" def click_release(self, point): """ :param point: [x, y] Coordinate pair. """ return "" def on_key(self, key): return None def utility_geometry(self, data=None): return None @staticmethod def bounds(obj): def bounds_rec(o): if type(o) is list: minx = np.Inf miny = np.Inf maxx = -np.Inf maxy = -np.Inf for k in o: try: minx_, miny_, maxx_, maxy_ = bounds_rec(k) except Exception as e: log.debug("camlib.Gerber.bounds() --> %s" % str(e)) return minx = min(minx, minx_) miny = min(miny, miny_) maxx = max(maxx, maxx_) maxy = max(maxy, maxy_) return minx, miny, maxx, maxy else: # it's a Shapely object, return it's bounds if 'solid' in o.geo: return o.geo['solid'].bounds return bounds_rec(obj) class FCShapeTool(DrawTool): """ Abstract class for tools that create a shape. """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) def make(self): pass class FCPad(FCShapeTool): """ Resulting type: Polygon """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'pad' self.draw_app = draw_app try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: pass self.cursor = QtGui.QCursor(QtGui.QPixmap(self.app.resource_location + '/aero_circle.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) try: self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2 except KeyError: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("To add an Pad first select a aperture in Aperture Table")) self.draw_app.in_action = False self.complete = True return if self.radius == 0: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture size is zero. It needs to be greater than zero.")) self.dont_execute = True return else: self.dont_execute = False self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'] self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"] # if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys try: self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2 except KeyError: pass try: self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2 except KeyError: pass geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) if isinstance(geo, DrawToolShape) and geo.geo is not None: self.draw_app.draw_utility_geometry(geo=geo) self.draw_app.app.inform.emit(_("Click to place ...")) # Switch notebook to Selected page self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab) self.start_msg = _("Click to place ...") def click(self, point): self.make() return "Done." def utility_geometry(self, data=None): if self.dont_execute is True: self.draw_app.select_tool('select') return self.points = data geo_data = self.util_shape(data) if geo_data: return DrawToolUtilityShape(geo_data) else: return None def util_shape(self, point): # updating values here allows us to change the aperture on the fly, after the Tool has been started self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'] self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2 self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"] # if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys try: self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2 except KeyError: pass try: self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2 except KeyError: pass if point[0] is None and point[1] is None: point_x = self.draw_app.x point_y = self.draw_app.y else: point_x = point[0] point_y = point[1] ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type'] if ap_type == 'C': new_geo_el = dict() center = Point([point_x, point_y]) new_geo_el['solid'] = center.buffer(self.radius) new_geo_el['follow'] = center return new_geo_el elif ap_type == 'R': new_geo_el = dict() p1 = (point_x - self.half_width, point_y - self.half_height) p2 = (point_x + self.half_width, point_y - self.half_height) p3 = (point_x + self.half_width, point_y + self.half_height) p4 = (point_x - self.half_width, point_y + self.half_height) center = Point([point_x, point_y]) new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1]) new_geo_el['follow'] = center return new_geo_el elif ap_type == 'O': geo = [] new_geo_el = dict() if self.half_height > self.half_width: p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width) p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width) p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width) p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width) down_center = [point_x, point_y - self.half_height + self.half_width] d_start_angle = np.pi d_stop_angle = 0.0 down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ) up_center = [point_x, point_y + self.half_height - self.half_width] u_start_angle = 0.0 u_stop_angle = np.pi up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ) geo.append(p1) for pt in down_arc: geo.append(pt) geo.append(p2) geo.append(p3) for pt in up_arc: geo.append(pt) geo.append(p4) new_geo_el['solid'] = Polygon(geo) center = Point([point_x, point_y]) new_geo_el['follow'] = center return new_geo_el else: p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height) p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height) p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height) p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height) left_center = [point_x - self.half_width + self.half_height, point_y] d_start_angle = np.pi / 2 d_stop_angle = 1.5 * np.pi left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ) right_center = [point_x + self.half_width - self.half_height, point_y] u_start_angle = 1.5 * np.pi u_stop_angle = np.pi / 2 right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ) geo.append(p1) geo.append(p2) for pt in right_arc: geo.append(pt) geo.append(p3) geo.append(p4) for pt in left_arc: geo.append(pt) new_geo_el['solid'] = Polygon(geo) center = Point([point_x, point_y]) new_geo_el['follow'] = center return new_geo_el else: self.draw_app.app.inform.emit(_( "Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'.")) return None def make(self): self.draw_app.current_storage = self.storage_obj try: self.geometry = DrawToolShape(self.util_shape(self.points)) except Exception as e: log.debug("FCPad.make() --> %s" % str(e)) self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done. Adding Pad completed.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCPadArray(FCShapeTool): """ Resulting type: MultiPolygon """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'array' self.draw_app = draw_app try: self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2 except KeyError: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("To add an Pad Array first select a aperture in Aperture Table")) self.complete = True self.draw_app.in_action = False self.draw_app.array_frame.hide() return if self.radius == 0: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture size is zero. It needs to be greater than zero.")) self.dont_execute = True return else: self.dont_execute = False try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: pass self.cursor = QtGui.QCursor(QtGui.QPixmap(self.app.resource_location + '/aero_array.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'] self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"] # if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys try: self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2 except KeyError: pass try: self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2 except KeyError: pass self.draw_app.array_frame.show() self.selected_size = None self.pad_axis = 'X' self.pad_array = 'linear' self.pad_array_size = None self.pad_pitch = None self.pad_linear_angle = None self.pad_angle = None self.pad_direction = None self.pad_radius = None self.origin = None self.destination = None self.flag_for_circ_array = None self.last_dx = 0 self.last_dy = 0 self.pt = [] geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y), static=True) if isinstance(geo, DrawToolShape) and geo.geo is not None: self.draw_app.draw_utility_geometry(geo=geo) self.draw_app.app.inform.emit(_("Click on target location ...")) # Switch notebook to Selected page self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab) def click(self, point): if self.pad_array == 'Linear': self.make() return else: if self.flag_for_circ_array is None: self.draw_app.in_action = True self.pt.append(point) self.flag_for_circ_array = True self.set_origin(point) self.draw_app.app.inform.emit(_("Click on the Pad Circular Array Start position")) else: self.destination = point self.make() self.flag_for_circ_array = None return def set_origin(self, origin): self.origin = origin def utility_geometry(self, data=None, static=None): if self.dont_execute is True: self.draw_app.select_tool('select') return self.pad_axis = self.draw_app.pad_axis_radio.get_value() self.pad_direction = self.draw_app.pad_direction_radio.get_value() self.pad_array = self.draw_app.array_type_combo.get_value() try: self.pad_array_size = int(self.draw_app.pad_array_size_entry.get_value()) try: self.pad_pitch = float(self.draw_app.pad_pitch_entry.get_value()) self.pad_linear_angle = float(self.draw_app.linear_angle_spinner.get_value()) self.pad_angle = float(self.draw_app.pad_angle_entry.get_value()) except TypeError: self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' % _("The value is not Float. Check for comma instead of dot separator.")) return except Exception as e: self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' % _("The value is mistyped. Check the value.")) return if self.pad_array == 'Linear': if data[0] is None and data[1] is None: dx = self.draw_app.x dy = self.draw_app.y else: dx = data[0] dy = data[1] geo_el_list = [] geo_el = [] self.points = [dx, dy] for item in range(self.pad_array_size): if self.pad_axis == 'X': geo_el = self.util_shape(((dx + (self.pad_pitch * item)), dy)) if self.pad_axis == 'Y': geo_el = self.util_shape((dx, (dy + (self.pad_pitch * item)))) if self.pad_axis == 'A': x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle)) y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle)) geo_el = self.util_shape( ((dx + (x_adj * item)), (dy + (y_adj * item))) ) if static is None or static is False: new_geo_el = dict() if 'solid' in geo_el: new_geo_el['solid'] = affinity.translate( geo_el['solid'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy) ) if 'follow' in geo_el: new_geo_el['follow'] = affinity.translate( geo_el['follow'], xoff=(dx - self.last_dx), yoff=(dy - self.last_dy) ) geo_el_list.append(new_geo_el) else: geo_el_list.append(geo_el) # self.origin = data self.last_dx = dx self.last_dy = dy return DrawToolUtilityShape(geo_el_list) else: if data[0] is None and data[1] is None: cdx = self.draw_app.x cdy = self.draw_app.y else: cdx = data[0] cdy = data[1] if len(self.pt) > 0: temp_points = [x for x in self.pt] temp_points.append([cdx, cdy]) return DrawToolUtilityShape(LineString(temp_points)) def util_shape(self, point): # updating values here allows us to change the aperture on the fly, after the Tool has been started self.storage_obj = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'] self.radius = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) / 2 self.steps_per_circ = self.draw_app.app.defaults["geometry_circle_steps"] # if those cause KeyError exception it means that the aperture type is not 'R'. Only 'R' type has those keys try: self.half_width = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['width']) / 2 except KeyError: pass try: self.half_height = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['height']) / 2 except KeyError: pass if point[0] is None and point[1] is None: point_x = self.draw_app.x point_y = self.draw_app.y else: point_x = point[0] point_y = point[1] ap_type = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['type'] if ap_type == 'C': new_geo_el = dict() center = Point([point_x, point_y]) new_geo_el['solid'] = center.buffer(self.radius) new_geo_el['follow'] = center return new_geo_el elif ap_type == 'R': new_geo_el = dict() p1 = (point_x - self.half_width, point_y - self.half_height) p2 = (point_x + self.half_width, point_y - self.half_height) p3 = (point_x + self.half_width, point_y + self.half_height) p4 = (point_x - self.half_width, point_y + self.half_height) new_geo_el['solid'] = Polygon([p1, p2, p3, p4, p1]) new_geo_el['follow'] = Point([point_x, point_y]) return new_geo_el elif ap_type == 'O': geo = [] new_geo_el = dict() if self.half_height > self.half_width: p1 = (point_x - self.half_width, point_y - self.half_height + self.half_width) p2 = (point_x + self.half_width, point_y - self.half_height + self.half_width) p3 = (point_x + self.half_width, point_y + self.half_height - self.half_width) p4 = (point_x - self.half_width, point_y + self.half_height - self.half_width) down_center = [point_x, point_y - self.half_height + self.half_width] d_start_angle = np.pi d_stop_angle = 0.0 down_arc = arc(down_center, self.half_width, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ) up_center = [point_x, point_y + self.half_height - self.half_width] u_start_angle = 0.0 u_stop_angle = np.pi up_arc = arc(up_center, self.half_width, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ) geo.append(p1) for pt in down_arc: geo.append(pt) geo.append(p2) geo.append(p3) for pt in up_arc: geo.append(pt) geo.append(p4) new_geo_el['solid'] = Polygon(geo) center = Point([point_x, point_y]) new_geo_el['follow'] = center return new_geo_el else: p1 = (point_x - self.half_width + self.half_height, point_y - self.half_height) p2 = (point_x + self.half_width - self.half_height, point_y - self.half_height) p3 = (point_x + self.half_width - self.half_height, point_y + self.half_height) p4 = (point_x - self.half_width + self.half_height, point_y + self.half_height) left_center = [point_x - self.half_width + self.half_height, point_y] d_start_angle = np.pi / 2 d_stop_angle = 1.5 * np.pi left_arc = arc(left_center, self.half_height, d_start_angle, d_stop_angle, 'ccw', self.steps_per_circ) right_center = [point_x + self.half_width - self.half_height, point_y] u_start_angle = 1.5 * np.pi u_stop_angle = np.pi / 2 right_arc = arc(right_center, self.half_height, u_start_angle, u_stop_angle, 'ccw', self.steps_per_circ) geo.append(p1) geo.append(p2) for pt in right_arc: geo.append(pt) geo.append(p3) geo.append(p4) for pt in left_arc: geo.append(pt) new_geo_el['solid'] = Polygon(geo) center = Point([point_x, point_y]) new_geo_el['follow'] = center return new_geo_el else: self.draw_app.app.inform.emit(_( "Incompatible aperture type. Select an aperture with type 'C', 'R' or 'O'.")) return None def make(self): self.geometry = [] geo = None self.draw_app.current_storage = self.storage_obj if self.pad_array == 'Linear': for item in range(self.pad_array_size): if self.pad_axis == 'X': geo = self.util_shape(((self.points[0] + (self.pad_pitch * item)), self.points[1])) if self.pad_axis == 'Y': geo = self.util_shape((self.points[0], (self.points[1] + (self.pad_pitch * item)))) if self.pad_axis == 'A': x_adj = self.pad_pitch * math.cos(math.radians(self.pad_linear_angle)) y_adj = self.pad_pitch * math.sin(math.radians(self.pad_linear_angle)) geo = self.util_shape( ((self.points[0] + (x_adj * item)), (self.points[1] + (y_adj * item))) ) self.geometry.append(DrawToolShape(geo)) else: if (self.pad_angle * self.pad_array_size) > 360: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("Too many Pads for the selected spacing angle.")) return radius = distance(self.destination, self.origin) initial_angle = math.asin((self.destination[1] - self.origin[1]) / radius) for i in range(self.pad_array_size): angle_radians = math.radians(self.pad_angle * i) if self.pad_direction == 'CW': x = self.origin[0] + radius * math.cos(-angle_radians + initial_angle) y = self.origin[1] + radius * math.sin(-angle_radians + initial_angle) else: x = self.origin[0] + radius * math.cos(angle_radians + initial_angle) y = self.origin[1] + radius * math.sin(angle_radians + initial_angle) geo = self.util_shape((x, y)) if self.pad_direction == 'CW': geo = affinity.rotate(geo, angle=(math.pi - angle_radians), use_radians=True) else: geo = affinity.rotate(geo, angle=(angle_radians - math.pi), use_radians=True) self.geometry.append(DrawToolShape(geo)) self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done. Pad Array added.")) self.draw_app.in_action = False self.draw_app.array_frame.hide() return def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCPoligonize(FCShapeTool): """ Resulting type: Polygon """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'poligonize' self.draw_app = draw_app self.draw_app.app.inform.emit(_("Select shape(s) and then click ...")) self.draw_app.in_action = True self.make() def click(self, point): return "" def make(self): if not self.draw_app.selected: self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[ERROR_NOTCL] %s' % _("Failed. Nothing selected.")) self.draw_app.select_tool("select") return apid_set = set() for elem in self.draw_app.selected: for apid in self.draw_app.storage_dict: if 'geometry' in self.draw_app.storage_dict[apid]: if elem in self.draw_app.storage_dict[apid]['geometry']: apid_set.add(apid) break if len(apid_set) > 1: self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[WARNING_NOTCL] %s' % _("Failed. Poligonize works only on geometries belonging " "to the same aperture.")) self.draw_app.select_tool("select") return # exterior_geo = [Polygon(sh.geo.exterior) for sh in self.draw_app.selected] exterior_geo = [] for geo_shape in self.draw_app.selected: geometric_data = geo_shape.geo if 'solid' in geometric_data: exterior_geo.append(Polygon(geometric_data['solid'].exterior)) fused_geo = MultiPolygon(exterior_geo) fused_geo = fused_geo.buffer(0.0000001) current_storage = self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry'] if isinstance(fused_geo, MultiPolygon): for geo in fused_geo: # clean-up the geo geo = geo.buffer(0) if len(geo.interiors) == 0: try: current_storage = self.draw_app.storage_dict['0']['geometry'] except KeyError: self.draw_app.on_aperture_add(apid='0') current_storage = self.draw_app.storage_dict['0']['geometry'] new_el = dict() new_el['solid'] = geo new_el['follow'] = geo.exterior self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el))) else: # clean-up the geo fused_geo = fused_geo.buffer(0) if len(fused_geo.interiors) == 0 and len(exterior_geo) == 1: try: current_storage = self.draw_app.storage_dict['0']['geometry'] except KeyError: self.draw_app.on_aperture_add(apid='0') current_storage = self.draw_app.storage_dict['0']['geometry'] new_el = dict() new_el['solid'] = fused_geo new_el['follow'] = fused_geo.exterior self.draw_app.on_grb_shape_complete(current_storage, specific_shape=DrawToolShape(deepcopy(new_el))) self.draw_app.delete_selected() self.draw_app.plot_all() self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done. Poligonize completed.")) # MS: always return to the Select Tool if modifier key is not pressed # else return to the current tool key_modifier = QtWidgets.QApplication.keyboardModifiers() if self.draw_app.app.defaults["global_mselect_key"] == 'Control': modifier_to_use = Qt.ControlModifier else: modifier_to_use = Qt.ShiftModifier # if modifier key is pressed then we add to the selected list the current shape but if it's already # in the selected list, we removed it. Therefore first click selects, second deselects. if key_modifier == modifier_to_use: self.draw_app.select_tool(self.draw_app.active_tool.name) else: self.draw_app.select_tool("select") return def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCRegion(FCShapeTool): """ Resulting type: Polygon """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'region' self.draw_app = draw_app self.steps_per_circle = self.draw_app.app.defaults["gerber_circle_steps"] size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001 self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value()) self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value()) self.temp_points = [] # this will store the inflexion point in the geometry self.inter_point = None try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCRegion --> %s" % str(e)) self.cursor = QtGui.QCursor(QtGui.QPixmap(self.app.resource_location + '/aero.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) self.draw_app.app.inform.emit(_('Corner Mode 1: 45 degrees ...')) self.start_msg = _("Click on 1st point ...") def click(self, point): self.draw_app.in_action = True if self.inter_point is not None: self.points.append(self.inter_point) self.points.append(point) if len(self.points) > 0: self.draw_app.app.inform.emit(_("Click on next Point or click Right mouse button to complete ...")) return "Click on next point or hit ENTER to complete ..." return "" def update_grid_info(self): self.gridx_size = float(self.draw_app.app.ui.grid_gap_x_entry.get_value()) self.gridy_size = float(self.draw_app.app.ui.grid_gap_y_entry.get_value()) def utility_geometry(self, data=None): new_geo_el = dict() x = data[0] y = data[1] if len(self.points) == 0: new_geo_el['solid'] = Point(data).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) return DrawToolUtilityShape(new_geo_el) if len(self.points) == 1: self.temp_points = [x for x in self.points] old_x = self.points[0][0] old_y = self.points[0][1] mx = abs(round((x - old_x) / self.gridx_size)) my = abs(round((y - old_y) / self.gridy_size)) if mx and my: if self.draw_app.app.ui.grid_snap_btn.isChecked(): if self.draw_app.bend_mode != 5: if self.draw_app.bend_mode == 1: if x > old_x: if mx > my: self.inter_point = (old_x + self.gridx_size * (mx - my), old_y) if mx < my: if y < old_y: self.inter_point = (old_x, old_y - self.gridy_size * (my - mx)) else: self.inter_point = (old_x, old_y - self.gridy_size * (mx - my)) if x < old_x: if mx > my: self.inter_point = (old_x - self.gridx_size * (mx - my), old_y) if mx < my: if y < old_y: self.inter_point = (old_x, old_y - self.gridy_size * (my - mx)) else: self.inter_point = (old_x, old_y - self.gridy_size * (mx - my)) elif self.draw_app.bend_mode == 2: if x > old_x: if mx > my: self.inter_point = (old_x + self.gridx_size * my, y) if mx < my: if y < old_y: self.inter_point = (x, old_y - self.gridy_size * mx) else: self.inter_point = (x, old_y + self.gridy_size * mx) if x < old_x: if mx > my: self.inter_point = (old_x - self.gridx_size * my, y) if mx < my: if y < old_y: self.inter_point = (x, old_y - self.gridy_size * mx) else: self.inter_point = (x, old_y + self.gridy_size * mx) elif self.draw_app.bend_mode == 3: self.inter_point = (x, old_y) elif self.draw_app.bend_mode == 4: self.inter_point = (old_x, y) if self.inter_point is not None: self.temp_points.append(self.inter_point) else: self.inter_point = data else: self.inter_point = data self.temp_points.append(data) new_geo_el = dict() if len(self.temp_points) > 1: try: new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4), join_style=1) return DrawToolUtilityShape(new_geo_el) except Exception as e: log.debug("FlatCAMGrbEditor.FCRegion.utility_geometry() --> %s" % str(e)) else: new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) return DrawToolUtilityShape(new_geo_el) if len(self.points) > 2: self.temp_points = [x for x in self.points] old_x = self.points[-1][0] old_y = self.points[-1][1] mx = abs(round((x - old_x) / self.gridx_size)) my = abs(round((y - old_y) / self.gridy_size)) if mx and my: if self.draw_app.app.ui.grid_snap_btn.isChecked(): if self.draw_app.bend_mode != 5: if self.draw_app.bend_mode == 1: if x > old_x: if mx > my: self.inter_point = (old_x + self.gridx_size * (mx - my), old_y) if mx < my: if y < old_y: self.inter_point = (old_x, old_y - self.gridy_size * (my - mx)) else: self.inter_point = (old_x, old_y - self.gridy_size * (mx - my)) if x < old_x: if mx > my: self.inter_point = (old_x - self.gridx_size * (mx - my), old_y) if mx < my: if y < old_y: self.inter_point = (old_x, old_y - self.gridy_size * (my - mx)) else: self.inter_point = (old_x, old_y - self.gridy_size * (mx - my)) elif self.draw_app.bend_mode == 2: if x > old_x: if mx > my: self.inter_point = (old_x + self.gridx_size * my, y) if mx < my: if y < old_y: self.inter_point = (x, old_y - self.gridy_size * mx) else: self.inter_point = (x, old_y + self.gridy_size * mx) if x < old_x: if mx > my: self.inter_point = (old_x - self.gridx_size * my, y) if mx < my: if y < old_y: self.inter_point = (x, old_y - self.gridy_size * mx) else: self.inter_point = (x, old_y + self.gridy_size * mx) elif self.draw_app.bend_mode == 3: self.inter_point = (x, old_y) elif self.draw_app.bend_mode == 4: self.inter_point = (old_x, y) self.temp_points.append(self.inter_point) self.temp_points.append(data) new_geo_el = dict() new_geo_el['solid'] = LinearRing(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4), join_style=1) new_geo_el['follow'] = LinearRing(self.temp_points) return DrawToolUtilityShape(new_geo_el) return None def make(self): # self.geometry = LinearRing(self.points) if len(self.points) > 2: # regions are added always in the '0' aperture if '0' not in self.draw_app.storage_dict: self.draw_app.on_aperture_add(apid='0') else: self.draw_app.last_aperture_selected = '0' new_geo_el = dict() new_geo_el['solid'] = Polygon(self.points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4), join_style=2) new_geo_el['follow'] = Polygon(self.points).exterior self.geometry = DrawToolShape(new_geo_el) self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() def on_key(self, key): if key == 'Backspace' or key == QtCore.Qt.Key_Backspace: if len(self.points) > 0: if self.draw_app.bend_mode == 5: self.points = self.points[0:-1] else: self.points = self.points[0:-2] # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return _("Backtracked one point ...") if key == 'T' or key == QtCore.Qt.Key_T: if self.draw_app.bend_mode == 1: self.draw_app.bend_mode = 2 msg = _('Corner Mode 2: Reverse 45 degrees ...') elif self.draw_app.bend_mode == 2: self.draw_app.bend_mode = 3 msg = _('Corner Mode 3: 90 degrees ...') elif self.draw_app.bend_mode == 3: self.draw_app.bend_mode = 4 msg = _('Corner Mode 4: Reverse 90 degrees ...') elif self.draw_app.bend_mode == 4: self.draw_app.bend_mode = 5 msg = _('Corner Mode 5: Free angle ...') else: self.draw_app.bend_mode = 1 msg = _('Corner Mode 1: 45 degrees ...') # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return msg if key == 'R' or key == QtCore.Qt.Key_R: if self.draw_app.bend_mode == 1: self.draw_app.bend_mode = 5 msg = _('Corner Mode 5: Free angle ...') elif self.draw_app.bend_mode == 5: self.draw_app.bend_mode = 4 msg = _('Corner Mode 4: Reverse 90 degrees ...') elif self.draw_app.bend_mode == 4: self.draw_app.bend_mode = 3 msg = _('Corner Mode 3: 90 degrees ...') elif self.draw_app.bend_mode == 3: self.draw_app.bend_mode = 2 msg = _('Corner Mode 2: Reverse 45 degrees ...') else: self.draw_app.bend_mode = 1 msg = _('Corner Mode 1: 45 degrees ...') # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return msg class FCTrack(FCRegion): """ Resulting type: Polygon """ def __init__(self, draw_app): FCRegion.__init__(self, draw_app) self.name = 'track' self.draw_app = draw_app try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCTrack.__init__() --> %s" % str(e)) self.cursor = QtGui.QCursor(QtGui.QPixmap(self.app.resource_location + '/aero_path%s.png' % self.draw_app.bend_mode)) QtGui.QGuiApplication.setOverrideCursor(self.cursor) self.draw_app.app.inform.emit(_('Track Mode 1: 45 degrees ...')) def make(self): new_geo_el = dict() if len(self.temp_points) == 1: new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) new_geo_el['follow'] = Point(self.temp_points) else: new_geo_el['solid'] = (LineString(self.temp_points).buffer( self.buf_val, resolution=int(self.steps_per_circle / 4))).buffer(0) new_geo_el['follow'] = LineString(self.temp_points) self.geometry = DrawToolShape(new_geo_el) self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() def click(self, point): self.draw_app.in_action = True try: if point != self.points[-1]: self.points.append(point) except IndexError: self.points.append(point) new_geo_el = dict() if len(self.temp_points) == 1: new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) new_geo_el['follow'] = Point(self.temp_points) else: new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) new_geo_el['follow'] = LineString(self.temp_points) self.draw_app.add_gerber_shape(DrawToolShape(new_geo_el), self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['geometry']) self.draw_app.plot_all() if len(self.points) > 0: self.draw_app.app.inform.emit(_("Click on next Point or click Right mouse button to complete ...")) return "Click on next point or hit ENTER to complete ..." return "" def utility_geometry(self, data=None): self.update_grid_info() new_geo_el = dict() if len(self.points) == 0: new_geo_el['solid'] = Point(data).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) return DrawToolUtilityShape(new_geo_el) elif len(self.points) > 0: self.temp_points = [self.points[-1]] old_x = self.points[-1][0] old_y = self.points[-1][1] x = data[0] y = data[1] mx = abs(round((x - old_x) / self.gridx_size)) my = abs(round((y - old_y) / self.gridy_size)) if self.draw_app.app.ui.grid_snap_btn.isChecked(): if self.draw_app.bend_mode == 1: if x > old_x: if mx > my: self.temp_points.append((old_x + self.gridx_size*(mx-my), old_y)) if mx < my: if y < old_y: self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx))) else: self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my))) if x < old_x: if mx > my: self.temp_points.append((old_x - self.gridx_size*(mx-my), old_y)) if mx < my: if y < old_y: self.temp_points.append((old_x, old_y - self.gridy_size * (my-mx))) else: self.temp_points.append((old_x, old_y - self.gridy_size * (mx-my))) elif self.draw_app.bend_mode == 2: if x > old_x: if mx > my: self.temp_points.append((old_x + self.gridx_size*my, y)) if mx < my: if y < old_y: self.temp_points.append((x, old_y - self.gridy_size * mx)) else: self.temp_points.append((x, old_y + self.gridy_size * mx)) if x < old_x: if mx > my: self.temp_points.append((old_x - self.gridx_size * my, y)) if mx < my: if y < old_y: self.temp_points.append((x, old_y - self.gridy_size * mx)) else: self.temp_points.append((x, old_y + self.gridy_size * mx)) elif self.draw_app.bend_mode == 3: self.temp_points.append((x, old_y)) elif self.draw_app.bend_mode == 4: self.temp_points.append((old_x, y)) else: pass self.temp_points.append(data) if len(self.temp_points) == 1: new_geo_el['solid'] = Point(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) return DrawToolUtilityShape(new_geo_el) new_geo_el['solid'] = LineString(self.temp_points).buffer(self.buf_val, resolution=int(self.steps_per_circle / 4)) return DrawToolUtilityShape(new_geo_el) def on_key(self, key): if key == 'Backspace' or key == QtCore.Qt.Key_Backspace: if len(self.points) > 0: self.temp_points = self.points[0:-1] # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return _("Backtracked one point ...") if key == 'T' or key == QtCore.Qt.Key_T: try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCTrack.on_key() --> %s" % str(e)) if self.draw_app.bend_mode == 1: self.draw_app.bend_mode = 2 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path2.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 2: Reverse 45 degrees ...') elif self.draw_app.bend_mode == 2: self.draw_app.bend_mode = 3 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path3.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 3: 90 degrees ...') elif self.draw_app.bend_mode == 3: self.draw_app.bend_mode = 4 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path4.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 4: Reverse 90 degrees ...') elif self.draw_app.bend_mode == 4: self.draw_app.bend_mode = 5 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path5.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 5: Free angle ...') else: self.draw_app.bend_mode = 1 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path1.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 1: 45 degrees ...') # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return msg if key == 'R' or key == QtCore.Qt.Key_R: try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCTrack.on_key() --> %s" % str(e)) if self.draw_app.bend_mode == 1: self.draw_app.bend_mode = 5 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path5.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 5: Free angle ...') elif self.draw_app.bend_mode == 5: self.draw_app.bend_mode = 4 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path4.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 4: Reverse 90 degrees ...') elif self.draw_app.bend_mode == 4: self.draw_app.bend_mode = 3 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path3.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 3: 90 degrees ...') elif self.draw_app.bend_mode == 3: self.draw_app.bend_mode = 2 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path2.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 2: Reverse 45 degrees ...') else: self.draw_app.bend_mode = 1 self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_path1.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) msg = _('Track Mode 1: 45 degrees ...') # Remove any previous utility shape self.draw_app.tool_shape.clear(update=False) geo = self.utility_geometry(data=(self.draw_app.snap_x, self.draw_app.snap_y)) self.draw_app.draw_utility_geometry(geo=geo) return msg class FCDisc(FCShapeTool): """ Resulting type: Polygon """ def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'disc' try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: pass self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_disc.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001 if '0' in self.draw_app.storage_dict: self.storage_obj = self.draw_app.storage_dict['0']['geometry'] else: self.draw_app.storage_dict['0'] = dict() self.draw_app.storage_dict['0']['type'] = 'C' self.draw_app.storage_dict['0']['size'] = 0.0 self.draw_app.storage_dict['0']['geometry'] = list() self.storage_obj = self.draw_app.storage_dict['0']['geometry'] self.draw_app.app.inform.emit(_("Click on Center point ...")) self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"] def click(self, point): self.points.append(point) if len(self.points) == 1: self.draw_app.app.inform.emit(_("Click on Perimeter point to complete ...")) return "Click on Perimeter to complete ..." if len(self.points) == 2: self.make() return "Done." return "" def utility_geometry(self, data=None): new_geo_el = dict() if len(self.points) == 1: p1 = self.points[0] p2 = data radius = math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4)) return DrawToolUtilityShape(new_geo_el) return None def make(self): new_geo_el = dict() try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCDisc --> %s" % str(e)) self.draw_app.current_storage = self.storage_obj p1 = self.points[0] p2 = self.points[1] radius = distance(p1, p2) new_geo_el['solid'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4)) new_geo_el['follow'] = Point(p1).buffer((radius + self.buf_val / 2), int(self.steps_per_circ / 4)).exterior self.geometry = DrawToolShape(new_geo_el) self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCSemiDisc(FCShapeTool): def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'semidisc' try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCSemiDisc --> %s" % str(e)) self.cursor = QtGui.QCursor(QtGui.QPixmap(self.draw_app.app.resource_location + '/aero_semidisc.png')) QtGui.QGuiApplication.setOverrideCursor(self.cursor) self.draw_app.app.inform.emit(_("Click on Center point ...")) # Direction of rotation between point 1 and 2. # 'cw' or 'ccw'. Switch direction by hitting the # 'o' key. self.direction = "cw" # Mode # C12 = Center, p1, p2 # 12C = p1, p2, Center # 132 = p1, p3, p2 self.mode = "c12" # Center, p1, p2 size_ap = float(self.draw_app.storage_dict[self.draw_app.last_aperture_selected]['size']) self.buf_val = (size_ap / 2) if size_ap > 0 else 0.0000001 if '0' in self.draw_app.storage_dict: self.storage_obj = self.draw_app.storage_dict['0']['geometry'] else: self.draw_app.storage_dict['0'] = dict() self.draw_app.storage_dict['0']['type'] = 'C' self.draw_app.storage_dict['0']['size'] = 0.0 self.draw_app.storage_dict['0']['geometry'] = list() self.storage_obj = self.draw_app.storage_dict['0']['geometry'] self.steps_per_circ = self.draw_app.app.defaults["gerber_circle_steps"] def click(self, point): self.points.append(point) if len(self.points) == 1: if self.mode == 'c12': self.draw_app.app.inform.emit(_("Click on Start point ...")) elif self.mode == '132': self.draw_app.app.inform.emit(_("Click on Point3 ...")) else: self.draw_app.app.inform.emit(_("Click on Stop point ...")) return "Click on 1st point ..." if len(self.points) == 2: if self.mode == 'c12': self.draw_app.app.inform.emit(_("Click on Stop point to complete ...")) elif self.mode == '132': self.draw_app.app.inform.emit(_("Click on Point2 to complete ...")) else: self.draw_app.app.inform.emit(_("Click on Center point to complete ...")) return "Click on 2nd point to complete ..." if len(self.points) == 3: self.make() return "Done." return "" def on_key(self, key): if key == 'D' or key == QtCore.Qt.Key_D: self.direction = 'cw' if self.direction == 'ccw' else 'ccw' return '%s: %s' % (_('Direction'), self.direction.upper()) if key == 'M' or key == QtCore.Qt.Key_M: # delete the possible points made before this action; we want to start anew self.points = [] # and delete the utility geometry made up until this point self.draw_app.delete_utility_geometry() if self.mode == 'c12': self.mode = '12c' return _('Mode: Start -> Stop -> Center. Click on Start point ...') elif self.mode == '12c': self.mode = '132' return _('Mode: Point1 -> Point3 -> Point2. Click on Point1 ...') else: self.mode = 'c12' return _('Mode: Center -> Start -> Stop. Click on Center point ...') def utility_geometry(self, data=None): new_geo_el = dict() new_geo_el_pt1 = dict() new_geo_el_pt2 = dict() new_geo_el_pt3 = dict() if len(self.points) == 1: # Show the radius center = self.points[0] p1 = data new_geo_el['solid'] = LineString([center, p1]) return DrawToolUtilityShape(new_geo_el) if len(self.points) == 2: # Show the arc if self.mode == 'c12': center = self.points[0] p1 = self.points[1] p2 = data radius = np.sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2) + (self.buf_val / 2) startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stopangle = np.arctan2(p2[1] - center[1], p2[0] - center[0]) new_geo_el['solid'] = LineString( arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ)) new_geo_el_pt1['solid'] = Point(center) return DrawToolUtilityShape([new_geo_el, new_geo_el_pt1]) elif self.mode == '132': p1 = np.array(self.points[0]) p3 = np.array(self.points[1]) p2 = np.array(data) try: center, radius, t = three_point_circle(p1, p2, p3) except TypeError: return direction = 'cw' if np.sign(t) > 0 else 'ccw' radius += (self.buf_val / 2) startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stopangle = np.arctan2(p3[1] - center[1], p3[0] - center[0]) new_geo_el['solid'] = LineString( arc(center, radius, startangle, stopangle, direction, self.steps_per_circ)) new_geo_el_pt2['solid'] = Point(center) new_geo_el_pt1['solid'] = Point(p1) new_geo_el_pt3['solid'] = Point(p3) return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2, new_geo_el_pt1, new_geo_el_pt3]) else: # '12c' p1 = np.array(self.points[0]) p2 = np.array(self.points[1]) # Midpoint a = (p1 + p2) / 2.0 # Parallel vector c = p2 - p1 # Perpendicular vector b = np.dot(c, np.array([[0, -1], [1, 0]], dtype=np.float32)) b /= numpy_norm(b) # Distance t = distance(data, a) # Which side? Cross product with c. # cross(M-A, B-A), where line is AB and M is test point. side = (data[0] - p1[0]) * c[1] - (data[1] - p1[1]) * c[0] t *= np.sign(side) # Center = a + bt center = a + b * t radius = numpy_norm(center - p1) + (self.buf_val / 2) startangle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stopangle = np.arctan2(p2[1] - center[1], p2[0] - center[0]) new_geo_el['solid'] = LineString( arc(center, radius, startangle, stopangle, self.direction, self.steps_per_circ)) new_geo_el_pt2['solid'] = Point(center) return DrawToolUtilityShape([new_geo_el, new_geo_el_pt2]) return None def make(self): self.draw_app.current_storage = self.storage_obj new_geo_el = dict() if self.mode == 'c12': center = self.points[0] p1 = self.points[1] p2 = self.points[2] radius = distance(center, p1) + (self.buf_val / 2) start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stop_angle = np.arctan2(p2[1] - center[1], p2[0] - center[0]) new_geo_el['solid'] = Polygon( arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)) new_geo_el['follow'] = Polygon( arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior self.geometry = DrawToolShape(new_geo_el) elif self.mode == '132': p1 = np.array(self.points[0]) p3 = np.array(self.points[1]) p2 = np.array(self.points[2]) center, radius, t = three_point_circle(p1, p2, p3) direction = 'cw' if np.sign(t) > 0 else 'ccw' radius += (self.buf_val / 2) start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stop_angle = np.arctan2(p3[1] - center[1], p3[0] - center[0]) new_geo_el['solid'] = Polygon(arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ)) new_geo_el['follow'] = Polygon( arc(center, radius, start_angle, stop_angle, direction, self.steps_per_circ)).exterior self.geometry = DrawToolShape(new_geo_el) else: # self.mode == '12c' p1 = np.array(self.points[0]) p2 = np.array(self.points[1]) pc = np.array(self.points[2]) # Midpoint a = (p1 + p2) / 2.0 # Parallel vector c = p2 - p1 # Perpendicular vector b = np.dot(c, np.array([[0, -1], [1, 0]], dtype=np.float32)) b /= numpy_norm(b) # Distance t = distance(pc, a) # Which side? Cross product with c. # cross(M-A, B-A), where line is AB and M is test point. side = (pc[0] - p1[0]) * c[1] - (pc[1] - p1[1]) * c[0] t *= np.sign(side) # Center = a + bt center = a + b * t radius = numpy_norm(center - p1) + (self.buf_val / 2) start_angle = np.arctan2(p1[1] - center[1], p1[0] - center[0]) stop_angle = np.arctan2(p2[1] - center[1], p2[0] - center[0]) new_geo_el['solid'] = Polygon( arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)) new_geo_el['follow'] = Polygon( arc(center, radius, start_angle, stop_angle, self.direction, self.steps_per_circ)).exterior self.geometry = DrawToolShape(new_geo_el) self.draw_app.in_action = False self.complete = True self.draw_app.app.inform.emit('[success] %s' % _("Done.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCScale(FCShapeTool): def __init__(self, draw_app): FCShapeTool.__init__(self, draw_app) self.name = 'scale' # self.shape_buffer = self.draw_app.shape_buffer self.draw_app = draw_app self.app = draw_app.app self.draw_app.app.inform.emit(_("Scale the selected Gerber apertures ...")) self.origin = (0, 0) if self.draw_app.app.ui.splitter.sizes()[0] == 0: self.draw_app.app.ui.splitter.setSizes([1, 1]) self.activate_scale() def activate_scale(self): self.draw_app.hide_tool('all') self.draw_app.scale_tool_frame.show() try: self.draw_app.scale_button.clicked.disconnect() except (TypeError, AttributeError): pass self.draw_app.scale_button.clicked.connect(self.on_scale_click) def deactivate_scale(self): self.draw_app.scale_button.clicked.disconnect() self.complete = True self.draw_app.select_tool("select") self.draw_app.hide_tool(self.name) def on_scale_click(self): self.draw_app.on_scale() self.deactivate_scale() def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCBuffer(FCShapeTool): def __init__(self, draw_app): FCShapeTool.__init__(self, draw_app) self.name = 'buffer' # self.shape_buffer = self.draw_app.shape_buffer self.draw_app = draw_app self.app = draw_app.app self.draw_app.app.inform.emit(_("Buffer the selected apertures ...")) self.origin = (0, 0) if self.draw_app.app.ui.splitter.sizes()[0] == 0: self.draw_app.app.ui.splitter.setSizes([1, 1]) self.activate_buffer() def activate_buffer(self): self.draw_app.hide_tool('all') self.draw_app.buffer_tool_frame.show() try: self.draw_app.buffer_button.clicked.disconnect() except (TypeError, AttributeError): pass self.draw_app.buffer_button.clicked.connect(self.on_buffer_click) def deactivate_buffer(self): self.draw_app.buffer_button.clicked.disconnect() self.complete = True self.draw_app.select_tool("select") self.draw_app.hide_tool(self.name) def on_buffer_click(self): self.draw_app.on_buffer() self.deactivate_buffer() def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCMarkArea(FCShapeTool): def __init__(self, draw_app): FCShapeTool.__init__(self, draw_app) self.name = 'markarea' # self.shape_buffer = self.draw_app.shape_buffer self.draw_app = draw_app self.app = draw_app.app self.draw_app.app.inform.emit(_("Mark polygon areas in the edited Gerber ...")) self.origin = (0, 0) if self.draw_app.app.ui.splitter.sizes()[0] == 0: self.draw_app.app.ui.splitter.setSizes([1, 1]) self.activate_markarea() def activate_markarea(self): self.draw_app.ma_tool_frame.show() # clear previous marking self.draw_app.ma_annotation.clear(update=True) try: self.draw_app.ma_threshold_button.clicked.disconnect() except (TypeError, AttributeError): pass self.draw_app.ma_threshold_button.clicked.connect(self.on_markarea_click) try: self.draw_app.ma_delete_button.clicked.disconnect() except TypeError: pass self.draw_app.ma_delete_button.clicked.connect(self.on_markarea_delete) try: self.draw_app.ma_clear_button.clicked.disconnect() except TypeError: pass self.draw_app.ma_clear_button.clicked.connect(self.on_markarea_clear) def deactivate_markarea(self): self.draw_app.ma_threshold_button.clicked.disconnect() self.complete = True self.draw_app.select_tool("select") self.draw_app.hide_tool(self.name) def on_markarea_click(self): self.draw_app.on_markarea() def on_markarea_clear(self): self.draw_app.ma_annotation.clear(update=True) self.deactivate_markarea() def on_markarea_delete(self): self.draw_app.delete_marked_polygons() self.on_markarea_clear() def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FCApertureMove(FCShapeTool): def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'move' # self.shape_buffer = self.draw_app.shape_buffer self.origin = None self.destination = None self.selected_apertures = [] if len(self.draw_app.get_selected()) == 0: self.draw_app.app.inform.emit('[WARNING_NOTCL] %s...' % _("Nothing selected to move")) self.complete = True self.draw_app.select_tool("select") return if self.draw_app.launched_from_shortcuts is True: self.draw_app.launched_from_shortcuts = False self.draw_app.app.inform.emit(_("Click on target location ...")) else: self.draw_app.app.inform.emit(_("Click on reference location ...")) self.current_storage = None self.geometry = [] for index in self.draw_app.apertures_table.selectedIndexes(): row = index.row() # on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings aperture_on_row = self.draw_app.apertures_table.item(row, 1).text() self.selected_apertures.append(aperture_on_row) # Switch notebook to Selected page self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab) self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"] self.selection_shape = self.selection_bbox() def set_origin(self, origin): self.origin = origin def click(self, point): if len(self.draw_app.get_selected()) == 0: return "Nothing to move." if self.origin is None: self.set_origin(point) self.draw_app.app.inform.emit(_("Click on target location ...")) return else: self.destination = point self.make() # MS: always return to the Select Tool self.draw_app.select_tool("select") return # def create_png(self): # """ # Create a PNG file out of a list of Shapely polygons # :return: # """ # if len(self.draw_app.get_selected()) == 0: # return None # # geo_list = [geoms.geo for geoms in self.draw_app.get_selected()] # xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list) # # iwidth = (xmax - xmin) # iwidth = int(round(iwidth)) # iheight = (ymax - ymin) # iheight = int(round(iheight)) # c = pngcanvas.PNGCanvas(iwidth, iheight) # # pixels = [] # for geom in self.draw_app.get_selected(): # m = mapping(geom.geo.exterior) # pixels += [[coord[0], coord[1]] for coord in m['coordinates']] # for g in geom.geo.interiors: # m = mapping(g) # pixels += [[coord[0], coord[1]] for coord in m['coordinates']] # c.polyline(pixels) # pixels = [] # # f = open("%s.png" % 'D:\\shapely_image', "wb") # f.write(c.dump()) # f.close() def selection_bbox(self): geo_list = [] for select_shape in self.draw_app.get_selected(): geometric_data = select_shape.geo geo_list.append(geometric_data['solid']) xmin, ymin, xmax, ymax = get_shapely_list_bounds(geo_list) pt1 = (xmin, ymin) pt2 = (xmax, ymin) pt3 = (xmax, ymax) pt4 = (xmin, ymax) return Polygon([pt1, pt2, pt3, pt4]) def make(self): # Create new geometry dx = self.destination[0] - self.origin[0] dy = self.destination[1] - self.origin[1] sel_shapes_to_be_deleted = [] for sel_dia in self.selected_apertures: self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry'] for select_shape in self.draw_app.get_selected(): if select_shape in self.current_storage: geometric_data = select_shape.geo new_geo_el = dict() if 'solid' in geometric_data: new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy) if 'follow' in geometric_data: new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy) if 'clear' in geometric_data: new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy) self.geometry.append(DrawToolShape(new_geo_el)) self.current_storage.remove(select_shape) sel_shapes_to_be_deleted.append(select_shape) self.draw_app.on_grb_shape_complete(self.current_storage, no_plot=True) self.geometry = [] for shp in sel_shapes_to_be_deleted: self.draw_app.selected.remove(shp) sel_shapes_to_be_deleted = [] self.draw_app.plot_all() self.draw_app.build_ui() self.draw_app.app.inform.emit('[success] %s' % _("Done. Apertures Move completed.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() def utility_geometry(self, data=None): """ Temporary geometry on screen while using this tool. :param data: :return: """ geo_list = [] if self.origin is None: return None if len(self.draw_app.get_selected()) == 0: return None dx = data[0] - self.origin[0] dy = data[1] - self.origin[1] if len(self.draw_app.get_selected()) <= self.sel_limit: for geom in self.draw_app.get_selected(): new_geo_el = dict() if 'solid' in geom.geo: new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy) if 'follow' in geom.geo: new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy) if 'clear' in geom.geo: new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy) geo_list.append(deepcopy(new_geo_el)) return DrawToolUtilityShape(geo_list) else: ss_el = dict() ss_el['solid'] = affinity.translate(self.selection_shape, xoff=dx, yoff=dy) return DrawToolUtilityShape(ss_el) class FCApertureCopy(FCApertureMove): def __init__(self, draw_app): FCApertureMove.__init__(self, draw_app) self.name = 'copy' def make(self): # Create new geometry dx = self.destination[0] - self.origin[0] dy = self.destination[1] - self.origin[1] sel_shapes_to_be_deleted = [] for sel_dia in self.selected_apertures: self.current_storage = self.draw_app.storage_dict[sel_dia]['geometry'] for select_shape in self.draw_app.get_selected(): if select_shape in self.current_storage: geometric_data = select_shape.geo new_geo_el = dict() if 'solid' in geometric_data: new_geo_el['solid'] = affinity.translate(geometric_data['solid'], xoff=dx, yoff=dy) if 'follow' in geometric_data: new_geo_el['follow'] = affinity.translate(geometric_data['follow'], xoff=dx, yoff=dy) if 'clear' in geometric_data: new_geo_el['clear'] = affinity.translate(geometric_data['clear'], xoff=dx, yoff=dy) self.geometry.append(DrawToolShape(new_geo_el)) sel_shapes_to_be_deleted.append(select_shape) self.draw_app.on_grb_shape_complete(self.current_storage) self.geometry = [] for shp in sel_shapes_to_be_deleted: self.draw_app.selected.remove(shp) sel_shapes_to_be_deleted = [] self.draw_app.build_ui() self.draw_app.app.inform.emit('[success] %s' % _("Done. Apertures copied.")) class FCEraser(FCShapeTool): def __init__(self, draw_app): DrawTool.__init__(self, draw_app) self.name = 'eraser' self.origin = None self.destination = None self.selected_apertures = [] if len(self.draw_app.get_selected()) == 0: if self.draw_app.launched_from_shortcuts is True: self.draw_app.launched_from_shortcuts = False self.draw_app.app.inform.emit(_("Select a shape to act as deletion area ...")) else: self.draw_app.app.inform.emit(_("Click to pick-up the erase shape...")) self.current_storage = None self.geometry = [] for index in self.draw_app.apertures_table.selectedIndexes(): row = index.row() # on column 1 in tool tables we hold the aperture codes, and we retrieve them as strings aperture_on_row = self.draw_app.apertures_table.item(row, 1).text() self.selected_apertures.append(aperture_on_row) # Switch notebook to Selected page self.draw_app.app.ui.notebook.setCurrentWidget(self.draw_app.app.ui.selected_tab) self.sel_limit = self.draw_app.app.defaults["gerber_editor_sel_limit"] def set_origin(self, origin): self.origin = origin def click(self, point): if len(self.draw_app.get_selected()) == 0: self.draw_app.apertures_table.clearSelection() sel_aperture = set() for storage in self.draw_app.storage_dict: try: for geo_el in self.draw_app.storage_dict[storage]['geometry']: if 'solid' in geo_el.geo: geometric_data = geo_el.geo['solid'] if Point(point).within(geometric_data): self.draw_app.selected = [] self.draw_app.selected.append(geo_el) sel_aperture.add(storage) except KeyError: pass # select the aperture in the Apertures Table that is associated with the selected shape try: self.draw_app.apertures_table.cellPressed.disconnect() except Exception as e: log.debug("FlatCAMGrbEditor.FCEraser.click_release() --> %s" % str(e)) self.draw_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) for aper in sel_aperture: for row in range(self.draw_app.apertures_table.rowCount()): if str(aper) == self.draw_app.apertures_table.item(row, 1).text(): self.draw_app.apertures_table.selectRow(row) self.draw_app.last_aperture_selected = aper self.draw_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.draw_app.apertures_table.cellPressed.connect(self.draw_app.on_row_selected) if len(self.draw_app.get_selected()) == 0: return "Nothing to ersase." if self.origin is None: self.set_origin(point) self.draw_app.app.inform.emit(_("Click to erase ...")) return else: self.destination = point self.make() # self.draw_app.select_tool("select") return def make(self): eraser_sel_shapes = [] # create the eraser shape from selection for eraser_shape in self.utility_geometry(data=self.destination).geo: temp_shape = eraser_shape['solid'].buffer(0.0000001) temp_shape = Polygon(temp_shape.exterior) eraser_sel_shapes.append(temp_shape) eraser_sel_shapes = cascaded_union(eraser_sel_shapes) for storage in self.draw_app.storage_dict: try: for geo_el in self.draw_app.storage_dict[storage]['geometry']: if 'solid' in geo_el.geo: geometric_data = geo_el.geo['solid'] if eraser_sel_shapes.within(geometric_data) or eraser_sel_shapes.intersects(geometric_data): geos = geometric_data.difference(eraser_sel_shapes) geos = geos.buffer(0) geo_el.geo['solid'] = deepcopy(geos) except KeyError: pass self.draw_app.delete_utility_geometry() self.draw_app.plot_all() self.draw_app.app.inform.emit('[success] %s' % _("Done. Eraser tool action completed.")) def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() def utility_geometry(self, data=None): """ Temporary geometry on screen while using this tool. :param data: :return: """ geo_list = [] if self.origin is None: return None if len(self.draw_app.get_selected()) == 0: return None dx = data[0] - self.origin[0] dy = data[1] - self.origin[1] for geom in self.draw_app.get_selected(): new_geo_el = dict() if 'solid' in geom.geo: new_geo_el['solid'] = affinity.translate(geom.geo['solid'], xoff=dx, yoff=dy) if 'follow' in geom.geo: new_geo_el['follow'] = affinity.translate(geom.geo['follow'], xoff=dx, yoff=dy) if 'clear' in geom.geo: new_geo_el['clear'] = affinity.translate(geom.geo['clear'], xoff=dx, yoff=dy) geo_list.append(deepcopy(new_geo_el)) return DrawToolUtilityShape(geo_list) class FCApertureSelect(DrawTool): def __init__(self, grb_editor_app): DrawTool.__init__(self, grb_editor_app) self.name = 'select' self.origin = None self.grb_editor_app = grb_editor_app self.storage = self.grb_editor_app.storage_dict # self.selected = self.grb_editor_app.selected # here we store all shapes that were selected self.sel_storage = [] # since FCApertureSelect tool is activated whenever a tool is exited I place here the reinitialization of the # bending modes using in FCRegion and FCTrack self.draw_app.bend_mode = 1 # here store the selected apertures self.sel_aperture = set() try: self.grb_editor_app.apertures_table.clearSelection() except Exception as e: log.error("FlatCAMGerbEditor.FCApertureSelect.__init__() --> %s" % str(e)) self.grb_editor_app.hide_tool('all') self.grb_editor_app.hide_tool('select') self.grb_editor_app.array_frame.hide() try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.FCApertureSelect --> %s" % str(e)) def set_origin(self, origin): self.origin = origin def click(self, point): key_modifier = QtWidgets.QApplication.keyboardModifiers() if key_modifier == QtCore.Qt.ShiftModifier: mod_key = 'Shift' elif key_modifier == QtCore.Qt.ControlModifier: mod_key = 'Control' else: mod_key = None if mod_key == self.draw_app.app.defaults["global_mselect_key"]: pass else: self.grb_editor_app.selected = [] def click_release(self, point): self.grb_editor_app.apertures_table.clearSelection() key_modifier = QtWidgets.QApplication.keyboardModifiers() if key_modifier == QtCore.Qt.ShiftModifier: mod_key = 'Shift' elif key_modifier == QtCore.Qt.ControlModifier: mod_key = 'Control' else: mod_key = None for storage in self.grb_editor_app.storage_dict: try: for geo_el in self.grb_editor_app.storage_dict[storage]['geometry']: if 'solid' in geo_el.geo: geometric_data = geo_el.geo['solid'] if Point(point).within(geometric_data): if mod_key == self.grb_editor_app.app.defaults["global_mselect_key"]: if geo_el in self.draw_app.selected: self.draw_app.selected.remove(geo_el) self.sel_aperture.remove(storage) else: # add the object to the selected shapes self.draw_app.selected.append(geo_el) self.sel_aperture.add(storage) else: self.draw_app.selected.append(geo_el) self.sel_aperture.add(storage) except KeyError: pass # select the aperture in the Apertures Table that is associated with the selected shape try: self.draw_app.apertures_table.cellPressed.disconnect() except Exception as e: log.debug("FlatCAMGrbEditor.FCApertureSelect.click_release() --> %s" % str(e)) self.grb_editor_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) for aper in self.sel_aperture: for row in range(self.grb_editor_app.apertures_table.rowCount()): if str(aper) == self.grb_editor_app.apertures_table.item(row, 1).text(): self.grb_editor_app.apertures_table.selectRow(row) self.draw_app.last_aperture_selected = aper self.grb_editor_app.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.draw_app.apertures_table.cellPressed.connect(self.draw_app.on_row_selected) return "" def clean_up(self): self.draw_app.plot_all() class FCTransform(FCShapeTool): def __init__(self, draw_app): FCShapeTool.__init__(self, draw_app) self.name = 'transformation' # self.shape_buffer = self.draw_app.shape_buffer self.draw_app = draw_app self.app = draw_app.app self.start_msg = _("Shape transformations ...") self.origin = (0, 0) self.draw_app.transform_tool.run() def clean_up(self): self.draw_app.selected = [] self.draw_app.apertures_table.clearSelection() self.draw_app.plot_all() class FlatCAMGrbEditor(QtCore.QObject): draw_shape_idx = -1 # plot_finished = QtCore.pyqtSignal() mp_finished = QtCore.pyqtSignal(list) def __init__(self, app): assert isinstance(app, FlatCAMApp.App), \ "Expected the app to be a FlatCAMApp.App, got %s" % type(app) super(FlatCAMGrbEditor, self).__init__() self.app = app self.canvas = self.app.plotcanvas self.decimals = self.app.decimals # Current application units in Upper Case self.units = self.app.defaults['units'].upper() self.grb_edit_widget = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout() self.grb_edit_widget.setLayout(layout) # Page Title box (spacing between children) self.title_box = QtWidgets.QHBoxLayout() layout.addLayout(self.title_box) # Page Title icon pixmap = QtGui.QPixmap(self.app.resource_location + '/flatcam_icon32.png') self.icon = QtWidgets.QLabel() self.icon.setPixmap(pixmap) self.title_box.addWidget(self.icon, stretch=0) # Title label self.title_label = QtWidgets.QLabel("%s" % _('Gerber Editor')) self.title_label.setAlignment(QtCore.Qt.AlignLeft | QtCore.Qt.AlignVCenter) self.title_box.addWidget(self.title_label, stretch=1) # Object name self.name_box = QtWidgets.QHBoxLayout() layout.addLayout(self.name_box) name_label = QtWidgets.QLabel(_("Name:")) self.name_box.addWidget(name_label) self.name_entry = FCEntry() self.name_box.addWidget(self.name_entry) # Box for custom widgets # This gets populated in offspring implementations. self.custom_box = QtWidgets.QVBoxLayout() layout.addLayout(self.custom_box) # ######################### # ### Gerber Apertures #### # ######################### self.apertures_table_label = QtWidgets.QLabel('%s:' % _('Apertures')) self.apertures_table_label.setToolTip( _("Apertures Table for the Gerber Object.") ) self.custom_box.addWidget(self.apertures_table_label) self.apertures_table = FCTable() # delegate = SpinBoxDelegate(units=self.units) # self.apertures_table.setItemDelegateForColumn(1, delegate) self.custom_box.addWidget(self.apertures_table) self.apertures_table.setColumnCount(5) self.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')]) self.apertures_table.setSortingEnabled(False) self.apertures_table.horizontalHeaderItem(0).setToolTip( _("Index")) self.apertures_table.horizontalHeaderItem(1).setToolTip( _("Aperture Code")) self.apertures_table.horizontalHeaderItem(2).setToolTip( _("Type of aperture: circular, rectangle, macros etc")) self.apertures_table.horizontalHeaderItem(4).setToolTip( _("Aperture Size:")) self.apertures_table.horizontalHeaderItem(4).setToolTip( _("Aperture Dimensions:\n" " - (width, height) for R, O type.\n" " - (dia, nVertices) for P type")) self.empty_label = QtWidgets.QLabel('') self.custom_box.addWidget(self.empty_label) # add a frame and inside add a vertical box layout. Inside this vbox layout I add all the Apertures widgets # this way I can hide/show the frame self.apertures_frame = QtWidgets.QFrame() self.apertures_frame.setContentsMargins(0, 0, 0, 0) self.custom_box.addWidget(self.apertures_frame) self.apertures_box = QtWidgets.QVBoxLayout() self.apertures_box.setContentsMargins(0, 0, 0, 0) self.apertures_frame.setLayout(self.apertures_box) # # ## Add/Delete an new Aperture ## ## grid1 = QtWidgets.QGridLayout() self.apertures_box.addLayout(grid1) grid1.setColumnStretch(0, 0) grid1.setColumnStretch(1, 1) apcode_lbl = QtWidgets.QLabel('%s:' % _('Aperture Code')) apcode_lbl.setToolTip(_("Code for the new aperture")) grid1.addWidget(apcode_lbl, 1, 0) self.apcode_entry = FCSpinner() self.apcode_entry.set_range(0, 999) self.apcode_entry.setWrapping(True) grid1.addWidget(self.apcode_entry, 1, 1) apsize_lbl = QtWidgets.QLabel('%s:' % _('Aperture Size')) apsize_lbl.setToolTip( _("Size for the new aperture.\n" "If aperture type is 'R' or 'O' then\n" "this value is automatically\n" "calculated as:\n" "sqrt(width**2 + height**2)") ) grid1.addWidget(apsize_lbl, 2, 0) self.apsize_entry = FCDoubleSpinner() self.apsize_entry.set_precision(self.decimals) self.apsize_entry.set_range(0.0, 9999) grid1.addWidget(self.apsize_entry, 2, 1) aptype_lbl = QtWidgets.QLabel('%s:' % _('Aperture Type')) aptype_lbl.setToolTip( _("Select the type of new aperture. Can be:\n" "C = circular\n" "R = rectangular\n" "O = oblong") ) grid1.addWidget(aptype_lbl, 3, 0) self.aptype_cb = FCComboBox() self.aptype_cb.addItems(['C', 'R', 'O']) grid1.addWidget(self.aptype_cb, 3, 1) self.apdim_lbl = QtWidgets.QLabel('%s:' % _('Aperture Dim')) self.apdim_lbl.setToolTip( _("Dimensions for the new aperture.\n" "Active only for rectangular apertures (type R).\n" "The format is (width, height)") ) grid1.addWidget(self.apdim_lbl, 4, 0) self.apdim_entry = EvalEntry2() grid1.addWidget(self.apdim_entry, 4, 1) apadd_del_lbl = QtWidgets.QLabel('%s:' % _('Add/Delete Aperture')) apadd_del_lbl.setToolTip( _("Add/Delete an aperture in the aperture table") ) self.apertures_box.addWidget(apadd_del_lbl) hlay_ad = QtWidgets.QHBoxLayout() self.apertures_box.addLayout(hlay_ad) self.addaperture_btn = QtWidgets.QPushButton(_('Add')) self.addaperture_btn.setToolTip( _("Add a new aperture to the aperture list.") ) self.delaperture_btn = QtWidgets.QPushButton(_('Delete')) self.delaperture_btn.setToolTip( _("Delete a aperture in the aperture list") ) hlay_ad.addWidget(self.addaperture_btn) hlay_ad.addWidget(self.delaperture_btn) # ################### # ### BUFFER TOOL ### # ################### self.buffer_tool_frame = QtWidgets.QFrame() self.buffer_tool_frame.setContentsMargins(0, 0, 0, 0) self.custom_box.addWidget(self.buffer_tool_frame) self.buffer_tools_box = QtWidgets.QVBoxLayout() self.buffer_tools_box.setContentsMargins(0, 0, 0, 0) self.buffer_tool_frame.setLayout(self.buffer_tools_box) self.buffer_tool_frame.hide() # Title buf_title_lbl = QtWidgets.QLabel('%s:' % _('Buffer Aperture')) buf_title_lbl.setToolTip( _("Buffer a aperture in the aperture list") ) self.buffer_tools_box.addWidget(buf_title_lbl) # Form Layout buf_form_layout = QtWidgets.QFormLayout() self.buffer_tools_box.addLayout(buf_form_layout) # Buffer distance self.buffer_distance_entry = FCDoubleSpinner() self.buffer_distance_entry.set_precision(self.decimals) self.buffer_distance_entry.set_range(-9999.9999, 9999.9999) buf_form_layout.addRow('%s:' % _("Buffer distance"), self.buffer_distance_entry) self.buffer_corner_lbl = QtWidgets.QLabel('%s:' % _("Buffer corner")) self.buffer_corner_lbl.setToolTip( _("There are 3 types of corners:\n" " - 'Round': the corner is rounded.\n" " - 'Square:' the corner is met in a sharp angle.\n" " - 'Beveled:' the corner is a line that directly connects the features meeting in the corner") ) self.buffer_corner_cb = FCComboBox() self.buffer_corner_cb.addItem(_("Round")) self.buffer_corner_cb.addItem(_("Square")) self.buffer_corner_cb.addItem(_("Beveled")) buf_form_layout.addRow(self.buffer_corner_lbl, self.buffer_corner_cb) # Buttons hlay_buf = QtWidgets.QHBoxLayout() self.buffer_tools_box.addLayout(hlay_buf) self.buffer_button = QtWidgets.QPushButton(_("Buffer")) hlay_buf.addWidget(self.buffer_button) # ################## # ### SCALE TOOL ### # ################## self.scale_tool_frame = QtWidgets.QFrame() self.scale_tool_frame.setContentsMargins(0, 0, 0, 0) self.custom_box.addWidget(self.scale_tool_frame) self.scale_tools_box = QtWidgets.QVBoxLayout() self.scale_tools_box.setContentsMargins(0, 0, 0, 0) self.scale_tool_frame.setLayout(self.scale_tools_box) self.scale_tool_frame.hide() # Title scale_title_lbl = QtWidgets.QLabel('%s:' % _('Scale Aperture')) scale_title_lbl.setToolTip( _("Scale a aperture in the aperture list") ) self.scale_tools_box.addWidget(scale_title_lbl) # Form Layout scale_form_layout = QtWidgets.QFormLayout() self.scale_tools_box.addLayout(scale_form_layout) self.scale_factor_lbl = QtWidgets.QLabel('%s:' % _("Scale factor")) self.scale_factor_lbl.setToolTip( _("The factor by which to scale the selected aperture.\n" "Values can be between 0.0000 and 999.9999") ) self.scale_factor_entry = FCDoubleSpinner() self.scale_factor_entry.set_precision(self.decimals) self.scale_factor_entry.set_range(0.0000, 9999.9999) scale_form_layout.addRow(self.scale_factor_lbl, self.scale_factor_entry) # Buttons hlay_scale = QtWidgets.QHBoxLayout() self.scale_tools_box.addLayout(hlay_scale) self.scale_button = QtWidgets.QPushButton(_("Scale")) hlay_scale.addWidget(self.scale_button) # ###################### # ### Mark Area TOOL ### # ###################### self.ma_tool_frame = QtWidgets.QFrame() self.ma_tool_frame.setContentsMargins(0, 0, 0, 0) self.custom_box.addWidget(self.ma_tool_frame) self.ma_tools_box = QtWidgets.QVBoxLayout() self.ma_tools_box.setContentsMargins(0, 0, 0, 0) self.ma_tool_frame.setLayout(self.ma_tools_box) self.ma_tool_frame.hide() # Title ma_title_lbl = QtWidgets.QLabel('%s:' % _('Mark polygons')) ma_title_lbl.setToolTip( _("Mark the polygon areas.") ) self.ma_tools_box.addWidget(ma_title_lbl) # Form Layout ma_form_layout = QtWidgets.QFormLayout() self.ma_tools_box.addLayout(ma_form_layout) self.ma_upper_threshold_lbl = QtWidgets.QLabel('%s:' % _("Area UPPER threshold")) self.ma_upper_threshold_lbl.setToolTip( _("The threshold value, all areas less than this are marked.\n" "Can have a value between 0.0000 and 9999.9999") ) self.ma_upper_threshold_entry = FCDoubleSpinner() self.ma_upper_threshold_entry.set_precision(self.decimals) self.ma_upper_threshold_entry.set_range(0, 10000) self.ma_lower_threshold_lbl = QtWidgets.QLabel('%s:' % _("Area LOWER threshold")) self.ma_lower_threshold_lbl.setToolTip( _("The threshold value, all areas more than this are marked.\n" "Can have a value between 0.0000 and 9999.9999") ) self.ma_lower_threshold_entry = FCDoubleSpinner() self.ma_lower_threshold_entry.set_precision(self.decimals) self.ma_lower_threshold_entry.set_range(0, 10000) ma_form_layout.addRow(self.ma_lower_threshold_lbl, self.ma_lower_threshold_entry) ma_form_layout.addRow(self.ma_upper_threshold_lbl, self.ma_upper_threshold_entry) # Buttons hlay_ma = QtWidgets.QHBoxLayout() self.ma_tools_box.addLayout(hlay_ma) self.ma_threshold_button = QtWidgets.QPushButton(_("Mark")) self.ma_threshold_button.setToolTip( _("Mark the polygons that fit within limits.") ) hlay_ma.addWidget(self.ma_threshold_button) self.ma_delete_button = QtWidgets.QPushButton(_("Delete")) self.ma_delete_button.setToolTip( _("Delete all the marked polygons.") ) hlay_ma.addWidget(self.ma_delete_button) self.ma_clear_button = QtWidgets.QPushButton(_("Clear")) self.ma_clear_button.setToolTip( _("Clear all the markings.") ) hlay_ma.addWidget(self.ma_clear_button) # ###################### # ### Add Pad Array #### # ###################### # add a frame and inside add a vertical box layout. Inside this vbox layout I add # all the add Pad array widgets # this way I can hide/show the frame self.array_frame = QtWidgets.QFrame() self.array_frame.setContentsMargins(0, 0, 0, 0) self.custom_box.addWidget(self.array_frame) self.array_box = QtWidgets.QVBoxLayout() self.array_box.setContentsMargins(0, 0, 0, 0) self.array_frame.setLayout(self.array_box) self.emptyarray_label = QtWidgets.QLabel('') self.array_box.addWidget(self.emptyarray_label) self.padarray_label = QtWidgets.QLabel('%s' % _("Add Pad Array")) self.padarray_label.setToolTip( _("Add an array of pads (linear or circular array)") ) self.array_box.addWidget(self.padarray_label) self.array_type_combo = FCComboBox() self.array_type_combo.setToolTip( _("Select the type of pads array to create.\n" "It can be Linear X(Y) or Circular") ) self.array_type_combo.addItem(_("Linear")) self.array_type_combo.addItem(_("Circular")) self.array_box.addWidget(self.array_type_combo) self.array_form = QtWidgets.QFormLayout() self.array_box.addLayout(self.array_form) self.pad_array_size_label = QtWidgets.QLabel('%s:' % _('Nr of pads')) self.pad_array_size_label.setToolTip( _("Specify how many pads to be in the array.") ) self.pad_array_size_label.setMinimumWidth(100) self.pad_array_size_entry = FCSpinner() self.pad_array_size_entry.set_range(1, 9999) self.array_form.addRow(self.pad_array_size_label, self.pad_array_size_entry) self.array_linear_frame = QtWidgets.QFrame() self.array_linear_frame.setContentsMargins(0, 0, 0, 0) self.array_box.addWidget(self.array_linear_frame) self.linear_box = QtWidgets.QVBoxLayout() self.linear_box.setContentsMargins(0, 0, 0, 0) self.array_linear_frame.setLayout(self.linear_box) self.linear_form = QtWidgets.QFormLayout() self.linear_box.addLayout(self.linear_form) self.pad_axis_label = QtWidgets.QLabel('%s:' % _('Direction')) self.pad_axis_label.setToolTip( _("Direction on which the linear array is oriented:\n" "- 'X' - horizontal axis \n" "- 'Y' - vertical axis or \n" "- 'Angle' - a custom angle for the array inclination") ) self.pad_axis_label.setMinimumWidth(100) self.pad_axis_radio = RadioSet([{'label': _('X'), 'value': 'X'}, {'label': _('Y'), 'value': 'Y'}, {'label': _('Angle'), 'value': 'A'}]) self.pad_axis_radio.set_value('X') self.linear_form.addRow(self.pad_axis_label, self.pad_axis_radio) self.pad_pitch_label = QtWidgets.QLabel('%s:' % _('Pitch')) self.pad_pitch_label.setToolTip( _("Pitch = Distance between elements of the array.") ) self.pad_pitch_label.setMinimumWidth(100) self.pad_pitch_entry = FCDoubleSpinner() self.pad_pitch_entry.set_precision(self.decimals) self.pad_pitch_entry.set_range(0.0000, 9999.9999) self.pad_pitch_entry.setSingleStep(0.1) self.linear_form.addRow(self.pad_pitch_label, self.pad_pitch_entry) self.linear_angle_label = QtWidgets.QLabel('%s:' % _('Angle')) self.linear_angle_label.setToolTip( _("Angle at which the linear array is placed.\n" "The precision is of max 2 decimals.\n" "Min value is: -359.99 degrees.\n" "Max value is: 360.00 degrees.") ) self.linear_angle_label.setMinimumWidth(100) self.linear_angle_spinner = FCDoubleSpinner() self.linear_angle_spinner.set_precision(self.decimals) self.linear_angle_spinner.setRange(-360.00, 360.00) self.linear_form.addRow(self.linear_angle_label, self.linear_angle_spinner) self.array_circular_frame = QtWidgets.QFrame() self.array_circular_frame.setContentsMargins(0, 0, 0, 0) self.array_box.addWidget(self.array_circular_frame) self.circular_box = QtWidgets.QVBoxLayout() self.circular_box.setContentsMargins(0, 0, 0, 0) self.array_circular_frame.setLayout(self.circular_box) self.pad_direction_label = QtWidgets.QLabel('%s:' % _('Direction')) self.pad_direction_label.setToolTip( _("Direction for circular array." "Can be CW = clockwise or CCW = counter clockwise.") ) self.pad_direction_label.setMinimumWidth(100) self.circular_form = QtWidgets.QFormLayout() self.circular_box.addLayout(self.circular_form) self.pad_direction_radio = RadioSet([{'label': _('CW'), 'value': 'CW'}, {'label': _('CCW'), 'value': 'CCW'}]) self.pad_direction_radio.set_value('CW') self.circular_form.addRow(self.pad_direction_label, self.pad_direction_radio) self.pad_angle_label = QtWidgets.QLabel('%s:' % _('Angle')) self.pad_angle_label.setToolTip( _("Angle at which each element in circular array is placed.") ) self.pad_angle_label.setMinimumWidth(100) self.pad_angle_entry = FCDoubleSpinner() self.pad_angle_entry.set_precision(self.decimals) self.pad_angle_entry.set_range(-360.00, 360.00) self.pad_angle_entry.setSingleStep(0.1) self.circular_form.addRow(self.pad_angle_label, self.pad_angle_entry) self.array_circular_frame.hide() self.linear_angle_spinner.hide() self.linear_angle_label.hide() self.array_frame.hide() self.custom_box.addStretch() # Toolbar events and properties self.tools_gerber = { "select": {"button": self.app.ui.grb_select_btn, "constructor": FCApertureSelect}, "pad": {"button": self.app.ui.grb_add_pad_btn, "constructor": FCPad}, "array": {"button": self.app.ui.add_pad_ar_btn, "constructor": FCPadArray}, "track": {"button": self.app.ui.grb_add_track_btn, "constructor": FCTrack}, "region": {"button": self.app.ui.grb_add_region_btn, "constructor": FCRegion}, "poligonize": {"button": self.app.ui.grb_convert_poly_btn, "constructor": FCPoligonize}, "semidisc": {"button": self.app.ui.grb_add_semidisc_btn, "constructor": FCSemiDisc}, "disc": {"button": self.app.ui.grb_add_disc_btn, "constructor": FCDisc}, "buffer": {"button": self.app.ui.aperture_buffer_btn, "constructor": FCBuffer}, "scale": {"button": self.app.ui.aperture_scale_btn, "constructor": FCScale}, "markarea": {"button": self.app.ui.aperture_markarea_btn, "constructor": FCMarkArea}, "eraser": {"button": self.app.ui.aperture_eraser_btn, "constructor": FCEraser}, "copy": {"button": self.app.ui.aperture_copy_btn, "constructor": FCApertureCopy}, "transform": {"button": self.app.ui.grb_transform_btn, "constructor": FCTransform}, "move": {"button": self.app.ui.aperture_move_btn, "constructor": FCApertureMove}, } # # ## Data self.active_tool = None self.storage_dict = dict() self.current_storage = list() self.sorted_apid = list() self.new_apertures = dict() self.new_aperture_macros = dict() # store here the plot promises, if empty the delayed plot will be activated self.grb_plot_promises = list() # dictionary to store the tool_row and aperture codes in Tool_table # it will be updated everytime self.build_ui() is called self.olddia_newdia = dict() self.tool2tooldia = dict() # this will store the value for the last selected tool, for use after clicking on canvas when the selection # is cleared but as a side effect also the selected tool is cleared self.last_aperture_selected = None self.utility = list() # this will store the polygons marked by mark are to be perhaps deleted self.geo_to_delete = list() # this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False) self.launched_from_shortcuts = False # this var will store the state of the toolbar before starting the editor self.toolbar_old_state = False # Init GUI self.apdim_lbl.hide() self.apdim_entry.hide() self.gerber_obj = None self.gerber_obj_options = dict() # VisPy Visuals if self.app.is_legacy is False: self.shapes = self.canvas.new_shape_collection(layers=1) self.tool_shape = self.canvas.new_shape_collection(layers=1) self.ma_annotation = self.canvas.new_text_group() else: from flatcamGUI.PlotCanvasLegacy import ShapeCollectionLegacy self.shapes = ShapeCollectionLegacy(obj=self, app=self.app, name='shapes_grb_editor') self.tool_shape = ShapeCollectionLegacy(obj=self, app=self.app, name='tool_shapes_grb_editor') self.ma_annotation = ShapeCollectionLegacy( obj=self, app=self.app, name='ma_anno_grb_editor', annotation_job=True) self.app.pool_recreated.connect(self.pool_recreated) # Event signals disconnect id holders self.mp = None self.mm = None self.mr = None # Remove from scene self.shapes.enabled = False self.tool_shape.enabled = False # List of selected geometric elements. self.selected = [] self.key = None # Currently pressed key self.modifiers = None self.x = None # Current mouse cursor pos self.y = None # Current snapped mouse pos self.snap_x = None self.snap_y = None self.pos = None # used in FCRegion and FCTrack. Will store the bending mode self.bend_mode = 1 # signal that there is an action active like polygon or path self.in_action = False # this will flag if the Editor "tools" are launched from key shortcuts (True) or from menu toolbar (False) self.launched_from_shortcuts = False def_tol_val = float(self.app.defaults["global_tolerance"]) self.tolerance = def_tol_val if self.units == 'MM'else def_tol_val / 20 def make_callback(the_tool): def f(): self.on_tool_select(the_tool) return f for tool in self.tools_gerber: self.tools_gerber[tool]["button"].triggered.connect(make_callback(tool)) # Events self.tools_gerber[tool]["button"].setCheckable(True) self.options = { "global_gridx": 0.1, "global_gridy": 0.1, "snap_max": 0.05, "grid_snap": True, "corner_snap": False, "grid_gap_link": True } self.options.update(self.app.options) for option in self.options: if option in self.app.options: self.options[option] = self.app.options[option] # flag to show if the object was modified self.is_modified = False self.edited_obj_name = "" self.tool_row = 0 # Multiprocessing pool self.pool = self.app.pool # Multiprocessing results self.results = list() # A QTimer self.plot_thread = None # store the status of the editor so the Delete at object level will not work until the edit is finished self.editor_active = False # def entry2option(option, entry): # self.options[option] = float(entry.text()) self.transform_tool = TransformEditorTool(self.app, self) # Signals self.buffer_button.clicked.connect(self.on_buffer) self.scale_button.clicked.connect(self.on_scale) self.app.ui.aperture_delete_btn.triggered.connect(self.on_delete_btn) self.name_entry.returnPressed.connect(self.on_name_activate) self.aptype_cb.currentIndexChanged[str].connect(self.on_aptype_changed) self.addaperture_btn.clicked.connect(self.on_aperture_add) self.apsize_entry.returnPressed.connect(self.on_aperture_add) self.apdim_entry.returnPressed.connect(self.on_aperture_add) self.delaperture_btn.clicked.connect(self.on_aperture_delete) self.apertures_table.cellPressed.connect(self.on_row_selected) self.app.ui.grb_add_pad_menuitem.triggered.connect(self.on_pad_add) self.app.ui.grb_add_pad_array_menuitem.triggered.connect(self.on_pad_add_array) self.app.ui.grb_add_track_menuitem.triggered.connect(self.on_track_add) self.app.ui.grb_add_region_menuitem.triggered.connect(self.on_region_add) self.app.ui.grb_convert_poly_menuitem.triggered.connect(self.on_poligonize) self.app.ui.grb_add_semidisc_menuitem.triggered.connect(self.on_add_semidisc) self.app.ui.grb_add_disc_menuitem.triggered.connect(self.on_disc_add) self.app.ui.grb_add_buffer_menuitem.triggered.connect(self.on_buffer) self.app.ui.grb_add_scale_menuitem.triggered.connect(self.on_scale) self.app.ui.grb_add_eraser_menuitem.triggered.connect(self.on_eraser) self.app.ui.grb_add_markarea_menuitem.triggered.connect(self.on_markarea) self.app.ui.grb_transform_menuitem.triggered.connect(self.transform_tool.run) self.app.ui.grb_copy_menuitem.triggered.connect(self.on_copy_button) self.app.ui.grb_delete_menuitem.triggered.connect(self.on_delete_btn) self.app.ui.grb_move_menuitem.triggered.connect(self.on_move_button) self.array_type_combo.currentIndexChanged.connect(self.on_array_type_combo) self.pad_axis_radio.activated_custom.connect(self.on_linear_angle_radio) self.mp_finished.connect(self.on_multiprocessing_finished) # store the status of the editor so the Delete at object level will not work until the edit is finished self.editor_active = False self.conversion_factor = 1 self.set_ui() log.debug("Initialization of the FlatCAM Gerber Editor is finished ...") def pool_recreated(self, pool): self.shapes.pool = pool self.tool_shape.pool = pool def set_ui(self): # updated units self.units = self.app.defaults['units'].upper() self.decimals = self.app.decimals self.olddia_newdia.clear() self.tool2tooldia.clear() # update the olddia_newdia dict to make sure we have an updated state of the tool_table for key in self.storage_dict: self.olddia_newdia[key] = key sort_temp = [] for aperture in self.olddia_newdia: sort_temp.append(int(aperture)) self.sorted_apid = sorted(sort_temp) # populate self.intial_table_rows dict with the tool number as keys and aperture codes as values for i in range(len(self.sorted_apid)): tt_aperture = self.sorted_apid[i] self.tool2tooldia[i + 1] = tt_aperture # Init GUI self.buffer_distance_entry.set_value(self.app.defaults["gerber_editor_buff_f"]) self.scale_factor_entry.set_value(self.app.defaults["gerber_editor_scale_f"]) self.ma_upper_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_high"]) self.ma_lower_threshold_entry.set_value(self.app.defaults["gerber_editor_ma_low"]) self.apsize_entry.set_value(self.app.defaults["gerber_editor_newsize"]) self.aptype_cb.set_value(self.app.defaults["gerber_editor_newtype"]) self.apdim_entry.set_value(self.app.defaults["gerber_editor_newdim"]) self.pad_array_size_entry.set_value(int(self.app.defaults["gerber_editor_array_size"])) # linear array self.pad_axis_radio.set_value(self.app.defaults["gerber_editor_lin_axis"]) self.pad_pitch_entry.set_value(float(self.app.defaults["gerber_editor_lin_pitch"])) self.linear_angle_spinner.set_value(self.app.defaults["gerber_editor_lin_angle"]) # circular array self.pad_direction_radio.set_value(self.app.defaults["gerber_editor_circ_dir"]) self.pad_angle_entry.set_value(float(self.app.defaults["gerber_editor_circ_angle"])) def build_ui(self, first_run=None): try: # if connected, disconnect the signal from the slot on item_changed as it creates issues self.apertures_table.itemChanged.disconnect() except (TypeError, AttributeError): pass try: self.apertures_table.cellPressed.disconnect() except (TypeError, AttributeError): pass # updated units self.units = self.app.defaults['units'].upper() # make a new name for the new Excellon object (the one with edited content) self.edited_obj_name = self.gerber_obj.options['name'] self.name_entry.set_value(self.edited_obj_name) self.apertures_row = 0 # aper_no = self.apertures_row + 1 sort = [] for k, v in list(self.storage_dict.items()): sort.append(int(k)) sorted_apertures = sorted(sort) # sort = [] # for k, v in list(self.gerber_obj.aperture_macros.items()): # sort.append(k) # sorted_macros = sorted(sort) # n = len(sorted_apertures) + len(sorted_macros) n = len(sorted_apertures) self.apertures_table.setRowCount(n) for ap_code in sorted_apertures: ap_code = str(ap_code) ap_id_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1)) ap_id_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) self.apertures_table.setItem(self.apertures_row, 0, ap_id_item) # Tool name/id ap_code_item = QtWidgets.QTableWidgetItem(ap_code) ap_code_item.setFlags(QtCore.Qt.ItemIsEnabled) ap_type_item = QtWidgets.QTableWidgetItem(str(self.storage_dict[ap_code]['type'])) ap_type_item.setFlags(QtCore.Qt.ItemIsEnabled) if str(self.storage_dict[ap_code]['type']) == 'R' or str(self.storage_dict[ap_code]['type']) == 'O': ap_dim_item = QtWidgets.QTableWidgetItem( '%.*f, %.*f' % (self.decimals, self.storage_dict[ap_code]['width'], self.decimals, self.storage_dict[ap_code]['height'] ) ) ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled) elif str(self.storage_dict[ap_code]['type']) == 'P': ap_dim_item = QtWidgets.QTableWidgetItem( '%.*f, %.*f' % (self.decimals, self.storage_dict[ap_code]['diam'], self.decimals, self.storage_dict[ap_code]['nVertices']) ) ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled) else: ap_dim_item = QtWidgets.QTableWidgetItem('') ap_dim_item.setFlags(QtCore.Qt.ItemIsEnabled) try: if self.storage_dict[ap_code]['size'] is not None: ap_size_item = QtWidgets.QTableWidgetItem('%.*f' % (self.decimals, float(self.storage_dict[ap_code]['size']))) else: ap_size_item = QtWidgets.QTableWidgetItem('') except KeyError: ap_size_item = QtWidgets.QTableWidgetItem('') ap_size_item.setFlags(QtCore.Qt.ItemIsEnabled) self.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code self.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type self.apertures_table.setItem(self.apertures_row, 3, ap_size_item) # Aperture Dimensions self.apertures_table.setItem(self.apertures_row, 4, ap_dim_item) # Aperture Dimensions self.apertures_row += 1 if first_run is True: # set now the last aperture selected self.last_aperture_selected = ap_code # for ap_code in sorted_macros: # ap_code = str(ap_code) # # ap_id_item = QtWidgets.QTableWidgetItem('%d' % int(self.apertures_row + 1)) # ap_id_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) # self.apertures_table.setItem(self.apertures_row, 0, ap_id_item) # Tool name/id # # ap_code_item = QtWidgets.QTableWidgetItem(ap_code) # # ap_type_item = QtWidgets.QTableWidgetItem('AM') # ap_type_item.setFlags(QtCore.Qt.ItemIsEnabled) # # self.apertures_table.setItem(self.apertures_row, 1, ap_code_item) # Aperture Code # self.apertures_table.setItem(self.apertures_row, 2, ap_type_item) # Aperture Type # # self.apertures_row += 1 # if first_run is True: # # set now the last aperture selected # self.last_aperture_selected = ap_code self.apertures_table.selectColumn(0) self.apertures_table.resizeColumnsToContents() self.apertures_table.resizeRowsToContents() vertical_header = self.apertures_table.verticalHeader() # vertical_header.setSectionResizeMode(QtWidgets.QHeaderView.ResizeToContents) vertical_header.hide() self.apertures_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) horizontal_header = self.apertures_table.horizontalHeader() horizontal_header.setMinimumSectionSize(10) horizontal_header.setDefaultSectionSize(70) horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed) horizontal_header.resizeSection(0, 27) horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) horizontal_header.setSectionResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) horizontal_header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents) horizontal_header.setSectionResizeMode(4, QtWidgets.QHeaderView.Stretch) self.apertures_table.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.apertures_table.setSortingEnabled(False) self.apertures_table.setMinimumHeight(self.apertures_table.getHeight()) self.apertures_table.setMaximumHeight(self.apertures_table.getHeight()) # make sure no rows are selected so the user have to click the correct row, meaning selecting the correct tool self.apertures_table.clearSelection() # Remove anything else in the GUI Selected Tab self.app.ui.selected_scroll_area.takeWidget() # Put ourselves in the GUI Selected Tab self.app.ui.selected_scroll_area.setWidget(self.grb_edit_widget) # Switch notebook to Selected page self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) # we reactivate the signals after the after the tool adding as we don't need to see the tool been populated self.apertures_table.itemChanged.connect(self.on_tool_edit) self.apertures_table.cellPressed.connect(self.on_row_selected) # for convenience set the next aperture code in the apcode field try: self.apcode_entry.set_value(max(self.tool2tooldia.values()) + 1) except ValueError: # this means that the edited object has no apertures so we start with 10 (Gerber specifications) self.apcode_entry.set_value(self.app.defaults["gerber_editor_newcode"]) def on_aperture_add(self, apid=None): self.is_modified = True if apid: ap_id = apid else: try: ap_id = str(self.apcode_entry.get_value()) except ValueError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture code value is missing or wrong format. Add it and retry.")) return if ap_id == '': self.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture code value is missing or wrong format. Add it and retry.")) return if ap_id == '0': if ap_id not in self.tool2tooldia: self.storage_dict[ap_id] = {} self.storage_dict[ap_id]['type'] = 'REG' size_val = 0 self.apsize_entry.set_value(size_val) self.storage_dict[ap_id]['size'] = size_val self.storage_dict[ap_id]['geometry'] = [] # self.olddia_newdia dict keeps the evidence on current aperture codes as keys and gets updated on values # each time a aperture code is edited or added self.olddia_newdia[ap_id] = ap_id else: if ap_id not in self.olddia_newdia: self.storage_dict[ap_id] = {} type_val = self.aptype_cb.currentText() self.storage_dict[ap_id]['type'] = type_val if type_val == 'R' or type_val == 'O': try: dims = self.apdim_entry.get_value() self.storage_dict[ap_id]['width'] = dims[0] self.storage_dict[ap_id]['height'] = dims[1] size_val = np.sqrt((dims[0] ** 2) + (dims[1] ** 2)) self.apsize_entry.set_value(size_val) except Exception as e: log.error("FlatCAMGrbEditor.on_aperture_add() --> the R or O aperture dims has to be in a " "tuple format (x,y)\nError: %s" % str(e)) self.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture dimensions value is missing or wrong format. " "Add it in format (width, height) and retry.")) return else: try: size_val = float(self.apsize_entry.get_value()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: size_val = float(self.apsize_entry.get_value().replace(',', '.')) self.apsize_entry.set_value(size_val) except ValueError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture size value is missing or wrong format. Add it and retry.")) return self.storage_dict[ap_id]['size'] = size_val self.storage_dict[ap_id]['geometry'] = [] # self.olddia_newdia dict keeps the evidence on current aperture codes as keys and gets updated on # values each time a aperture code is edited or added self.olddia_newdia[ap_id] = ap_id else: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Aperture already in the aperture table.")) return # since we add a new tool, we update also the initial state of the tool_table through it's dictionary # we add a new entry in the tool2tooldia dict self.tool2tooldia[len(self.olddia_newdia)] = int(ap_id) self.app.inform.emit('[success] %s: %s' % (_("Added new aperture with code"), str(ap_id))) self.build_ui() self.last_aperture_selected = ap_id # make a quick sort through the tool2tooldia dict so we find which row to select row_to_be_selected = None for key in sorted(self.tool2tooldia): if self.tool2tooldia[key] == int(ap_id): row_to_be_selected = int(key) - 1 break self.apertures_table.selectRow(row_to_be_selected) def on_aperture_delete(self, ap_id=None): self.is_modified = True deleted_apcode_list = [] try: if ap_id: if isinstance(ap_id, list): for dd in ap_id: deleted_apcode_list.append(dd) else: deleted_apcode_list.append(ap_id) else: # deleted_tool_dia = float(self.apertures_table.item(self.apertures_table.currentRow(), 1).text()) if len(self.apertures_table.selectionModel().selectedRows()) == 0: self.app.inform.emit('[WARNING_NOTCL]%s' % _(" Select an aperture in Aperture Table")) return for index in self.apertures_table.selectionModel().selectedRows(): row = index.row() deleted_apcode_list.append(self.apertures_table.item(row, 1).text()) except Exception as exc: self.app.inform.emit('[WARNING_NOTCL] %s %s' % (_("Select an aperture in Aperture Table -->", str(exc)))) return if deleted_apcode_list: for deleted_aperture in deleted_apcode_list: # delete the storage used for that tool self.storage_dict.pop(deleted_aperture, None) # I've added this flag_del variable because dictionary don't like # having keys deleted while iterating through them flag_del = list() for deleted_tool in self.tool2tooldia: if self.tool2tooldia[deleted_tool] == deleted_aperture: flag_del.append(deleted_tool) if flag_del: for aperture_to_be_deleted in flag_del: # delete the tool self.tool2tooldia.pop(aperture_to_be_deleted, None) self.olddia_newdia.pop(deleted_aperture, None) self.app.inform.emit('[success] %s: %s' % (_("Deleted aperture with code"), str(deleted_aperture))) flag_del.clear() self.plot_all() self.build_ui() # if last aperture selected was in the apertures deleted than make sure to select a # 'new' last aperture selected because there are tools who depend on it. # if there is no aperture left, then add a default one :) if self.last_aperture_selected in deleted_apcode_list: if self.apertures_table.rowCount() == 0: self.on_aperture_add('10') else: self.last_aperture_selected = self.apertures_table.item(0, 1).text() def on_tool_edit(self): # if connected, disconnect the signal from the slot on item_changed as it creates issues self.apertures_table.itemChanged.disconnect() # self.apertures_table.cellPressed.disconnect() self.is_modified = True current_table_dia_edited = None if self.apertures_table.currentItem() is not None: try: current_table_dia_edited = float(self.apertures_table.currentItem().text()) except ValueError as e: log.debug("FlatCAMExcEditor.on_tool_edit() --> %s" % str(e)) self.apertures_table.setCurrentItem(None) return row_of_item_changed = self.apertures_table.currentRow() # rows start with 0, tools start with 1 so we adjust the value by 1 key_in_tool2tooldia = row_of_item_changed + 1 dia_changed = self.tool2tooldia[key_in_tool2tooldia] # aperture code is not used so we create a new tool with the desired diameter if current_table_dia_edited not in self.olddia_newdia.values(): # update the dict that holds as keys our initial diameters and as values the edited diameters self.olddia_newdia[dia_changed] = current_table_dia_edited # update the dict that holds tool_no as key and tool_dia as value self.tool2tooldia[key_in_tool2tooldia] = current_table_dia_edited # update the tool offset modified_offset = self.gerber_obj.tool_offset.pop(dia_changed) self.gerber_obj.tool_offset[current_table_dia_edited] = modified_offset self.plot_all() else: # aperture code is already in use so we move the pads from the prior tool to the new tool factor = current_table_dia_edited / dia_changed geometry = [] for geo_el in self.storage_dict[dia_changed]: geometric_data = geo_el.geo new_geo_el = dict() if 'solid' in geometric_data: new_geo_el['solid'] = deepcopy(affinity.scale(geometric_data['solid'], xfact=factor, yfact=factor)) if 'follow' in geometric_data: new_geo_el['follow'] = deepcopy(affinity.scale(geometric_data['follow'], xfact=factor, yfact=factor)) if 'clear' in geometric_data: new_geo_el['clear'] = deepcopy(affinity.scale(geometric_data['clear'], xfact=factor, yfact=factor)) geometry.append(new_geo_el) self.add_gerber_shape(geometry, self.storage_dict[current_table_dia_edited]) self.on_aperture_delete(apid=dia_changed) # delete the tool offset self.gerber_obj.tool_offset.pop(dia_changed, None) # we reactivate the signals after the after the tool editing self.apertures_table.itemChanged.connect(self.on_tool_edit) # self.apertures_table.cellPressed.connect(self.on_row_selected) def on_name_activate(self): self.edited_obj_name = self.name_entry.get_value() def on_aptype_changed(self, current_text): # 'O' is letter O not zero. if current_text == 'R' or current_text == 'O': self.apdim_lbl.show() self.apdim_entry.show() self.apsize_entry.setDisabled(True) else: self.apdim_lbl.hide() self.apdim_entry.hide() self.apsize_entry.setDisabled(False) def activate_grb_editor(self): # adjust the status of the menu entries related to the editor self.app.ui.menueditedit.setDisabled(True) self.app.ui.menueditok.setDisabled(False) # adjust the visibility of some of the canvas context menu self.app.ui.popmenu_edit.setVisible(False) self.app.ui.popmenu_save.setVisible(True) self.connect_canvas_event_handlers() # init working objects self.storage_dict = {} self.current_storage = [] self.sorted_apid = [] self.new_apertures = {} self.new_aperture_macros = {} self.grb_plot_promises = [] self.olddia_newdia = {} self.tool2tooldia = {} self.shapes.enabled = True self.tool_shape.enabled = True self.app.ui.snap_max_dist_entry.setEnabled(True) self.app.ui.corner_snap_btn.setEnabled(True) self.app.ui.snap_magnet.setVisible(True) self.app.ui.corner_snap_btn.setVisible(True) self.app.ui.grb_editor_menu.setDisabled(False) self.app.ui.grb_editor_menu.menuAction().setVisible(True) self.app.ui.update_obj_btn.setEnabled(True) self.app.ui.grb_editor_cmenu.setEnabled(True) self.app.ui.grb_edit_toolbar.setDisabled(False) self.app.ui.grb_edit_toolbar.setVisible(True) # self.app.ui.snap_toolbar.setDisabled(False) # start with GRID toolbar activated if self.app.ui.grid_snap_btn.isChecked() is False: self.app.ui.grid_snap_btn.trigger() # adjust the visibility of some of the canvas context menu self.app.ui.popmenu_edit.setVisible(False) self.app.ui.popmenu_save.setVisible(True) self.app.ui.popmenu_disable.setVisible(False) self.app.ui.cmenu_newmenu.menuAction().setVisible(False) self.app.ui.popmenu_properties.setVisible(False) self.app.ui.grb_editor_cmenu.menuAction().setVisible(True) # Tell the App that the editor is active self.editor_active = True def deactivate_grb_editor(self): try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.deactivate_grb_editor() --> %s" % str(e)) # adjust the status of the menu entries related to the editor self.app.ui.menueditedit.setDisabled(False) self.app.ui.menueditok.setDisabled(True) # adjust the visibility of some of the canvas context menu self.app.ui.popmenu_edit.setVisible(True) self.app.ui.popmenu_save.setVisible(False) self.disconnect_canvas_event_handlers() self.clear() self.app.ui.grb_edit_toolbar.setDisabled(True) settings = QSettings("Open Source", "FlatCAM") if settings.contains("layout"): layout = settings.value('layout', type=str) if layout == 'standard': # self.app.ui.exc_edit_toolbar.setVisible(False) self.app.ui.snap_max_dist_entry.setEnabled(False) self.app.ui.corner_snap_btn.setEnabled(False) self.app.ui.snap_magnet.setVisible(False) self.app.ui.corner_snap_btn.setVisible(False) elif layout == 'compact': # self.app.ui.exc_edit_toolbar.setVisible(True) self.app.ui.snap_max_dist_entry.setEnabled(False) self.app.ui.corner_snap_btn.setEnabled(False) self.app.ui.snap_magnet.setVisible(True) self.app.ui.corner_snap_btn.setVisible(True) else: # self.app.ui.exc_edit_toolbar.setVisible(False) self.app.ui.snap_max_dist_entry.setEnabled(False) self.app.ui.corner_snap_btn.setEnabled(False) self.app.ui.snap_magnet.setVisible(False) self.app.ui.corner_snap_btn.setVisible(False) # set the Editor Toolbar visibility to what was before entering in the Editor self.app.ui.grb_edit_toolbar.setVisible(False) if self.toolbar_old_state is False \ else self.app.ui.grb_edit_toolbar.setVisible(True) # Disable visuals self.shapes.enabled = False self.tool_shape.enabled = False # self.app.app_cursor.enabled = False # Tell the app that the editor is no longer active self.editor_active = False self.app.ui.grb_editor_menu.setDisabled(True) self.app.ui.grb_editor_menu.menuAction().setVisible(False) self.app.ui.update_obj_btn.setEnabled(False) # adjust the visibility of some of the canvas context menu self.app.ui.popmenu_edit.setVisible(True) self.app.ui.popmenu_save.setVisible(False) self.app.ui.popmenu_disable.setVisible(True) self.app.ui.cmenu_newmenu.menuAction().setVisible(True) self.app.ui.popmenu_properties.setVisible(True) self.app.ui.g_editor_cmenu.menuAction().setVisible(False) self.app.ui.e_editor_cmenu.menuAction().setVisible(False) self.app.ui.grb_editor_cmenu.menuAction().setVisible(False) # Show original geometry if self.gerber_obj: self.gerber_obj.visible = True def connect_canvas_event_handlers(self): # Canvas events # make sure that the shortcuts key and mouse events will no longer be linked to the methods from FlatCAMApp # but those from FlatCAMGeoEditor # first connect to new, then disconnect the old handlers # don't ask why but if there is nothing connected I've seen issues self.mp = self.canvas.graph_event_connect('mouse_press', self.on_canvas_click) self.mm = self.canvas.graph_event_connect('mouse_move', self.on_canvas_move) self.mr = self.canvas.graph_event_connect('mouse_release', self.on_grb_click_release) if self.app.is_legacy is False: self.canvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) self.canvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot) self.canvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) self.canvas.graph_event_disconnect('mouse_double_click', self.app.on_mouse_double_click_over_plot) else: self.canvas.graph_event_disconnect(self.app.mp) self.canvas.graph_event_disconnect(self.app.mm) self.canvas.graph_event_disconnect(self.app.mr) self.canvas.graph_event_disconnect(self.app.mdc) self.app.collection.view.clicked.disconnect() self.app.ui.popmenu_copy.triggered.disconnect() self.app.ui.popmenu_delete.triggered.disconnect() self.app.ui.popmenu_move.triggered.disconnect() self.app.ui.popmenu_copy.triggered.connect(self.on_copy_button) self.app.ui.popmenu_delete.triggered.connect(self.on_delete_btn) self.app.ui.popmenu_move.triggered.connect(self.on_move_button) # Gerber Editor self.app.ui.grb_draw_pad.triggered.connect(self.on_pad_add) self.app.ui.grb_draw_pad_array.triggered.connect(self.on_pad_add_array) self.app.ui.grb_draw_track.triggered.connect(self.on_track_add) self.app.ui.grb_draw_region.triggered.connect(self.on_region_add) self.app.ui.grb_draw_poligonize.triggered.connect(self.on_poligonize) self.app.ui.grb_draw_semidisc.triggered.connect(self.on_add_semidisc) self.app.ui.grb_draw_disc.triggered.connect(self.on_disc_add) self.app.ui.grb_draw_buffer.triggered.connect(lambda: self.select_tool("buffer")) self.app.ui.grb_draw_scale.triggered.connect(lambda: self.select_tool("scale")) self.app.ui.grb_draw_markarea.triggered.connect(lambda: self.select_tool("markarea")) self.app.ui.grb_draw_eraser.triggered.connect(self.on_eraser) self.app.ui.grb_draw_transformations.triggered.connect(self.on_transform) def disconnect_canvas_event_handlers(self): # we restore the key and mouse control to FlatCAMApp method # first connect to new, then disconnect the old handlers # don't ask why but if there is nothing connected I've seen issues self.app.mp = self.canvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot) self.app.mm = self.canvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot) self.app.mr = self.canvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) self.app.mdc = self.canvas.graph_event_connect('mouse_double_click', self.app.on_mouse_double_click_over_plot) self.app.collection.view.clicked.connect(self.app.collection.on_mouse_down) if self.app.is_legacy is False: self.canvas.graph_event_disconnect('mouse_press', self.on_canvas_click) self.canvas.graph_event_disconnect('mouse_move', self.on_canvas_move) self.canvas.graph_event_disconnect('mouse_release', self.on_grb_click_release) else: self.canvas.graph_event_disconnect(self.mp) self.canvas.graph_event_disconnect(self.mm) self.canvas.graph_event_disconnect(self.mr) try: self.app.ui.popmenu_copy.triggered.disconnect(self.on_copy_button) except (TypeError, AttributeError): pass try: self.app.ui.popmenu_delete.triggered.disconnect(self.on_delete_btn) except (TypeError, AttributeError): pass try: self.app.ui.popmenu_move.triggered.disconnect(self.on_move_button) except (TypeError, AttributeError): pass self.app.ui.popmenu_copy.triggered.connect(self.app.on_copy_object) self.app.ui.popmenu_delete.triggered.connect(self.app.on_delete) self.app.ui.popmenu_move.triggered.connect(self.app.obj_move) # Gerber Editor try: self.app.ui.grb_draw_pad.triggered.disconnect(self.on_pad_add) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_pad_array.triggered.disconnect(self.on_pad_add_array) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_track.triggered.disconnect(self.on_track_add) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_region.triggered.disconnect(self.on_region_add) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_poligonize.triggered.disconnect(self.on_poligonize) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_semidisc.triggered.diconnect(self.on_add_semidisc) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_disc.triggered.disconnect(self.on_disc_add) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_buffer.triggered.disconnect() except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_scale.triggered.disconnect() except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_markarea.triggered.disconnect() except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_eraser.triggered.disconnect(self.on_eraser) except (TypeError, AttributeError): pass try: self.app.ui.grb_draw_transformations.triggered.disconnect(self.on_transform) except (TypeError, AttributeError): pass def clear(self): self.active_tool = None self.selected = [] self.shapes.clear(update=True) self.tool_shape.clear(update=True) self.ma_annotation.clear(update=True) def edit_fcgerber(self, orig_grb_obj): """ Imports the geometry found in self.apertures from the given FlatCAM Gerber object into the editor. :param orig_grb_obj: FlatCAMExcellon :return: None """ self.deactivate_grb_editor() self.activate_grb_editor() # reset the tool table self.apertures_table.clear() self.apertures_table.setHorizontalHeaderLabels(['#', _('Code'), _('Type'), _('Size'), _('Dim')]) self.last_aperture_selected = None # create a reference to the source object self.gerber_obj = orig_grb_obj self.gerber_obj_options = orig_grb_obj.options file_units = self.gerber_obj.units if self.gerber_obj.units else 'IN' app_units = self.app.defaults['units'] self.conversion_factor = 25.4 if file_units == 'IN' else (1 / 25.4) if file_units != app_units else 1 # Hide original geometry orig_grb_obj.visible = False # Set selection tolerance # DrawToolShape.tolerance = fc_excellon.drawing_tolerance * 10 self.select_tool("select") try: # we activate this after the initial build as we don't need to see the tool been populated self.apertures_table.itemChanged.connect(self.on_tool_edit) except Exception as e: log.debug("FlatCAMGrbEditor.edit_fcgerber() --> %s" % str(e)) # apply the conversion factor on the obj.apertures conv_apertures = deepcopy(self.gerber_obj.apertures) for apid in self.gerber_obj.apertures: for key in self.gerber_obj.apertures[apid]: if key == 'width': conv_apertures[apid]['width'] = self.gerber_obj.apertures[apid]['width'] * self.conversion_factor elif key == 'height': conv_apertures[apid]['height'] = self.gerber_obj.apertures[apid]['height'] * self.conversion_factor elif key == 'diam': conv_apertures[apid]['diam'] = self.gerber_obj.apertures[apid]['diam'] * self.conversion_factor elif key == 'size': conv_apertures[apid]['size'] = self.gerber_obj.apertures[apid]['size'] * self.conversion_factor else: conv_apertures[apid][key] = self.gerber_obj.apertures[apid][key] self.gerber_obj.apertures = conv_apertures self.gerber_obj.units = app_units # # and then add it to the storage elements (each storage elements is a member of a list # def job_thread(aperture_id): # with self.app.proc_container.new('%s: %s ...' % # (_("Adding geometry for aperture"), str(aperture_id))): # storage_elem = [] # self.storage_dict[aperture_id] = {} # # # add the Gerber geometry to editor storage # for k, v in self.gerber_obj.apertures[aperture_id].items(): # try: # if k == 'geometry': # for geo_el in v: # if geo_el: # self.add_gerber_shape(DrawToolShape(geo_el), storage_elem) # self.storage_dict[aperture_id][k] = storage_elem # else: # self.storage_dict[aperture_id][k] = self.gerber_obj.apertures[aperture_id][k] # except Exception as e: # log.debug("FlatCAMGrbEditor.edit_fcgerber().job_thread() --> %s" % str(e)) # # # Check promises and clear if exists # while True: # try: # self.grb_plot_promises.remove(aperture_id) # time.sleep(0.5) # except ValueError: # break # # # we create a job work each aperture, job that work in a threaded way to store the geometry in local storage # # as DrawToolShapes # for ap_id in self.gerber_obj.apertures: # self.grb_plot_promises.append(ap_id) # self.app.worker_task.emit({'fcn': job_thread, 'params': [ap_id]}) # # self.set_ui() # # # do the delayed plot only if there is something to plot (the gerber is not empty) # try: # if bool(self.gerber_obj.apertures): # self.start_delayed_plot(check_period=1000) # else: # raise AttributeError # except AttributeError: # # now that we have data (empty data actually), create the GUI interface and add it to the Tool Tab # self.build_ui(first_run=True) # # and add the first aperture to have something to play with # self.on_aperture_add('10') def worker_job(app_obj): with app_obj.app.proc_container.new('%s ...' % _("Loading Gerber into Editor")): # ############################################################# ## # APPLY CLEAR_GEOMETRY on the SOLID_GEOMETRY # ############################################################# ## # list of clear geos that are to be applied to the entire file global_clear_geo = [] # create one big geometry made out of all 'negative' (clear) polygons for apid in app_obj.gerber_obj.apertures: # first check if we have any clear_geometry (LPC) and if yes added it to the global_clear_geo if 'geometry' in app_obj.gerber_obj.apertures[apid]: for elem in app_obj.gerber_obj.apertures[apid]['geometry']: if 'clear' in elem: global_clear_geo.append(elem['clear']) log.warning("Found %d clear polygons." % len(global_clear_geo)) global_clear_geo = MultiPolygon(global_clear_geo) if isinstance(global_clear_geo, Polygon): global_clear_geo = list(global_clear_geo) # we subtract the big "negative" (clear) geometry from each solid polygon but only the part of # clear geometry that fits inside the solid. otherwise we may loose the solid for apid in app_obj.gerber_obj.apertures: temp_solid_geometry = [] if 'geometry' in app_obj.gerber_obj.apertures[apid]: # for elem in self.gerber_obj.apertures[apid]['geometry']: # if 'solid' in elem: # solid_geo = elem['solid'] # for clear_geo in global_clear_geo: # # Make sure that the clear_geo is within the solid_geo otherwise we loose # # the solid_geometry. We want for clear_geometry just to cut into solid_geometry not to # # delete it # if clear_geo.within(solid_geo): # solid_geo = solid_geo.difference(clear_geo) # try: # for poly in solid_geo: # new_elem = dict() # # new_elem['solid'] = poly # if 'clear' in elem: # new_elem['clear'] = poly # if 'follow' in elem: # new_elem['follow'] = poly # temp_elem.append(deepcopy(new_elem)) # except TypeError: # new_elem = dict() # new_elem['solid'] = solid_geo # if 'clear' in elem: # new_elem['clear'] = solid_geo # if 'follow' in elem: # new_elem['follow'] = solid_geo # temp_elem.append(deepcopy(new_elem)) for elem in app_obj.gerber_obj.apertures[apid]['geometry']: new_elem = dict() if 'solid' in elem: solid_geo = elem['solid'] for clear_geo in global_clear_geo: # Make sure that the clear_geo is within the solid_geo otherwise we loose # the solid_geometry. We want for clear_geometry just to cut into solid_geometry # not to delete it if clear_geo.within(solid_geo): solid_geo = solid_geo.difference(clear_geo) new_elem['solid'] = solid_geo if 'clear' in elem: new_elem['clear'] = elem['clear'] if 'follow' in elem: new_elem['follow'] = elem['follow'] temp_solid_geometry.append(deepcopy(new_elem)) app_obj.gerber_obj.apertures[apid]['geometry'] = deepcopy(temp_solid_geometry) log.warning("Polygon difference done for %d apertures." % len(app_obj.gerber_obj.apertures)) # Loading the Geometry into Editor Storage for ap_id, ap_dict in app_obj.gerber_obj.apertures.items(): app_obj.results.append(app_obj.pool.apply_async(app_obj.add_apertures, args=(ap_id, ap_dict))) output = list() for p in app_obj.results: output.append(p.get()) for elem in output: app_obj.storage_dict[elem[0]] = deepcopy(elem[1]) app_obj.mp_finished.emit(output) self.app.worker_task.emit({'fcn': worker_job, 'params': [self]}) @staticmethod def add_apertures(aperture_id, aperture_dict): storage_elem = list() storage_dict = dict() for k, v in list(aperture_dict.items()): try: if k == 'geometry': for geo_el in v: if geo_el: storage_elem.append(DrawToolShape(geo_el)) storage_dict[k] = storage_elem else: storage_dict[k] = aperture_dict[k] except Exception as e: log.debug("FlatCAMGrbEditor.edit_fcgerber().job_thread() --> %s" % str(e)) return [aperture_id, storage_dict] def on_multiprocessing_finished(self): self.app.proc_container.update_view_text(' %s' % _("Setting up the UI")) self.app.inform.emit('[success] %s.' % _("Adding geometry finished. Preparing the GUI")) self.set_ui() self.build_ui(first_run=True) self.plot_all() # HACK: enabling/disabling the cursor seams to somehow update the shapes making them more 'solid' # - perhaps is a bug in VisPy implementation self.app.app_cursor.enabled = False self.app.app_cursor.enabled = True self.app.inform.emit('[success] %s' % _("Finished loading the Gerber object into the editor.")) def update_fcgerber(self): """ Create a new Gerber object that contain the edited content of the source Gerber object :return: None """ new_grb_name = self.edited_obj_name # if the 'delayed plot' malfunctioned stop the QTimer try: self.plot_thread.stop() except Exception as e: log.debug("FlatCAMGrbEditor.update_fcgerber() --> %s" % str(e)) if "_edit" in self.edited_obj_name: try: _id = int(self.edited_obj_name[-1]) + 1 new_grb_name = self.edited_obj_name[:-1] + str(_id) except ValueError: new_grb_name += "_1" else: new_grb_name = self.edited_obj_name + "_edit" self.app.worker_task.emit({'fcn': self.new_edited_gerber, 'params': [new_grb_name, self.storage_dict]}) @staticmethod def update_options(obj): try: if not obj.options: obj.options = dict() obj.options['xmin'] = 0 obj.options['ymin'] = 0 obj.options['xmax'] = 0 obj.options['ymax'] = 0 return True else: return False except AttributeError: obj.options = dict() return True def new_edited_gerber(self, outname, aperture_storage): """ Creates a new Gerber object for the edited Gerber. Thread-safe. :param outname: Name of the resulting object. None causes the name to be that of the file. :type outname: str :param aperture_storage: a dictionary that holds all the objects geometry :return: None """ self.app.log.debug("Update the Gerber object with edited content. Source is: %s" % self.gerber_obj.options['name'].upper()) out_name = outname storage_dict = aperture_storage local_storage_dict = dict() for aperture in storage_dict: if 'geometry' in storage_dict[aperture]: # add aperture only if it has geometry if len(storage_dict[aperture]['geometry']) > 0: local_storage_dict[aperture] = deepcopy(storage_dict[aperture]) # How the object should be initialized def obj_init(grb_obj, app_obj): poly_buffer = [] follow_buffer = [] for storage_apid, storage_val in local_storage_dict.items(): grb_obj.apertures[storage_apid] = {} for k, val in storage_val.items(): if k == 'geometry': grb_obj.apertures[storage_apid][k] = [] for geo_el in val: geometric_data = geo_el.geo new_geo_el = dict() if 'solid' in geometric_data: new_geo_el['solid'] = geometric_data['solid'] poly_buffer.append(deepcopy(new_geo_el['solid'])) if 'follow' in geometric_data: # if isinstance(geometric_data['follow'], Polygon): # buff_val = -(int(storage_val['size']) / 2) # geo_f = (geometric_data['follow'].buffer(buff_val)).exterior # new_geo_el['follow'] = geo_f # else: # new_geo_el['follow'] = geometric_data['follow'] new_geo_el['follow'] = geometric_data['follow'] follow_buffer.append(deepcopy(new_geo_el['follow'])) else: if 'solid' in geometric_data: geo_f = geometric_data['solid'].exterior new_geo_el['follow'] = geo_f follow_buffer.append(deepcopy(new_geo_el['follow'])) if 'clear' in geometric_data: new_geo_el['clear'] = geometric_data['clear'] if new_geo_el: grb_obj.apertures[storage_apid][k].append(deepcopy(new_geo_el)) else: grb_obj.apertures[storage_apid][k] = val grb_obj.aperture_macros = deepcopy(self.gerber_obj.aperture_macros) new_poly = MultiPolygon(poly_buffer) new_poly = new_poly.buffer(0.00000001) new_poly = new_poly.buffer(-0.00000001) # for ad in grb_obj.apertures: # print(ad, grb_obj.apertures[ad]) try: __ = iter(new_poly) except TypeError: new_poly = [new_poly] grb_obj.solid_geometry = deepcopy(new_poly) grb_obj.follow_geometry = deepcopy(follow_buffer) for k, v in self.gerber_obj_options.items(): if k == 'name': grb_obj.options[k] = out_name else: grb_obj.options[k] = deepcopy(v) grb_obj.multigeo = False grb_obj.follow = False grb_obj.units = app_obj.defaults['units'] try: grb_obj.create_geometry() except KeyError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("There are no Aperture definitions in the file. Aborting Gerber creation.")) except Exception as e: msg = '[ERROR] %s' % \ _("An internal error has occurred. See shell.\n") msg += traceback.format_exc() app_obj.inform.emit(msg) raise grb_obj.source_file = self.app.export_gerber(obj_name=out_name, filename=None, local_use=grb_obj, use_thread=False) with self.app.proc_container.new(_("Creating Gerber.")): try: self.app.new_object("gerber", outname, obj_init) except Exception as e: log.error("Error on Edited object creation: %s" % str(e)) # make sure to clean the previous results self.results = list() return self.app.inform.emit('[success] %s' % _("Done. Gerber editing finished.")) # make sure to clean the previous results self.results = list() def on_tool_select(self, tool): """ Behavior of the toolbar. Tool initialization. :rtype : None """ current_tool = tool self.app.log.debug("on_tool_select('%s')" % tool) if self.last_aperture_selected is None and current_tool is not 'select': # self.draw_app.select_tool('select') self.complete = True current_tool = 'select' self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled. No aperture is selected")) # This is to make the group behave as radio group if current_tool in self.tools_gerber: if self.tools_gerber[current_tool]["button"].isChecked(): self.app.log.debug("%s is checked." % current_tool) for t in self.tools_gerber: if t != current_tool: self.tools_gerber[t]["button"].setChecked(False) # this is where the Editor toolbar classes (button's) are instantiated self.active_tool = self.tools_gerber[current_tool]["constructor"](self) # self.app.inform.emit(self.active_tool.start_msg) else: self.app.log.debug("%s is NOT checked." % current_tool) for t in self.tools_gerber: self.tools_gerber[t]["button"].setChecked(False) self.select_tool('select') self.active_tool = FCApertureSelect(self) def on_row_selected(self, row, col): if col == 0: key_modifier = QtWidgets.QApplication.keyboardModifiers() if self.app.defaults["global_mselect_key"] == 'Control': modifier_to_use = Qt.ControlModifier else: modifier_to_use = Qt.ShiftModifier if key_modifier == modifier_to_use: pass else: self.selected = [] try: selected_ap_id = self.apertures_table.item(row, 1).text() self.last_aperture_selected = copy(selected_ap_id) for obj in self.storage_dict[selected_ap_id]['geometry']: self.selected.append(obj) except Exception as e: self.app.log.debug(str(e)) self.plot_all() def toolbar_tool_toggle(self, key): """ :param key: key to update in self.options dictionary :return: """ self.options[key] = self.sender().isChecked() return self.options[key] def on_grb_shape_complete(self, storage=None, specific_shape=None, no_plot=False): """ :param storage: where to store the shape :param specific_shape: optional, the shape to be stored :param no_plot: use this if you want the added shape not plotted :return: """ self.app.log.debug("on_grb_shape_complete()") if specific_shape: geo = specific_shape else: geo = deepcopy(self.active_tool.geometry) if geo is None: return if storage is not None: # Add shape self.add_gerber_shape(geo, storage) else: stora = self.storage_dict[self.last_aperture_selected]['geometry'] self.add_gerber_shape(geo, storage=stora) # Remove any utility shapes self.delete_utility_geometry() self.tool_shape.clear(update=True) if no_plot is False: # Re-plot and reset tool. self.plot_all() def add_gerber_shape(self, shape_element, storage): """ Adds a shape to the shape storage. :param shape_element: Shape to be added. :type shape_element: DrawToolShape or DrawToolUtilityShape Geometry is stored as a dict with keys: solid, follow, clear, each value being a list of Shapely objects. The dict can have at least one of the mentioned keys :param storage: Where to store the shape :return: None """ # List of DrawToolShape? if isinstance(shape_element, list): for subshape in shape_element: self.add_gerber_shape(subshape, storage) return assert isinstance(shape_element, DrawToolShape), \ "Expected a DrawToolShape, got %s" % str(type(shape_element)) assert shape_element.geo is not None, \ "Shape object has empty geometry (None)" assert(isinstance(shape_element.geo, list) and len(shape_element.geo) > 0) or not \ isinstance(shape_element.geo, list), "Shape objects has empty geometry ([])" if isinstance(shape_element, DrawToolUtilityShape): self.utility.append(shape_element) else: storage.append(shape_element) def on_canvas_click(self, event): """ event.x and .y have canvas coordinates event.xdata and .ydata have plot coordinates :param event: Event object dispatched by VisPy :return: None """ if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 self.pos = self.canvas.translate_coords(event_pos) if self.app.grid_status() == True: self.pos = self.app.geo_editor.snap(self.pos[0], self.pos[1]) else: self.pos = (self.pos[0], self.pos[1]) if event.button == 1: self.app.ui.rel_position_label.setText("Dx: %.4f   Dy: " "%.4f    " % (0, 0)) # Selection with left mouse button if self.active_tool is not None: modifiers = QtWidgets.QApplication.keyboardModifiers() # If the SHIFT key is pressed when LMB is clicked then the coordinates are copied to clipboard if modifiers == QtCore.Qt.ShiftModifier: self.app.clipboard.setText( self.app.defaults["global_point_clipboard_format"] % (self.pos[0], self.pos[1]) ) self.app.inform.emit('[success] %s' % _("Coordinates copied to clipboard.")) return # Dispatch event to active_tool self.active_tool.click(self.app.geo_editor.snap(self.pos[0], self.pos[1])) # If it is a shape generating tool if isinstance(self.active_tool, FCShapeTool) and self.active_tool.complete: if self.current_storage is not None: self.on_grb_shape_complete(self.current_storage) self.build_ui() # MS: always return to the Select Tool if modifier key is not pressed # else return to the current tool key_modifier = QtWidgets.QApplication.keyboardModifiers() if self.app.defaults["global_mselect_key"] == 'Control': modifier_to_use = Qt.ControlModifier else: modifier_to_use = Qt.ShiftModifier # if modifier key is pressed then we add to the selected list the current shape but if it's already # in the selected list, we removed it. Therefore first click selects, second deselects. if key_modifier == modifier_to_use: self.select_tool(self.active_tool.name) else: # return to Select tool but not for FCPad if isinstance(self.active_tool, FCPad): self.select_tool(self.active_tool.name) else: self.select_tool("select") return if isinstance(self.active_tool, FCApertureSelect): self.plot_all() else: self.app.log.debug("No active tool to respond to click!") def on_grb_click_release(self, event): self.modifiers = QtWidgets.QApplication.keyboardModifiers() if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 pos_canvas = self.canvas.translate_coords(event_pos) if self.app.grid_status() == True: pos = self.app.geo_editor.snap(pos_canvas[0], pos_canvas[1]) else: pos = (pos_canvas[0], pos_canvas[1]) # if the released mouse button was RMB then test if it was a panning motion or not, if not it was a context # canvas menu try: if event.button == right_button: # right click if self.app.ui.popMenu.mouse_is_panning is False: if self.in_action is False: try: QtGui.QGuiApplication.restoreOverrideCursor() except Exception as e: log.debug("FlatCAMGrbEditor.on_grb_click_release() --> %s" % str(e)) if self.active_tool.complete is False and not isinstance(self.active_tool, FCApertureSelect): self.active_tool.complete = True self.in_action = False self.delete_utility_geometry() self.app.inform.emit('[success] %s' % _("Done.")) self.select_tool('select') else: self.app.cursor = QtGui.QCursor() self.app.populate_cmenu_grids() self.app.ui.popMenu.popup(self.app.cursor.pos()) else: # if right click on canvas and the active tool need to be finished (like Path or Polygon) # right mouse click will finish the action if isinstance(self.active_tool, FCShapeTool): self.active_tool.click(self.app.geo_editor.snap(self.x, self.y)) self.active_tool.make() if self.active_tool.complete: self.on_grb_shape_complete() self.app.inform.emit('[success] %s' % _("Done.")) # MS: always return to the Select Tool if modifier key is not pressed # else return to the current tool but not for FCTrack if isinstance(self.active_tool, FCTrack): self.select_tool(self.active_tool.name) else: key_modifier = QtWidgets.QApplication.keyboardModifiers() if (self.app.defaults["global_mselect_key"] == 'Control' and key_modifier == Qt.ControlModifier) or \ (self.app.defaults["global_mselect_key"] == 'Shift' and key_modifier == Qt.ShiftModifier): self.select_tool(self.active_tool.name) else: self.select_tool("select") except Exception as e: log.warning("FlatCAMGrbEditor.on_grb_click_release() RMB click --> Error: %s" % str(e)) raise # if the released mouse button was LMB then test if we had a right-to-left selection or a left-to-right # selection and then select a type of selection ("enclosing" or "touching") try: if event.button == 1: # left click if self.app.selection_type is not None: self.draw_selection_area_handler(self.pos, pos, self.app.selection_type) self.app.selection_type = None elif isinstance(self.active_tool, FCApertureSelect): self.active_tool.click_release((self.pos[0], self.pos[1])) # if there are selected objects then plot them if self.selected: self.plot_all() except Exception as e: log.warning("FlatCAMGrbEditor.on_grb_click_release() LMB click --> Error: %s" % str(e)) raise def draw_selection_area_handler(self, start_pos, end_pos, sel_type): """ :param start_pos: mouse position when the selection LMB click was done :param end_pos: mouse position when the left mouse button is released :param sel_type: if True it's a left to right selection (enclosure), if False it's a 'touch' selection :return: """ poly_selection = Polygon([start_pos, (end_pos[0], start_pos[1]), end_pos, (start_pos[0], end_pos[1])]) sel_aperture = set() self.apertures_table.clearSelection() self.app.delete_selection_shape() for storage in self.storage_dict: for obj in self.storage_dict[storage]['geometry']: if 'solid' in obj.geo: geometric_data = obj.geo['solid'] if (sel_type is True and poly_selection.contains(geometric_data)) or \ (sel_type is False and poly_selection.intersects(geometric_data)): if self.key == self.app.defaults["global_mselect_key"]: if obj in self.selected: self.selected.remove(obj) else: # add the object to the selected shapes self.selected.append(obj) sel_aperture.add(storage) else: self.selected.append(obj) sel_aperture.add(storage) try: self.apertures_table.cellPressed.disconnect() except Exception as e: log.debug("FlatCAMGrbEditor.draw_selection_Area_handler() --> %s" % str(e)) # select the aperture code of the selected geometry, in the tool table self.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.MultiSelection) for aper in sel_aperture: for row_to_sel in range(self.apertures_table.rowCount()): if str(aper) == self.apertures_table.item(row_to_sel, 1).text(): if row_to_sel not in set(index.row() for index in self.apertures_table.selectedIndexes()): self.apertures_table.selectRow(row_to_sel) self.last_aperture_selected = aper self.apertures_table.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.apertures_table.cellPressed.connect(self.on_row_selected) self.plot_all() def on_canvas_move(self, event): """ Called on 'mouse_move' event event.pos have canvas screen coordinates :param event: Event object dispatched by VisPy SceneCavas :return: None """ if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 pos_canvas = self.canvas.translate_coords(event_pos) event.xdata, event.ydata = pos_canvas[0], pos_canvas[1] self.x = event.xdata self.y = event.ydata self.app.ui.popMenu.mouse_is_panning = False # if the RMB is clicked and mouse is moving over plot then 'panning_action' is True if event.button == right_button and event_is_dragging == 1: self.app.ui.popMenu.mouse_is_panning = True return try: x = float(event.xdata) y = float(event.ydata) except TypeError: return if self.active_tool is None: return # # ## Snap coordinates if self.app.grid_status() == True: x, y = self.app.geo_editor.snap(x, y) # Update cursor self.app.app_cursor.set_data(np.asarray([(x, y)]), symbol='++', edge_color=self.app.cursor_color_3D, size=self.app.defaults["global_cursor_size"]) self.snap_x = x self.snap_y = y # update the position label in the infobar since the APP mouse event handlers are disconnected self.app.ui.position_label.setText("    X: %.4f   " "Y: %.4f" % (x, y)) if self.pos is None: self.pos = (0, 0) dx = x - self.pos[0] dy = y - self.pos[1] # update the reference position label in the infobar since the APP mouse event handlers are disconnected self.app.ui.rel_position_label.setText("Dx: %.4f   Dy: " "%.4f    " % (dx, dy)) self.update_utility_geometry(data=(x, y)) # # ## Selection area on canvas section # ## if event_is_dragging == 1 and event.button == 1: # I make an exception for FCRegion and FCTrack because clicking and dragging while making regions can # create strange issues like missing a point in a track/region if isinstance(self.active_tool, FCRegion) or isinstance(self.active_tool, FCTrack): pass else: dx = pos_canvas[0] - self.pos[0] self.app.delete_selection_shape() if dx < 0: self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y), color=self.app.defaults["global_alt_sel_line"], face_color=self.app.defaults['global_alt_sel_fill']) self.app.selection_type = False else: self.app.draw_moving_selection_shape((self.pos[0], self.pos[1]), (x, y)) self.app.selection_type = True else: self.app.selection_type = None def update_utility_geometry(self, data): # # ## Utility geometry (animated) geo = self.active_tool.utility_geometry(data=data) if isinstance(geo, DrawToolShape) and geo.geo is not None: # Remove any previous utility shape self.tool_shape.clear(update=True) self.draw_utility_geometry(geo=geo) def draw_utility_geometry(self, geo): if type(geo.geo) == list: for el in geo.geo: geometric_data = el['solid'] # Add the new utility shape self.tool_shape.add( shape=geometric_data, color=(self.app.defaults["global_draw_color"] + '80'), # face_color=self.app.defaults['global_alt_sel_fill'], update=False, layer=0, tolerance=None ) else: geometric_data = geo.geo['solid'] # Add the new utility shape self.tool_shape.add( shape=geometric_data, color=(self.app.defaults["global_draw_color"] + '80'), # face_color=self.app.defaults['global_alt_sel_fill'], update=False, layer=0, tolerance=None ) self.tool_shape.redraw() def plot_all(self): """ Plots all shapes in the editor. :return: None :rtype: None """ with self.app.proc_container.new("Plotting"): self.shapes.clear(update=True) for storage in self.storage_dict: # fix for apertures with now geometry inside if 'geometry' in self.storage_dict[storage]: for elem in self.storage_dict[storage]['geometry']: if 'solid' in elem.geo: geometric_data = elem.geo['solid'] if geometric_data is None: continue if elem in self.selected: self.plot_shape(geometry=geometric_data, color=self.app.defaults['global_sel_draw_color'] + 'FF', linewidth=2) else: self.plot_shape(geometry=geometric_data, color=self.app.defaults['global_draw_color'] + 'FF') if self.utility: for elem in self.utility: geometric_data = elem.geo['solid'] self.plot_shape(geometry=geometric_data, linewidth=1) continue self.shapes.redraw() def plot_shape(self, geometry=None, color='#000000FF', linewidth=1): """ Plots a geometric object or list of objects without rendering. Plotted objects are returned as a list. This allows for efficient/animated rendering. :param geometry: Geometry to be plotted (Any Shapely.geom kind or list of such) :param color: Shape color :param linewidth: Width of lines in # of pixels. :return: List of plotted elements. """ if geometry is None: geometry = self.active_tool.geometry try: self.shapes.add(shape=geometry.geo, color=color, face_color=color, layer=0, tolerance=self.tolerance) except AttributeError as e: if type(geometry) == Point: return if len(color) == 9: color = color[:7] + 'AF' self.shapes.add(shape=geometry, color=color, face_color=color, layer=0, tolerance=self.tolerance) # def start_delayed_plot(self, check_period): # """ # This function starts an QTImer and it will periodically check if all the workers finish the plotting functions # # :param check_period: time at which to check periodically if all plots finished to be plotted # :return: # """ # # # self.plot_thread = threading.Thread(target=lambda: self.check_plot_finished(check_period)) # # self.plot_thread.start() # log.debug("FlatCAMGrbEditor --> Delayed Plot started.") # self.plot_thread = QtCore.QTimer() # self.plot_thread.setInterval(check_period) # self.plot_finished.connect(self.setup_ui_after_delayed_plot) # self.plot_thread.timeout.connect(self.check_plot_finished) # self.plot_thread.start() # # def check_plot_finished(self): # """ # If all the promises made are finished then all the shapes are in shapes_storage and can be plotted safely and # then the UI is rebuilt accordingly. # :return: # """ # # try: # if not self.grb_plot_promises: # self.plot_thread.stop() # self.plot_finished.emit() # log.debug("FlatCAMGrbEditor --> delayed_plot finished") # except Exception as e: # traceback.print_exc() # # def setup_ui_after_delayed_plot(self): # self.plot_finished.disconnect() # # # now that we have data, create the GUI interface and add it to the Tool Tab # self.build_ui(first_run=True) # self.plot_all() # # # HACK: enabling/disabling the cursor seams to somehow update the shapes making them more 'solid' # # - perhaps is a bug in VisPy implementation # self.app.app_cursor.enabled = False # self.app.app_cursor.enabled = True def get_selected(self): """ Returns list of shapes that are selected in the editor. :return: List of shapes. """ # return [shape for shape in self.shape_buffer if shape["selected"]] return self.selected def delete_selected(self): temp_ref = [s for s in self.selected] if len(temp_ref) == 0: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Failed. No aperture geometry is selected.")) return for shape_sel in temp_ref: self.delete_shape(shape_sel) self.selected = [] self.build_ui() self.app.inform.emit('[success] %s' % _("Done. Apertures geometry deleted.")) def delete_shape(self, geo_el): self.is_modified = True if geo_el in self.utility: self.utility.remove(geo_el) return for storage in self.storage_dict: try: if geo_el in self.storage_dict[storage]['geometry']: self.storage_dict[storage]['geometry'].remove(geo_el) except KeyError: pass if geo_el in self.selected: self.selected.remove(geo_el) # TODO: Check performance def delete_utility_geometry(self): # for_deletion = [shape for shape in self.shape_buffer if shape.utility] # for_deletion = [shape for shape in self.storage.get_objects() if shape.utility] for_deletion = [geo_el for geo_el in self.utility] for geo_el in for_deletion: self.delete_shape(geo_el) self.tool_shape.clear(update=True) self.tool_shape.redraw() def on_delete_btn(self): self.delete_selected() self.plot_all() def select_tool(self, toolname): """ Selects a drawing tool. Impacts the object and GUI. :param toolname: Name of the tool. :return: None """ self.tools_gerber[toolname]["button"].setChecked(True) self.on_tool_select(toolname) def set_selected(self, geo_el): # Remove and add to the end. if geo_el in self.selected: self.selected.remove(geo_el) self.selected.append(geo_el) def set_unselected(self, geo_el): if geo_el in self.selected: self.selected.remove(geo_el) def on_array_type_combo(self): if self.array_type_combo.currentIndex() == 0: self.array_circular_frame.hide() self.array_linear_frame.show() else: self.delete_utility_geometry() self.array_circular_frame.show() self.array_linear_frame.hide() self.app.inform.emit(_("Click on the circular array Center position")) def on_linear_angle_radio(self): val = self.pad_axis_radio.get_value() if val == 'A': self.linear_angle_spinner.show() self.linear_angle_label.show() else: self.linear_angle_spinner.hide() self.linear_angle_label.hide() def on_copy_button(self): self.select_tool('copy') return def on_move_button(self): self.select_tool('move') return def on_pad_add(self): self.select_tool('pad') def on_pad_add_array(self): self.select_tool('array') def on_track_add(self): self.select_tool('track') def on_region_add(self): self.select_tool('region') def on_poligonize(self): self.select_tool('poligonize') def on_disc_add(self): self.select_tool('disc') def on_add_semidisc(self): self.select_tool('semidisc') def on_buffer(self): buff_value = 0.01 log.debug("FlatCAMGrbEditor.on_buffer()") try: buff_value = float(self.buffer_distance_entry.get_value()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: buff_value = float(self.buffer_distance_entry.get_value().replace(',', '.')) self.buffer_distance_entry.set_value(buff_value) except ValueError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Buffer distance value is missing or wrong format. Add it and retry.")) return # the cb index start from 0 but the join styles for the buffer start from 1 therefore the adjustment # I populated the combobox such that the index coincide with the join styles value (which is really an INT) join_style = self.buffer_corner_cb.currentIndex() + 1 def buffer_recursion(geom_el, selection): if type(geom_el) == list: geoms = list() for local_geom in geom_el: geoms.append(buffer_recursion(local_geom, selection=selection)) return geoms else: if geom_el in selection: geometric_data = geom_el.geo buffered_geom_el = dict() if 'solid' in geometric_data: buffered_geom_el['solid'] = geometric_data['solid'].buffer(buff_value, join_style=join_style) if 'follow' in geometric_data: buffered_geom_el['follow'] = geometric_data['follow'].buffer(buff_value, join_style=join_style) if 'clear' in geometric_data: buffered_geom_el['clear'] = geometric_data['clear'].buffer(buff_value, join_style=join_style) return DrawToolShape(buffered_geom_el) else: return geom_el if not self.apertures_table.selectedItems(): self.app.inform.emit('[WARNING_NOTCL] %s' % _("No aperture to buffer. Select at least one aperture and try again.")) return for x in self.apertures_table.selectedItems(): try: apid = self.apertures_table.item(x.row(), 1).text() temp_storage = deepcopy(buffer_recursion(self.storage_dict[apid]['geometry'], self.selected)) self.storage_dict[apid]['geometry'] = [] self.storage_dict[apid]['geometry'] = temp_storage except Exception as e: log.debug("FlatCAMGrbEditor.buffer() --> %s" % str(e)) self.app.inform.emit('[ERROR_NOTCL] %s\n%s' % (_("Failed."), str(traceback.print_exc()))) return self.plot_all() self.app.inform.emit('[success] %s' % _("Done. Buffer Tool completed.")) def on_scale(self): scale_factor = 1.0 log.debug("FlatCAMGrbEditor.on_scale()") try: scale_factor = float(self.scale_factor_entry.get_value()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: scale_factor = float(self.scale_factor_entry.get_value().replace(',', '.')) self.scale_factor_entry.set_value(scale_factor) except ValueError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Scale factor value is missing or wrong format. Add it and retry.")) return def scale_recursion(geom_el, selection): if type(geom_el) == list: geoms = list() for local_geom in geom_el: geoms.append(scale_recursion(local_geom, selection=selection)) return geoms else: if geom_el in selection: geometric_data = geom_el.geo scaled_geom_el = dict() if 'solid' in geometric_data: scaled_geom_el['solid'] = affinity.scale( geometric_data['solid'], scale_factor, scale_factor, origin='center' ) if 'follow' in geometric_data: scaled_geom_el['follow'] = affinity.scale( geometric_data['follow'], scale_factor, scale_factor, origin='center' ) if 'clear' in geometric_data: scaled_geom_el['clear'] = affinity.scale( geometric_data['clear'], scale_factor, scale_factor, origin='center' ) return DrawToolShape(scaled_geom_el) else: return geom_el if not self.apertures_table.selectedItems(): self.app.inform.emit('[WARNING_NOTCL] %s' % _("No aperture to scale. Select at least one aperture and try again.")) return for x in self.apertures_table.selectedItems(): try: apid = self.apertures_table.item(x.row(), 1).text() temp_storage = deepcopy(scale_recursion(self.storage_dict[apid]['geometry'], self.selected)) self.storage_dict[apid]['geometry'] = [] self.storage_dict[apid]['geometry'] = temp_storage except Exception as e: log.debug("FlatCAMGrbEditor.on_scale() --> %s" % str(e)) self.plot_all() self.app.inform.emit('[success] %s' % _("Done. Scale Tool completed.")) def on_markarea(self): # clear previous marking self.ma_annotation.clear(update=True) self.units = self.app.defaults['units'].upper() text = [] position = [] for apid in self.storage_dict: if 'geometry' in self.storage_dict[apid]: for geo_el in self.storage_dict[apid]['geometry']: if 'solid' in geo_el.geo: area = geo_el.geo['solid'].area try: upper_threshold_val = self.ma_upper_threshold_entry.get_value() except Exception as e: return try: lower_threshold_val = self.ma_lower_threshold_entry.get_value() except Exception as e: lower_threshold_val = 0.0 if float(upper_threshold_val) > area > float(lower_threshold_val): current_pos = geo_el.geo['solid'].exterior.coords[-1] text_elem = '%.*f' % (self.decimals, area) text.append(text_elem) position.append(current_pos) self.geo_to_delete.append(geo_el) if text: self.ma_annotation.set(text=text, pos=position, visible=True, font_size=self.app.defaults["cncjob_annotation_fontsize"], color='#000000FF') self.app.inform.emit('[success] %s' % _("Polygons marked.")) else: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No polygons were marked. None fit within the limits.")) def delete_marked_polygons(self): for shape_sel in self.geo_to_delete: self.delete_shape(shape_sel) self.build_ui() self.plot_all() self.app.inform.emit('[success] %s' % _("Done. Apertures geometry deleted.")) def on_eraser(self): self.select_tool('eraser') def on_transform(self): if type(self.active_tool) == FCTransform: self.select_tool('select') else: self.select_tool('transform') def hide_tool(self, tool_name): # self.app.ui.notebook.setTabText(2, _("Tools")) try: if tool_name == 'all': self.apertures_frame.hide() if tool_name == 'select': self.apertures_frame.show() if tool_name == 'buffer' or tool_name == 'all': self.buffer_tool_frame.hide() if tool_name == 'scale' or tool_name == 'all': self.scale_tool_frame.hide() if tool_name == 'markarea' or tool_name == 'all': self.ma_tool_frame.hide() except Exception as e: log.debug("FlatCAMGrbEditor.hide_tool() --> %s" % str(e)) self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) class TransformEditorTool(FlatCAMTool): """ Inputs to specify how to paint the selected polygons. """ toolName = _("Transform Tool") rotateName = _("Rotate") skewName = _("Skew/Shear") scaleName = _("Scale") flipName = _("Mirror (Flip)") offsetName = _("Offset") def __init__(self, app, draw_app): FlatCAMTool.__init__(self, app) self.app = app self.draw_app = draw_app self.decimals = self.app.decimals self.transform_lay = QtWidgets.QVBoxLayout() self.layout.addLayout(self.transform_lay) # Title title_label = QtWidgets.QLabel("%s %s" % (_('Editor'), self.toolName)) title_label.setStyleSheet(""" QLabel { font-size: 16px; font-weight: bold; } """) self.transform_lay.addWidget(title_label) self.empty_label = QtWidgets.QLabel("") self.empty_label.setMinimumWidth(50) self.empty_label1 = QtWidgets.QLabel("") self.empty_label1.setMinimumWidth(70) self.empty_label2 = QtWidgets.QLabel("") self.empty_label2.setMinimumWidth(70) self.empty_label3 = QtWidgets.QLabel("") self.empty_label3.setMinimumWidth(70) self.empty_label4 = QtWidgets.QLabel("") self.empty_label4.setMinimumWidth(70) self.transform_lay.addWidget(self.empty_label) # Rotate Title rotate_title_label = QtWidgets.QLabel("%s" % self.rotateName) self.transform_lay.addWidget(rotate_title_label) # Layout form_layout = QtWidgets.QFormLayout() self.transform_lay.addLayout(form_layout) form_child = QtWidgets.QHBoxLayout() self.rotate_label = QtWidgets.QLabel(_("Angle:")) self.rotate_label.setToolTip( _("Angle for Rotation action, in degrees.\n" "Float number between -360 and 359.\n" "Positive numbers for CW motion.\n" "Negative numbers for CCW motion.") ) self.rotate_label.setMinimumWidth(50) self.rotate_entry = FCDoubleSpinner() self.rotate_entry.set_precision(self.decimals) self.rotate_entry.set_range(-360.0000, 360.0000) self.rotate_entry.setSingleStep(0.1) self.rotate_entry.setWrapping(True) self.rotate_button = FCButton() self.rotate_button.set_value(_("Rotate")) self.rotate_button.setToolTip( _("Rotate the selected shape(s).\n" "The point of reference is the middle of\n" "the bounding box for all selected shapes.") ) self.rotate_button.setMinimumWidth(60) form_child.addWidget(self.rotate_entry) form_child.addWidget(self.rotate_button) form_layout.addRow(self.rotate_label, form_child) self.transform_lay.addWidget(self.empty_label1) # Skew Title skew_title_label = QtWidgets.QLabel("%s" % self.skewName) self.transform_lay.addWidget(skew_title_label) # Form Layout form1_layout = QtWidgets.QFormLayout() self.transform_lay.addLayout(form1_layout) form1_child_1 = QtWidgets.QHBoxLayout() form1_child_2 = QtWidgets.QHBoxLayout() self.skewx_label = QtWidgets.QLabel(_("Angle X:")) self.skewx_label.setToolTip( _("Angle for Skew action, in degrees.\n" "Float number between -360 and 359.") ) self.skewx_label.setMinimumWidth(50) self.skewx_entry = FCDoubleSpinner() self.skewx_entry.set_precision(self.decimals) self.skewx_entry.set_range(-360.0000, 360.0000) self.skewx_entry.setSingleStep(0.1) self.skewx_entry.setWrapping(True) self.skewx_button = FCButton() self.skewx_button.set_value(_("Skew X")) self.skewx_button.setToolTip( _("Skew/shear the selected shape(s).\n" "The point of reference is the middle of\n" "the bounding box for all selected shapes.")) self.skewx_button.setMinimumWidth(60) self.skewy_label = QtWidgets.QLabel(_("Angle Y:")) self.skewy_label.setToolTip( _("Angle for Skew action, in degrees.\n" "Float number between -360 and 359.") ) self.skewy_label.setMinimumWidth(50) self.skewy_entry = FCDoubleSpinner() self.skewy_entry.set_precision(self.decimals) self.skewy_entry.set_range(-360.0000, 360.0000) self.skewy_entry.setSingleStep(0.1) self.skewy_entry.setWrapping(True) self.skewy_button = FCButton() self.skewy_button.set_value(_("Skew Y")) self.skewy_button.setToolTip( _("Skew/shear the selected shape(s).\n" "The point of reference is the middle of\n" "the bounding box for all selected shapes.")) self.skewy_button.setMinimumWidth(60) form1_child_1.addWidget(self.skewx_entry) form1_child_1.addWidget(self.skewx_button) form1_child_2.addWidget(self.skewy_entry) form1_child_2.addWidget(self.skewy_button) form1_layout.addRow(self.skewx_label, form1_child_1) form1_layout.addRow(self.skewy_label, form1_child_2) self.transform_lay.addWidget(self.empty_label2) # Scale Title scale_title_label = QtWidgets.QLabel("%s" % self.scaleName) self.transform_lay.addWidget(scale_title_label) # Form Layout form2_layout = QtWidgets.QFormLayout() self.transform_lay.addLayout(form2_layout) form2_child_1 = QtWidgets.QHBoxLayout() form2_child_2 = QtWidgets.QHBoxLayout() self.scalex_label = QtWidgets.QLabel(_("Factor X:")) self.scalex_label.setToolTip( _("Factor for Scale action over X axis.") ) self.scalex_label.setMinimumWidth(50) self.scalex_entry = FCDoubleSpinner() self.scalex_entry.set_precision(self.decimals) self.scalex_entry.set_range(0.0000, 9999.9999) self.scalex_entry.setSingleStep(0.1) self.scalex_entry.setWrapping(True) self.scalex_button = FCButton() self.scalex_button.set_value(_("Scale X")) self.scalex_button.setToolTip( _("Scale the selected shape(s).\n" "The point of reference depends on \n" "the Scale reference checkbox state.")) self.scalex_button.setMinimumWidth(60) self.scaley_label = QtWidgets.QLabel(_("Factor Y:")) self.scaley_label.setToolTip( _("Factor for Scale action over Y axis.") ) self.scaley_label.setMinimumWidth(50) self.scaley_entry = FCDoubleSpinner() self.scaley_entry.set_precision(self.decimals) self.scaley_entry.set_range(0.0000, 9999.9999) self.scaley_entry.setSingleStep(0.1) self.scaley_entry.setWrapping(True) self.scaley_button = FCButton() self.scaley_button.set_value(_("Scale Y")) self.scaley_button.setToolTip( _("Scale the selected shape(s).\n" "The point of reference depends on \n" "the Scale reference checkbox state.")) self.scaley_button.setMinimumWidth(60) self.scale_link_cb = FCCheckBox() self.scale_link_cb.set_value(True) self.scale_link_cb.setText(_("Link")) self.scale_link_cb.setToolTip( _("Scale the selected shape(s)\n" "using the Scale Factor X for both axis.")) self.scale_link_cb.setMinimumWidth(50) self.scale_zero_ref_cb = FCCheckBox() self.scale_zero_ref_cb.set_value(True) self.scale_zero_ref_cb.setText(_("Scale Reference")) self.scale_zero_ref_cb.setToolTip( _("Scale the selected shape(s)\n" "using the origin reference when checked,\n" "and the center of the biggest bounding box\n" "of the selected shapes when unchecked.")) form2_child_1.addWidget(self.scalex_entry) form2_child_1.addWidget(self.scalex_button) form2_child_2.addWidget(self.scaley_entry) form2_child_2.addWidget(self.scaley_button) form2_layout.addRow(self.scalex_label, form2_child_1) form2_layout.addRow(self.scaley_label, form2_child_2) form2_layout.addRow(self.scale_link_cb, self.scale_zero_ref_cb) self.ois_scale = OptionalInputSection(self.scale_link_cb, [self.scaley_entry, self.scaley_button], logic=False) self.transform_lay.addWidget(self.empty_label3) # Offset Title offset_title_label = QtWidgets.QLabel("%s" % self.offsetName) self.transform_lay.addWidget(offset_title_label) # Form Layout form3_layout = QtWidgets.QFormLayout() self.transform_lay.addLayout(form3_layout) form3_child_1 = QtWidgets.QHBoxLayout() form3_child_2 = QtWidgets.QHBoxLayout() self.offx_label = QtWidgets.QLabel(_("Value X:")) self.offx_label.setToolTip( _("Value for Offset action on X axis.") ) self.offx_label.setMinimumWidth(50) self.offx_entry = FCDoubleSpinner() self.offx_entry.set_precision(self.decimals) self.offx_entry.set_range(-9999.9999, 9999.9999) self.offx_entry.setSingleStep(0.1) self.offx_entry.setWrapping(True) self.offx_button = FCButton() self.offx_button.set_value(_("Offset X")) self.offx_button.setToolTip( _("Offset the selected shape(s).\n" "The point of reference is the middle of\n" "the bounding box for all selected shapes.\n") ) self.offx_button.setMinimumWidth(60) self.offy_label = QtWidgets.QLabel(_("Value Y:")) self.offy_label.setToolTip( _("Value for Offset action on Y axis.") ) self.offy_label.setMinimumWidth(50) self.offy_entry = FCDoubleSpinner() self.offy_entry.set_precision(self.decimals) self.offy_entry.set_range(-9999.9999, 9999.9999) self.offy_entry.setSingleStep(0.1) self.offy_entry.setWrapping(True) self.offy_button = FCButton() self.offy_button.set_value(_("Offset Y")) self.offy_button.setToolTip( _("Offset the selected shape(s).\n" "The point of reference is the middle of\n" "the bounding box for all selected shapes.\n") ) self.offy_button.setMinimumWidth(60) form3_child_1.addWidget(self.offx_entry) form3_child_1.addWidget(self.offx_button) form3_child_2.addWidget(self.offy_entry) form3_child_2.addWidget(self.offy_button) form3_layout.addRow(self.offx_label, form3_child_1) form3_layout.addRow(self.offy_label, form3_child_2) self.transform_lay.addWidget(self.empty_label4) # Flip Title flip_title_label = QtWidgets.QLabel("%s" % self.flipName) self.transform_lay.addWidget(flip_title_label) # Form Layout form4_layout = QtWidgets.QFormLayout() form4_child_hlay = QtWidgets.QHBoxLayout() self.transform_lay.addLayout(form4_child_hlay) self.transform_lay.addLayout(form4_layout) form4_child_1 = QtWidgets.QHBoxLayout() self.flipx_button = FCButton() self.flipx_button.set_value(_("Flip on X")) self.flipx_button.setToolTip( _("Flip the selected shape(s) over the X axis.\n" "Does not create a new shape.") ) self.flipy_button = FCButton() self.flipy_button.set_value(_("Flip on Y")) self.flipy_button.setToolTip( _("Flip the selected shape(s) over the X axis.\n" "Does not create a new shape.") ) self.flip_ref_cb = FCCheckBox() self.flip_ref_cb.set_value(True) self.flip_ref_cb.setText(_("Ref Pt")) self.flip_ref_cb.setToolTip( _("Flip the selected shape(s)\n" "around the point in Point Entry Field.\n" "\n" "The point coordinates can be captured by\n" "left click on canvas together with pressing\n" "SHIFT key. \n" "Then click Add button to insert coordinates.\n" "Or enter the coords in format (x, y) in the\n" "Point Entry field and click Flip on X(Y)") ) self.flip_ref_cb.setMinimumWidth(50) self.flip_ref_label = QtWidgets.QLabel(_("Point:")) self.flip_ref_label.setToolTip( _("Coordinates in format (x, y) used as reference for mirroring.\n" "The 'x' in (x, y) will be used when using Flip on X and\n" "the 'y' in (x, y) will be used when using Flip on Y.") ) self.flip_ref_label.setMinimumWidth(50) self.flip_ref_entry = EvalEntry2("(0, 0)") self.flip_ref_entry.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) # self.flip_ref_entry.setFixedWidth(60) self.flip_ref_button = FCButton() self.flip_ref_button.set_value(_("Add")) self.flip_ref_button.setToolTip( _("The point coordinates can be captured by\n" "left click on canvas together with pressing\n" "SHIFT key. Then click Add button to insert.") ) self.flip_ref_button.setMinimumWidth(60) form4_child_hlay.addWidget(self.flipx_button) form4_child_hlay.addWidget(self.flipy_button) form4_child_1.addWidget(self.flip_ref_entry) form4_child_1.addWidget(self.flip_ref_button) form4_layout.addRow(self.flip_ref_cb) form4_layout.addRow(self.flip_ref_label, form4_child_1) self.ois_flip = OptionalInputSection(self.flip_ref_cb, [self.flip_ref_entry, self.flip_ref_button], logic=True) self.transform_lay.addStretch() # Signals self.rotate_button.clicked.connect(self.on_rotate) self.skewx_button.clicked.connect(self.on_skewx) self.skewy_button.clicked.connect(self.on_skewy) self.scalex_button.clicked.connect(self.on_scalex) self.scaley_button.clicked.connect(self.on_scaley) self.offx_button.clicked.connect(self.on_offx) self.offy_button.clicked.connect(self.on_offy) self.flipx_button.clicked.connect(self.on_flipx) self.flipy_button.clicked.connect(self.on_flipy) self.flip_ref_button.clicked.connect(self.on_flip_add_coords) self.rotate_entry.editingFinished.connect(self.on_rotate) self.skewx_entry.editingFinished.connect(self.on_skewx) self.skewy_entry.editingFinished.connect(self.on_skewy) self.scalex_entry.editingFinished.connect(self.on_scalex) self.scaley_entry.editingFinished.connect(self.on_scaley) self.offx_entry.editingFinished.connect(self.on_offx) self.offy_entry.editingFinished.connect(self.on_offy) self.set_tool_ui() def run(self, toggle=True): self.app.report_usage("Geo Editor Transform Tool()") # if the splitter is hidden, display it, else hide it but only if the current widget is the same if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) if toggle: try: if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName: self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) else: self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab) except AttributeError: pass FlatCAMTool.run(self) self.set_tool_ui() self.app.ui.notebook.setTabText(2, _("Transform Tool")) def install(self, icon=None, separator=None, **kwargs): FlatCAMTool.install(self, icon, separator, shortcut='ALT+T', **kwargs) def set_tool_ui(self): # Initialize form if self.app.defaults["tools_transform_rotate"]: self.rotate_entry.set_value(self.app.defaults["tools_transform_rotate"]) else: self.rotate_entry.set_value(0.0) if self.app.defaults["tools_transform_skew_x"]: self.skewx_entry.set_value(self.app.defaults["tools_transform_skew_x"]) else: self.skewx_entry.set_value(0.0) if self.app.defaults["tools_transform_skew_y"]: self.skewy_entry.set_value(self.app.defaults["tools_transform_skew_y"]) else: self.skewy_entry.set_value(0.0) if self.app.defaults["tools_transform_scale_x"]: self.scalex_entry.set_value(self.app.defaults["tools_transform_scale_x"]) else: self.scalex_entry.set_value(1.0) if self.app.defaults["tools_transform_scale_y"]: self.scaley_entry.set_value(self.app.defaults["tools_transform_scale_y"]) else: self.scaley_entry.set_value(1.0) if self.app.defaults["tools_transform_scale_link"]: self.scale_link_cb.set_value(self.app.defaults["tools_transform_scale_link"]) else: self.scale_link_cb.set_value(True) if self.app.defaults["tools_transform_scale_reference"]: self.scale_zero_ref_cb.set_value(self.app.defaults["tools_transform_scale_reference"]) else: self.scale_zero_ref_cb.set_value(True) if self.app.defaults["tools_transform_offset_x"]: self.offx_entry.set_value(self.app.defaults["tools_transform_offset_x"]) else: self.offx_entry.set_value(0.0) if self.app.defaults["tools_transform_offset_y"]: self.offy_entry.set_value(self.app.defaults["tools_transform_offset_y"]) else: self.offy_entry.set_value(0.0) if self.app.defaults["tools_transform_mirror_reference"]: self.flip_ref_cb.set_value(self.app.defaults["tools_transform_mirror_reference"]) else: self.flip_ref_cb.set_value(False) if self.app.defaults["tools_transform_mirror_point"]: self.flip_ref_entry.set_value(self.app.defaults["tools_transform_mirror_point"]) else: self.flip_ref_entry.set_value((0, 0)) def template(self): if not self.fcdraw.selected: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Transformation cancelled. No shape selected.")) return self.draw_app.select_tool("select") self.app.ui.notebook.setTabText(2, "Tools") self.app.ui.notebook.setCurrentWidget(self.app.ui.project_tab) self.app.ui.splitter.setSizes([0, 1]) def on_rotate(self, sig=None, val=None): if val: value = val else: value = float(self.rotate_entry.get_value()) self.app.worker_task.emit({'fcn': self.on_rotate_action, 'params': [value]}) # self.on_rotate_action(value) return def on_flipx(self): # self.on_flip("Y") axis = 'Y' self.app.worker_task.emit({'fcn': self.on_flip, 'params': [axis]}) return def on_flipy(self): # self.on_flip("X") axis = 'X' self.app.worker_task.emit({'fcn': self.on_flip, 'params': [axis]}) return def on_flip_add_coords(self): val = self.app.clipboard.text() self.flip_ref_entry.set_value(val) def on_skewx(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to skew on the X axis :return: """ if val: value = val else: value = float(self.skewx_entry.get_value()) # self.on_skew("X", value) axis = 'X' self.app.worker_task.emit({'fcn': self.on_skew, 'params': [axis, value]}) return def on_skewy(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to sckew on the Y axis :return: """ if val: value = val else: value = float(self.skewy_entry.get_value()) # self.on_skew("Y", value) axis = 'Y' self.app.worker_task.emit({'fcn': self.on_skew, 'params': [axis, value]}) return def on_scalex(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to scale on the X axis :return: """ if val: x_value = val else: x_value = float(self.scalex_entry.get_value()) # scaling to zero has no sense so we remove it, because scaling with 1 does nothing if x_value == 0: x_value = 1 if self.scale_link_cb.get_value(): y_value = x_value else: y_value = 1 axis = 'X' point = (0, 0) if self.scale_zero_ref_cb.get_value(): self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, x_value, y_value, point]}) # self.on_scale("X", xvalue, yvalue, point=(0,0)) else: # self.on_scale("X", xvalue, yvalue) self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, x_value, y_value]}) def on_scaley(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to scale on the Y axis :return: """ x_value = 1 if val: y_value = val else: y_value = float(self.scaley_entry.get_value()) # scaling to zero has no sense so we remove it, because scaling with 1 does nothing if y_value == 0: y_value = 1 axis = 'Y' point = (0, 0) if self.scale_zero_ref_cb.get_value(): self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, x_value, y_value, point]}) # self.on_scale("Y", xvalue, yvalue, point=(0,0)) else: # self.on_scale("Y", xvalue, yvalue) self.app.worker_task.emit({'fcn': self.on_scale, 'params': [axis, x_value, y_value]}) return def on_offx(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to offset on the X axis :return: """ if val: value = val else: value = float(self.offx_entry.get_value()) # self.on_offset("X", value) axis = 'X' self.app.worker_task.emit({'fcn': self.on_offset, 'params': [axis, value]}) def on_offy(self, sig=None, val=None): """ :param sig: here we can get the value passed by the signal :param val: the amount to offset on the Y axis :return: """ if val: value = val else: value = float(self.offy_entry.get_value()) # self.on_offset("Y", value) axis = 'Y' self.app.worker_task.emit({'fcn': self.on_offset, 'params': [axis, value]}) return def on_rotate_action(self, num): """ :param num: the angle by which to rotate :return: """ elem_list = self.draw_app.selected xminlist = [] yminlist = [] xmaxlist = [] ymaxlist = [] if not elem_list: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected. Please Select a shape to rotate!")) return with self.app.proc_container.new(_("Appying Rotate")): try: # first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest # bounding box for el_shape in elem_list: el = el_shape.geo if 'solid' in el: xmin, ymin, xmax, ymax = el['solid'].bounds xminlist.append(xmin) yminlist.append(ymin) xmaxlist.append(xmax) ymaxlist.append(ymax) # get the minimum x,y and maximum x,y for all objects selected xminimal = min(xminlist) yminimal = min(yminlist) xmaximal = max(xmaxlist) ymaximal = max(ymaxlist) self.app.progress.emit(20) px = 0.5 * (xminimal + xmaximal) py = 0.5 * (yminimal + ymaximal) for sel_el_shape in elem_list: sel_el = sel_el_shape.geo if 'solid' in sel_el: sel_el['solid'] = affinity.rotate(sel_el['solid'], angle=-num, origin=(px, py)) if 'follow' in sel_el: sel_el['follow'] = affinity.rotate(sel_el['follow'], angle=-num, origin=(px, py)) if 'clear' in sel_el: sel_el['clear'] = affinity.rotate(sel_el['clear'], angle=-num, origin=(px, py)) self.draw_app.plot_all() self.app.inform.emit('[success] %s' % _("Done. Rotate completed.")) self.app.progress.emit(100) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Rotation action was not executed."), str(e))) return def on_flip(self, axis): """ :param axis: axis to be used as reference for mirroring(flip) :return: """ elem_list = self.draw_app.selected xminlist = [] yminlist = [] xmaxlist = [] ymaxlist = [] if not elem_list: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected. Please Select a shape to flip!")) return with self.app.proc_container.new(_("Applying Flip")): try: # get mirroring coords from the point entry if self.flip_ref_cb.isChecked(): px, py = eval('{}'.format(self.flip_ref_entry.text())) # get mirroing coords from the center of an all-enclosing bounding box else: # first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest # bounding box for el_shape in elem_list: el = el_shape.geo if 'solid' in el: xmin, ymin, xmax, ymax = el['solid'].bounds xminlist.append(xmin) yminlist.append(ymin) xmaxlist.append(xmax) ymaxlist.append(ymax) # get the minimum x,y and maximum x,y for all objects selected xminimal = min(xminlist) yminimal = min(yminlist) xmaximal = max(xmaxlist) ymaximal = max(ymaxlist) px = 0.5 * (xminimal + xmaximal) py = 0.5 * (yminimal + ymaximal) self.app.progress.emit(20) # execute mirroring for sel_el_shape in elem_list: sel_el = sel_el_shape.geo if axis is 'X': if 'solid' in sel_el: sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=1, yfact=-1, origin=(px, py)) if 'follow' in sel_el: sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=1, yfact=-1, origin=(px, py)) if 'clear' in sel_el: sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=1, yfact=-1, origin=(px, py)) self.app.inform.emit('[success] %s...' % _('Flip on the Y axis done')) elif axis is 'Y': if 'solid' in sel_el: sel_el['solid'] = affinity.scale(sel_el['solid'], xfact=-1, yfact=1, origin=(px, py)) if 'follow' in sel_el: sel_el['follow'] = affinity.scale(sel_el['follow'], xfact=-1, yfact=1, origin=(px, py)) if 'clear' in sel_el: sel_el['clear'] = affinity.scale(sel_el['clear'], xfact=-1, yfact=1, origin=(px, py)) self.app.inform.emit('[success] %s...' % _('Flip on the X axis done')) self.draw_app.plot_all() self.app.progress.emit(100) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Flip action was not executed."), str(e))) return def on_skew(self, axis, num): """ :param axis: axis by which to do the skeweing :param num: angle value for skew :return: """ elem_list = self.draw_app.selected xminlist = [] yminlist = [] if not elem_list: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected. Please Select a shape to shear/skew!")) return else: with self.app.proc_container.new(_("Applying Skew")): try: # first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest # bounding box for el_shape in elem_list: el = el_shape.geo if 'solid' in el: xmin, ymin, xmax, ymax = el['solid'].bounds xminlist.append(xmin) yminlist.append(ymin) # get the minimum x,y and maximum x,y for all objects selected xminimal = min(xminlist) yminimal = min(yminlist) self.app.progress.emit(20) for sel_el_shape in elem_list: sel_el = sel_el_shape.geo if axis is 'X': if 'solid' in sel_el: sel_el['solid'] = affinity.skew(sel_el['solid'], num, 0, origin=(xminimal, yminimal)) if 'follow' in sel_el: sel_el['follow'] = affinity.skew(sel_el['follow'], num, 0, origin=(xminimal, yminimal)) if 'clear' in sel_el: sel_el['clear'] = affinity.skew(sel_el['clear'], num, 0, origin=(xminimal, yminimal)) elif axis is 'Y': if 'solid' in sel_el: sel_el['solid'] = affinity.skew(sel_el['solid'], 0, num, origin=(xminimal, yminimal)) if 'follow' in sel_el: sel_el['follow'] = affinity.skew(sel_el['follow'], 0, num, origin=(xminimal, yminimal)) if 'clear' in sel_el: sel_el['clear'] = affinity.skew(sel_el['clear'], 0, num, origin=(xminimal, yminimal)) self.draw_app.plot_all() if str(axis) == 'X': self.app.inform.emit('[success] %s...' % _('Skew on the X axis done')) else: self.app.inform.emit('[success] %s...' % _('Skew on the Y axis done')) self.app.progress.emit(100) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Skew action was not executed."), str(e))) return def on_scale(self, axis, xfactor, yfactor, point=None): """ :param axis: axis by which to scale :param xfactor: the scale factor on X axis :param yfactor: the scale factor on Y axis :param point: point of reference for scaling :return: """ elem_list = self.draw_app.selected xminlist = [] yminlist = [] xmaxlist = [] ymaxlist = [] if not elem_list: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected. Please Select a shape to scale!")) return else: with self.app.proc_container.new(_("Applying Scale")): try: # first get a bounding box to fit all; we use only the 'solids' as those should provide the biggest # bounding box for el_shape in elem_list: el = el_shape.geo if 'solid' in el: xmin, ymin, xmax, ymax = el['solid'].bounds xminlist.append(xmin) yminlist.append(ymin) xmaxlist.append(xmax) ymaxlist.append(ymax) # get the minimum x,y and maximum x,y for all objects selected xminimal = min(xminlist) yminimal = min(yminlist) xmaximal = max(xmaxlist) ymaximal = max(ymaxlist) self.app.progress.emit(20) if point is None: px = 0.5 * (xminimal + xmaximal) py = 0.5 * (yminimal + ymaximal) else: px = 0 py = 0 for sel_el_shape in elem_list: sel_el = sel_el_shape.geo if 'solid' in sel_el: sel_el['solid'] = affinity.scale(sel_el['solid'], xfactor, yfactor, origin=(px, py)) if 'follow' in sel_el: sel_el['follow'] = affinity.scale(sel_el['follow'], xfactor, yfactor, origin=(px, py)) if 'clear' in sel_el: sel_el['clear'] = affinity.scale(sel_el['clear'], xfactor, yfactor, origin=(px, py)) self.draw_app.plot_all() if str(axis) == 'X': self.app.inform.emit('[success] %s...' % _('Scale on the X axis done')) else: self.app.inform.emit('[success] %s...' % _('Scale on the Y axis done')) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Scale action was not executed."), str(e))) return def on_offset(self, axis, num): """ :param axis: axis to be used as reference for offset :param num: the amount by which to do the offset :return: """ elem_list = self.draw_app.selected if not elem_list: self.app.inform.emit('[WARNING_NOTCL] %s' % _("No shape selected. Please Select a shape to offset!")) return else: with self.app.proc_container.new(_("Applying Offset")): try: for sel_el_shape in elem_list: sel_el = sel_el_shape.geo if axis is 'X': if 'solid' in sel_el: sel_el['solid'] = affinity.translate(sel_el['solid'], num, 0) if 'follow' in sel_el: sel_el['follow'] = affinity.translate(sel_el['follow'], num, 0) if 'clear' in sel_el: sel_el['clear'] = affinity.translate(sel_el['clear'], num, 0) elif axis is 'Y': if 'solid' in sel_el: sel_el['solid'] = affinity.translate(sel_el['solid'], 0, num) if 'follow' in sel_el: sel_el['follow'] = affinity.translate(sel_el['follow'], 0, num) if 'clear' in sel_el: sel_el['clear'] = affinity.translate(sel_el['clear'], 0, num) self.draw_app.plot_all() if str(axis) == 'X': self.app.inform.emit('[success] %s...' % _('Offset on the X axis done')) else: self.app.inform.emit('[success] %s...' % _('Offset on the Y axis done')) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Offset action was not executed."), str(e))) return def on_rotate_key(self): val_box = FCInputDialog(title=_("Rotate ..."), text='%s:' % _('Enter an Angle Value (degrees)'), min=-359.9999, max=360.0000, decimals=self.decimals, init_val=float(self.app.defaults['tools_transform_rotate'])) val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/rotate.png')) val, ok = val_box.get_value() if ok: self.on_rotate(val=val) self.app.inform.emit('[success] %s...' % _("Geometry shape rotate done")) return else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Geometry shape rotate cancelled")) def on_offx_key(self): units = self.app.defaults['units'].lower() val_box = FCInputDialog(title=_("Offset on X axis ..."), text='%s: (%s)' % (_('Enter a distance Value'), str(units)), min=-9999.9999, max=10000.0000, decimals=self.decimals, init_val=float(self.app.defaults['tools_transform_offset_x'])) val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/offsetx32.png')) val, ok = val_box.get_value() if ok: self.on_offx(val=val) self.app.inform.emit('[success] %s...' % _("Geometry shape offset on X axis done")) return else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Geometry shape offset X cancelled")) def on_offy_key(self): units = self.app.defaults['units'].lower() val_box = FCInputDialog(title=_("Offset on Y axis ..."), text='%s: (%s)' % (_('Enter a distance Value'), str(units)), min=-9999.9999, max=10000.0000, decimals=self.decimals, init_val=float(self.app.defaults['tools_transform_offset_y'])) val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/offsety32.png')) val, ok = val_box.get_value() if ok: self.on_offx(val=val) self.app.inform.emit('[success] %s...' % _("Geometry shape offset on Y axis done")) return else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Geometry shape offset Y cancelled")) def on_skewx_key(self): val_box = FCInputDialog(title=_("Skew on X axis ..."), text='%s:' % _('Enter an Angle Value (degrees)'), min=-359.9999, max=360.0000, decimals=self.decimals, init_val=float(self.app.defaults['tools_transform_skew_x'])) val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/skewX.png')) val, ok = val_box.get_value() if ok: self.on_skewx(val=val) self.app.inform.emit('[success] %s...' % _("Geometry shape skew on X axis done")) return else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Geometry shape skew X cancelled")) def on_skewy_key(self): val_box = FCInputDialog(title=_("Skew on Y axis ..."), text='%s:' % _('Enter an Angle Value (degrees)'), min=-359.9999, max=360.0000, decimals=self.decimals, init_val=float(self.app.defaults['tools_transform_skew_y'])) val_box.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/skewY.png')) val, ok = val_box.get_value() if ok: self.on_skewx(val=val) self.app.inform.emit('[success] %s...' % _("Geometry shape skew on Y axis done")) return else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Geometry shape skew Y cancelled")) def get_shapely_list_bounds(geometry_list): xmin = np.Inf ymin = np.Inf xmax = -np.Inf ymax = -np.Inf for gs in geometry_list: try: gxmin, gymin, gxmax, gymax = gs.bounds xmin = min([xmin, gxmin]) ymin = min([ymin, gymin]) xmax = max([xmax, gxmax]) ymax = max([ymax, gymax]) except Exception as e: log.warning("DEVELOPMENT: Tried to get bounds of empty geometry. --> %s" % str(e)) return [xmin, ymin, xmax, ymax]