# ########################################################## # FlatCAM: 2D Post-processing for Manufacturing # # File Modified by: Marius Adrian Stanciu (c) # # Date: 3/10/2019 # # MIT Licence # # ########################################################## from PyQt5 import QtWidgets, QtCore, QtGui from AppTool import AppTool from AppGUI.GUIElements import FCCheckBox, FCDoubleSpinner, RadioSet, FCTable, FCInputDialog, FCButton, \ FCComboBox, OptionalHideInputSection, FCSpinner from AppParsers.ParseGerber import Gerber from camlib import grace from copy import deepcopy import numpy as np import math from shapely.geometry import base from shapely.ops import cascaded_union from shapely.geometry import MultiPolygon, Polygon, MultiLineString, LineString, LinearRing from matplotlib.backend_bases import KeyEvent as mpl_key_event import logging import traceback import gettext import AppTranslation as fcTranslate import builtins fcTranslate.apply_language('strings') if '_' not in builtins.__dict__: _ = gettext.gettext log = logging.getLogger('base') class ToolIsolation(AppTool, Gerber): toolName = _("Isolation Tool") def __init__(self, app): self.app = app self.decimals = self.app.decimals AppTool.__init__(self, app) Gerber.__init__(self, steps_per_circle=self.app.defaults["gerber_circle_steps"]) self.tools_frame = QtWidgets.QFrame() self.tools_frame.setContentsMargins(0, 0, 0, 0) self.layout.addWidget(self.tools_frame) self.tools_box = QtWidgets.QVBoxLayout() self.tools_box.setContentsMargins(0, 0, 0, 0) self.tools_frame.setLayout(self.tools_box) self.title_box = QtWidgets.QHBoxLayout() self.tools_box.addLayout(self.title_box) # ## Title title_label = QtWidgets.QLabel("%s" % self.toolName) title_label.setStyleSheet(""" QLabel { font-size: 16px; font-weight: bold; } """) title_label.setToolTip( _("Create a Geometry object with\n" "toolpaths to cut around polygons.") ) self.title_box.addWidget(title_label) # App Level label self.level = QtWidgets.QLabel("") self.level.setToolTip( _( "BASIC is suitable for a beginner. Many parameters\n" "are hidden from the user in this mode.\n" "ADVANCED mode will make available all parameters.\n\n" "To change the application LEVEL, go to:\n" "Edit -> Preferences -> General and check:\n" "'APP. LEVEL' radio button." ) ) self.level.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) self.title_box.addWidget(self.level) # Grid Layout grid0 = QtWidgets.QGridLayout() grid0.setColumnStretch(0, 0) grid0.setColumnStretch(1, 1) self.tools_box.addLayout(grid0) self.obj_combo_label = QtWidgets.QLabel('%s:' % _("GERBER")) self.obj_combo_label.setToolTip( _("Gerber object for isolation routing.") ) grid0.addWidget(self.obj_combo_label, 0, 0, 1, 2) # ################################################ # ##### The object to be copper cleaned ########## # ################################################ self.object_combo = FCComboBox() self.object_combo.setModel(self.app.collection) self.object_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) # self.object_combo.setCurrentIndex(1) self.object_combo.is_last = True grid0.addWidget(self.object_combo, 1, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid0.addWidget(separator_line, 2, 0, 1, 2) # ### Tools ## ## self.tools_table_label = QtWidgets.QLabel('%s' % _('Tools Table')) self.tools_table_label.setToolTip( _("Tools pool from which the algorithm\n" "will pick the ones used for copper clearing.") ) grid0.addWidget(self.tools_table_label, 3, 0, 1, 2) self.tools_table = FCTable() grid0.addWidget(self.tools_table, 4, 0, 1, 2) self.tools_table.setColumnCount(4) # 3rd column is reserved (and hidden) for the tool ID self.tools_table.setHorizontalHeaderLabels(['#', _('Diameter'), _('TT'), '']) self.tools_table.setColumnHidden(3, True) self.tools_table.setSortingEnabled(False) # self.tools_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.tools_table.horizontalHeaderItem(0).setToolTip( _("This is the Tool Number.\n" "Non copper clearing will start with the tool with the biggest \n" "diameter, continuing until there are no more tools.\n" "Only tools that create NCC clearing geometry will still be present\n" "in the resulting geometry. This is because with some tools\n" "this function will not be able to create painting geometry.") ) self.tools_table.horizontalHeaderItem(1).setToolTip( _("Tool Diameter. It's value (in current FlatCAM units)\n" "is the cut width into the material.")) self.tools_table.horizontalHeaderItem(2).setToolTip( _("The Tool Type (TT) can be:\n" "- Circular with 1 ... 4 teeth -> it is informative only. Being circular,\n" "the cut width in material is exactly the tool diameter.\n" "- Ball -> informative only and make reference to the Ball type endmill.\n" "- V-Shape -> it will disable Z-Cut parameter in the resulting geometry UI form\n" "and enable two additional UI form fields in the resulting geometry: V-Tip Dia and\n" "V-Tip Angle. Adjusting those two values will adjust the Z-Cut parameter such\n" "as the cut width into material will be equal with the value in the Tool Diameter\n" "column of this table.\n" "Choosing the 'V-Shape' Tool Type automatically will select the Operation Type\n" "in the resulting geometry as Isolation.")) grid1 = QtWidgets.QGridLayout() grid1.setColumnStretch(0, 0) grid1.setColumnStretch(1, 1) self.tools_box.addLayout(grid1) # Tool order self.ncc_order_label = QtWidgets.QLabel('%s:' % _('Tool order')) self.ncc_order_label.setToolTip(_("This set the way that the tools in the tools table are used.\n" "'No' --> means that the used order is the one in the tool table\n" "'Forward' --> means that the tools will be ordered from small to big\n" "'Reverse' --> means that the tools will ordered from big to small\n\n" "WARNING: using rest machining will automatically set the order\n" "in reverse and disable this control.")) self.order_radio = RadioSet([{'label': _('No'), 'value': 'no'}, {'label': _('Forward'), 'value': 'fwd'}, {'label': _('Reverse'), 'value': 'rev'}]) grid1.addWidget(self.ncc_order_label, 1, 0) grid1.addWidget(self.order_radio, 1, 1) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid1.addWidget(separator_line, 2, 0, 1, 2) # ############################################################# # ############### Tool selection ############################## # ############################################################# self.grid3 = QtWidgets.QGridLayout() self.grid3.setColumnStretch(0, 0) self.grid3.setColumnStretch(1, 1) self.tools_box.addLayout(self.grid3) self.tool_sel_label = QtWidgets.QLabel('%s' % _("New Tool")) self.grid3.addWidget(self.tool_sel_label, 1, 0, 1, 2) # Tool Type Radio Button self.tool_type_label = QtWidgets.QLabel('%s:' % _('Tool Type')) self.tool_type_label.setToolTip( _("Default tool type:\n" "- 'V-shape'\n" "- Circular") ) self.tool_type_radio = RadioSet([{'label': _('V-shape'), 'value': 'V'}, {'label': _('Circular'), 'value': 'C1'}]) self.tool_type_radio.setToolTip( _("Default tool type:\n" "- 'V-shape'\n" "- Circular") ) self.tool_type_radio.setObjectName("i_tool_type") self.grid3.addWidget(self.tool_type_label, 2, 0) self.grid3.addWidget(self.tool_type_radio, 2, 1) # Tip Dia self.tipdialabel = QtWidgets.QLabel('%s:' % _('V-Tip Dia')) self.tipdialabel.setToolTip( _("The tip diameter for V-Shape Tool")) self.tipdia_entry = FCDoubleSpinner(callback=self.confirmation_message) self.tipdia_entry.set_precision(self.decimals) self.tipdia_entry.set_range(0.0000, 9999.9999) self.tipdia_entry.setSingleStep(0.1) self.tipdia_entry.setObjectName("i_vtipdia") self.grid3.addWidget(self.tipdialabel, 3, 0) self.grid3.addWidget(self.tipdia_entry, 3, 1) # Tip Angle self.tipanglelabel = QtWidgets.QLabel('%s:' % _('V-Tip Angle')) self.tipanglelabel.setToolTip( _("The tip angle for V-Shape Tool.\n" "In degree.")) self.tipangle_entry = FCDoubleSpinner(callback=self.confirmation_message) self.tipangle_entry.set_precision(self.decimals) self.tipangle_entry.set_range(0.0000, 180.0000) self.tipangle_entry.setSingleStep(5) self.tipangle_entry.setObjectName("i_vtipangle") self.grid3.addWidget(self.tipanglelabel, 4, 0) self.grid3.addWidget(self.tipangle_entry, 4, 1) # Cut Z entry cutzlabel = QtWidgets.QLabel('%s:' % _('Cut Z')) cutzlabel.setToolTip( _("Depth of cut into material. Negative value.\n" "In FlatCAM units.") ) self.cutz_entry = FCDoubleSpinner(callback=self.confirmation_message) self.cutz_entry.set_precision(self.decimals) self.cutz_entry.set_range(-99999.9999, 0.0000) self.cutz_entry.setObjectName("i_vcutz") self.grid3.addWidget(cutzlabel, 5, 0) self.grid3.addWidget(self.cutz_entry, 5, 1) # ### Tool Diameter #### self.addtool_entry_lbl = QtWidgets.QLabel('%s:' % _('Tool Dia')) self.addtool_entry_lbl.setToolTip( _("Diameter for the new tool to add in the Tool Table.\n" "If the tool is V-shape type then this value is automatically\n" "calculated from the other parameters.") ) self.addtool_entry = FCDoubleSpinner(callback=self.confirmation_message) self.addtool_entry.set_precision(self.decimals) self.addtool_entry.set_range(0.000, 9999.9999) self.addtool_entry.setObjectName("i_new_tooldia") self.grid3.addWidget(self.addtool_entry_lbl, 6, 0) self.grid3.addWidget(self.addtool_entry, 6, 1) hlay = QtWidgets.QHBoxLayout() self.addtool_btn = QtWidgets.QPushButton(_('Add')) self.addtool_btn.setToolTip( _("Add a new tool to the Tool Table\n" "with the diameter specified above.") ) self.addtool_from_db_btn = QtWidgets.QPushButton(_('Add from DB')) self.addtool_from_db_btn.setToolTip( _("Add a new tool to the Tool Table\n" "from the Tool DataBase.") ) hlay.addWidget(self.addtool_btn) hlay.addWidget(self.addtool_from_db_btn) self.grid3.addLayout(hlay, 7, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 8, 0, 1, 2) self.deltool_btn = QtWidgets.QPushButton(_('Delete')) self.deltool_btn.setToolTip( _("Delete a selection of tools in the Tool Table\n" "by first selecting a row(s) in the Tool Table.") ) self.grid3.addWidget(self.deltool_btn, 9, 0, 1, 2) # self.grid3.addWidget(QtWidgets.QLabel(''), 10, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 11, 0, 1, 2) self.tool_data_label = QtWidgets.QLabel( "%s: %s %d" % (_('Parameters for'), _("Tool"), int(1))) self.tool_data_label.setToolTip( _( "The data used for creating GCode.\n" "Each tool store it's own set of such data." ) ) self.grid3.addWidget(self.tool_data_label, 12, 0, 1, 2) # Passes passlabel = QtWidgets.QLabel('%s:' % _('Passes')) passlabel.setToolTip( _("Width of the isolation gap in\n" "number (integer) of tool widths.") ) self.passes_entry = FCSpinner(callback=self.confirmation_message_int) self.passes_entry.set_range(1, 999) self.passes_entry.setObjectName("i_passes") self.grid3.addWidget(passlabel, 13, 0) self.grid3.addWidget(self.passes_entry, 13, 1) # Overlap Entry overlabel = QtWidgets.QLabel('%s:' % _('Overlap')) overlabel.setToolTip( _("How much (percentage) of the tool width to overlap each tool pass.") ) self.iso_overlap_entry = FCDoubleSpinner(suffix='%', callback=self.confirmation_message) self.iso_overlap_entry.set_precision(self.decimals) self.iso_overlap_entry.setWrapping(True) self.iso_overlap_entry.set_range(0.0000, 99.9999) self.iso_overlap_entry.setSingleStep(0.1) self.iso_overlap_entry.setObjectName("i_overlap") self.grid3.addWidget(overlabel, 14, 0) self.grid3.addWidget(self.iso_overlap_entry, 14, 1) # Milling Type Radio Button self.milling_type_label = QtWidgets.QLabel('%s:' % _('Milling Type')) self.milling_type_label.setToolTip( _("Milling type when the selected tool is of type: 'iso_op':\n" "- climb / best for precision milling and to reduce tool usage\n" "- conventional / useful when there is no backlash compensation") ) self.milling_type_radio = RadioSet([{'label': _('Climb'), 'value': 'cl'}, {'label': _('Conventional'), 'value': 'cv'}]) self.milling_type_radio.setToolTip( _("Milling type when the selected tool is of type: 'iso_op':\n" "- climb / best for precision milling and to reduce tool usage\n" "- conventional / useful when there is no backlash compensation") ) self.milling_type_radio.setObjectName("i_milling_type") self.grid3.addWidget(self.milling_type_label, 15, 0) self.grid3.addWidget(self.milling_type_radio, 15, 1) # Follow self.follow_label = QtWidgets.QLabel('%s:' % _('Follow')) self.follow_label.setToolTip( _("Generate a 'Follow' geometry.\n" "This means that it will cut through\n" "the middle of the trace.") ) self.follow_cb = FCCheckBox() self.follow_cb.setToolTip(_("Generate a 'Follow' geometry.\n" "This means that it will cut through\n" "the middle of the trace.")) self.follow_cb.setObjectName("i_follow") self.grid3.addWidget(self.follow_label, 16, 0) self.grid3.addWidget(self.follow_cb, 16, 1) # Isolation Type self.iso_type_label = QtWidgets.QLabel('%s:' % _('Isolation Type')) self.iso_type_label.setToolTip( _("Choose how the isolation will be executed:\n" "- 'Full' -> complete isolation of polygons\n" "- 'Ext' -> will isolate only on the outside\n" "- 'Int' -> will isolate only on the inside\n" "'Exterior' isolation is almost always possible\n" "(with the right tool) but 'Interior'\n" "isolation can be done only when there is an opening\n" "inside of the polygon (e.g polygon is a 'doughnut' shape).") ) self.iso_type_radio = RadioSet([{'label': _('Full'), 'value': 'full'}, {'label': _('Ext'), 'value': 'ext'}, {'label': _('Int'), 'value': 'int'}]) self.iso_type_radio.setObjectName("i_iso_type") self.grid3.addWidget(self.iso_type_label, 17, 0) self.grid3.addWidget(self.iso_type_radio, 17, 1) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 18, 0, 1, 2) self.apply_param_to_all = FCButton(_("Apply parameters to all tools")) self.apply_param_to_all.setToolTip( _("The parameters in the current form will be applied\n" "on all the tools from the Tool Table.") ) self.grid3.addWidget(self.apply_param_to_all, 22, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 23, 0, 1, 2) # General Parameters self.gen_param_label = QtWidgets.QLabel('%s' % _("Common Parameters")) self.gen_param_label.setToolTip( _("Parameters that are common for all tools.") ) self.grid3.addWidget(self.gen_param_label, 24, 0, 1, 2) # Rest Machining self.rest_cb = FCCheckBox('%s' % _("Rest")) self.rest_cb.setObjectName("i_rest") self.rest_cb.setToolTip( _("If checked, use 'rest machining'.\n" "Basically it will isolate outside PCB features,\n" "using the biggest tool and continue with the next tools,\n" "from bigger to smaller, to isolate the copper features that\n" "could not be cleared by previous tool, until there is\n" "no more copper features to isolate or there are no more tools.\n" "If not checked, use the standard algorithm.") ) self.grid3.addWidget(self.rest_cb, 25, 0, 1, 2) # Combine All Passes self.combine_passes_cb = FCCheckBox(label=_('Combine')) self.combine_passes_cb.setToolTip( _("Combine all passes into one object") ) self.combine_passes_cb.setObjectName("i_combine") self.grid3.addWidget(self.combine_passes_cb, 26, 0, 1, 2) # Exception Areas self.except_cb = FCCheckBox(label=_('Except')) self.except_cb.setToolTip(_("When the isolation geometry is generated,\n" "by checking this, the area of the object below\n" "will be subtracted from the isolation geometry.")) self.except_cb.setObjectName("i_except") self.grid3.addWidget(self.except_cb, 27, 0, 1, 2) # Type of object to be excepted self.type_excobj_combo_label = QtWidgets.QLabel('%s:' % _("Obj Type")) self.type_excobj_combo_label.setToolTip( _("Specify the type of object to be excepted from isolation.\n" "It can be of type: Gerber or Geometry.\n" "What is selected here will dictate the kind\n" "of objects that will populate the 'Object' combobox.") ) self.type_excobj_radio = RadioSet([{'label': _("Geometry"), 'value': 'geometry'}, {'label': _("Gerber"), 'value': 'gerber'}]) self.grid3.addWidget(self.type_excobj_combo_label, 28, 0) self.grid3.addWidget(self.type_excobj_radio, 28, 1) # The object to be excepted self.exc_obj_combo = FCComboBox() self.exc_obj_combo.setToolTip(_("Object whose area will be removed from isolation geometry.")) # set the model for the Area Exception comboboxes self.exc_obj_combo.setModel(self.app.collection) self.exc_obj_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.exc_obj_combo.is_last = True self.exc_obj_combo.obj_type = self.type_excobj_radio.get_value() self.grid3.addWidget(self.exc_obj_combo, 29, 0, 1, 2) self.e_ois = OptionalHideInputSection(self.except_cb, [ self.type_excobj_combo_label, self.type_excobj_radio, self.exc_obj_combo ]) # Isolation Scope self.select_label = QtWidgets.QLabel('%s:' % _("Selection")) self.select_label.setToolTip( _("Isolation scope. Choose what to isolate:\n" "- 'All' -> Isolate all the polygons in the object\n" "- 'Selection' -> Isolate a selection of polygons.\n" "- 'Reference Object' - will process the area specified by another object.") ) self.select_combo = FCComboBox() self.select_combo.addItems( [_("All"), _("Area Selection"), _("Polygon Selection"), _("Reference Object")] ) self.select_combo.setObjectName("i_selection") self.grid3.addWidget(self.select_label, 30, 0) self.grid3.addWidget(self.select_combo, 30, 1) self.reference_combo_type_label = QtWidgets.QLabel('%s:' % _("Ref. Type")) self.reference_combo_type_label.setToolTip( _("The type of FlatCAM object to be used as non copper clearing reference.\n" "It can be Gerber, Excellon or Geometry.") ) self.reference_combo_type = FCComboBox() self.reference_combo_type.addItems([_("Gerber"), _("Excellon"), _("Geometry")]) self.grid3.addWidget(self.reference_combo_type_label, 31, 0) self.grid3.addWidget(self.reference_combo_type, 31, 1) self.reference_combo_label = QtWidgets.QLabel('%s:' % _("Ref. Object")) self.reference_combo_label.setToolTip( _("The FlatCAM object to be used as non copper clearing reference.") ) self.reference_combo = FCComboBox() self.reference_combo.setModel(self.app.collection) self.reference_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.reference_combo.is_last = True self.grid3.addWidget(self.reference_combo_label, 32, 0) self.grid3.addWidget(self.reference_combo, 32, 1) self.reference_combo.hide() self.reference_combo_label.hide() self.reference_combo_type.hide() self.reference_combo_type_label.hide() # Area Selection shape self.area_shape_label = QtWidgets.QLabel('%s:' % _("Shape")) self.area_shape_label.setToolTip( _("The kind of selection shape used for area selection.") ) self.area_shape_radio = RadioSet([{'label': _("Square"), 'value': 'square'}, {'label': _("Polygon"), 'value': 'polygon'}]) self.grid3.addWidget(self.area_shape_label, 33, 0) self.grid3.addWidget(self.area_shape_radio, 33, 1) self.area_shape_label.hide() self.area_shape_radio.hide() separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 34, 0, 1, 2) self.generate_iso_button = QtWidgets.QPushButton("%s" % _("Generate Isolation Geometry")) self.generate_iso_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) self.generate_iso_button.setToolTip( _("Create a Geometry object with toolpaths to cut \n" "isolation outside, inside or on both sides of the\n" "object. For a Gerber object outside means outside\n" "of the Gerber feature and inside means inside of\n" "the Gerber feature, if possible at all. This means\n" "that only if the Gerber feature has openings inside, they\n" "will be isolated. If what is wanted is to cut isolation\n" "inside the actual Gerber feature, use a negative tool\n" "diameter above.") ) self.tools_box.addWidget(self.generate_iso_button) self.create_buffer_button = QtWidgets.QPushButton(_('Buffer Solid Geometry')) self.create_buffer_button.setToolTip( _("This button is shown only when the Gerber file\n" "is loaded without buffering.\n" "Clicking this will create the buffered geometry\n" "required for isolation.") ) self.tools_box.addWidget(self.create_buffer_button) self.tools_box.addStretch() # ## Reset Tool self.reset_button = QtWidgets.QPushButton(_("Reset Tool")) self.reset_button.setToolTip( _("Will reset the tool parameters.") ) self.reset_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) self.tools_box.addWidget(self.reset_button) # ############################ FINSIHED GUI ################################### # ############################################################################# # ############################################################################# # ###################### Setup CONTEXT MENU ################################### # ############################################################################# self.tools_table.setupContextMenu() self.tools_table.addContextMenu( _("Add"), self.on_add_tool_by_key, icon=QtGui.QIcon(self.app.resource_location + "/plus16.png") ) self.tools_table.addContextMenu( _("Add from DB"), self.on_add_tool_by_key, icon=QtGui.QIcon(self.app.resource_location + "/plus16.png") ) self.tools_table.addContextMenu( _("Delete"), lambda: self.on_tool_delete(rows_to_delete=None, all_tools=None), icon=QtGui.QIcon(self.app.resource_location + "/delete32.png") ) # ############################################################################# # ########################## VARIABLES ######################################## # ############################################################################# self.units = '' self.iso_tools = {} self.tooluid = 0 # store here the default data for Geometry Data self.default_data = {} self.obj_name = "" self.grb_obj = None self.sel_rect = [] self.bound_obj_name = "" self.bound_obj = None self.ncc_dia_list = [] self.iso_dia_list = [] self.has_offset = None self.o_name = None self.overlap = None self.connect = None self.contour = None self.rest = None self.first_click = False self.cursor_pos = None self.mouse_is_dragging = False # store here the points for the "Polygon" area selection shape self.points = [] # set this as True when in middle of drawing a "Polygon" area selection shape # it is made False by first click to signify that the shape is complete self.poly_drawn = False self.mm = None self.mr = None self.kp = None # store geometry from Polygon selection self.poly_dict = {} self.grid_status_memory = self.app.ui.grid_snap_btn.isChecked() # store here solid_geometry when there are tool with isolation job self.solid_geometry = [] self.select_method = None self.tool_type_item_options = [] self.grb_circle_steps = int(self.app.defaults["gerber_circle_steps"]) self.tooldia = None self.form_fields = { "tools_iso_passes": self.passes_entry, "tools_iso_overlap": self.iso_overlap_entry, "tools_iso_milling_type": self.milling_type_radio, "tools_iso_combine": self.combine_passes_cb, "tools_iso_follow": self.follow_cb, "tools_iso_isotype": self.iso_type_radio } self.name2option = { "i_passes": "tools_iso_passes", "i_overlap": "tools_iso_overlap", "i_milling_type": "tools_iso_milling_type", "i_combine": "tools_iso_combine", "i_follow": "tools_iso_follow", "i_iso_type": "tools_iso_isotype" } self.old_tool_dia = None # ############################################################################# # ############################ SIGNALS ######################################## # ############################################################################# self.addtool_btn.clicked.connect(self.on_tool_add) self.addtool_entry.returnPressed.connect(self.on_tooldia_updated) self.deltool_btn.clicked.connect(self.on_tool_delete) self.tipdia_entry.returnPressed.connect(self.on_calculate_tooldia) self.tipangle_entry.returnPressed.connect(self.on_calculate_tooldia) self.cutz_entry.returnPressed.connect(self.on_calculate_tooldia) self.reference_combo_type.currentIndexChanged.connect(self.on_reference_combo_changed) self.select_combo.currentIndexChanged.connect(self.on_toggle_reference) self.rest_cb.stateChanged.connect(self.on_rest_machining_check) self.order_radio.activated_custom[str].connect(self.on_order_changed) self.type_excobj_radio.activated_custom.connect(self.on_type_excobj_index_changed) self.apply_param_to_all.clicked.connect(self.on_apply_param_to_all_clicked) self.addtool_from_db_btn.clicked.connect(self.on_tool_add_from_db_clicked) self.generate_iso_button.clicked.connect(self.on_iso_button_click) self.reset_button.clicked.connect(self.set_tool_ui) # Cleanup on Graceful exit (CTRL+ALT+X combo key) self.app.cleanup.connect(self.reset_usage) def on_type_excobj_index_changed(self, val): obj_type = 0 if val == 'gerber' else 2 self.exc_obj_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.exc_obj_combo.setCurrentIndex(0) self.exc_obj_combo.obj_type = { "gerber": "Gerber", "geometry": "Geometry" }[self.type_excobj_radio.get_value()] def on_row_selection_change(self): self.blockSignals(True) sel_rows = [it.row() for it in self.tools_table.selectedItems()] # sel_rows = sorted(set(index.row() for index in self.tools_table.selectedIndexes())) if not sel_rows: sel_rows = [0] for current_row in sel_rows: # populate the form with the data from the tool associated with the row parameter try: item = self.tools_table.item(current_row, 3) if item is not None: tooluid = int(item.text()) else: return except Exception as e: log.debug("Tool missing. Add a tool in the Tool Table. %s" % str(e)) return # update the QLabel that shows for which Tool we have the parameters in the UI form if len(sel_rows) == 1: cr = current_row + 1 self.tool_data_label.setText( "%s: %s %d" % (_('Parameters for'), _("Tool"), cr) ) try: # set the form with data from the newly selected tool for tooluid_key, tooluid_value in list(self.iso_tools.items()): if int(tooluid_key) == tooluid: for key, value in tooluid_value.items(): if key == 'data': form_value_storage = tooluid_value[key] self.storage_to_form(form_value_storage) except Exception as e: log.debug("ToolIsolation ---> update_ui() " + str(e)) else: self.tool_data_label.setText( "%s: %s" % (_('Parameters for'), _("Multiple Tools")) ) self.blockSignals(False) def storage_to_form(self, dict_storage): for form_key in self.form_fields: for storage_key in dict_storage: if form_key == storage_key: try: self.form_fields[form_key].set_value(dict_storage[form_key]) except Exception as e: log.debug("ToolIsolation.storage_to_form() --> %s" % str(e)) pass def form_to_storage(self): if self.tools_table.rowCount() == 0: # there is no tool in tool table so we can't save the GUI elements values to storage return self.blockSignals(True) widget_changed = self.sender() wdg_objname = widget_changed.objectName() option_changed = self.name2option[wdg_objname] # row = self.tools_table.currentRow() rows = sorted(set(index.row() for index in self.tools_table.selectedIndexes())) for row in rows: if row < 0: row = 0 tooluid_item = int(self.tools_table.item(row, 3).text()) for tooluid_key, tooluid_val in self.iso_tools.items(): if int(tooluid_key) == tooluid_item: new_option_value = self.form_fields[option_changed].get_value() if option_changed in tooluid_val: tooluid_val[option_changed] = new_option_value if option_changed in tooluid_val['data']: tooluid_val['data'][option_changed] = new_option_value self.blockSignals(False) def on_apply_param_to_all_clicked(self): if self.tools_table.rowCount() == 0: # there is no tool in tool table so we can't save the GUI elements values to storage log.debug("ToolIsolation.on_apply_param_to_all_clicked() --> no tool in Tools Table, aborting.") return self.blockSignals(True) row = self.tools_table.currentRow() if row < 0: row = 0 tooluid_item = int(self.tools_table.item(row, 3).text()) temp_tool_data = {} for tooluid_key, tooluid_val in self.iso_tools.items(): if int(tooluid_key) == tooluid_item: # this will hold the 'data' key of the self.tools[tool] dictionary that corresponds to # the current row in the tool table temp_tool_data = tooluid_val['data'] break for tooluid_key, tooluid_val in self.iso_tools.items(): tooluid_val['data'] = deepcopy(temp_tool_data) self.app.inform.emit('[success] %s' % _("Current Tool parameters were applied to all tools.")) self.blockSignals(False) def on_add_tool_by_key(self): tool_add_popup = FCInputDialog(title='%s...' % _("New Tool"), text='%s:' % _('Enter a Tool Diameter'), min=0.0001, max=9999.9999, decimals=self.decimals) tool_add_popup.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/letter_t_32.png')) val, ok = tool_add_popup.get_value() if ok: if float(val) == 0: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Please enter a tool diameter with non-zero value, in Float format.")) return self.on_tool_add(dia=float(val)) else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Adding Tool cancelled")) def install(self, icon=None, separator=None, **kwargs): AppTool.install(self, icon, separator, shortcut='Alt+I', **kwargs) def run(self, toggle=True): self.app.defaults.report_usage("ToolIsolation()") log.debug("ToolIsolation().run() was launched ...") if toggle: # if the splitter is hidden, display it, else hide it but only if the current widget is the same if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) else: try: if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName: # if tab is populated with the tool but it does not have the focus, focus on it if not self.app.ui.notebook.currentWidget() is self.app.ui.tool_tab: # focus on Tool Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab) else: self.app.ui.splitter.setSizes([0, 1]) except AttributeError: pass else: if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) AppTool.run(self) self.set_tool_ui() # reset those objects on a new run self.grb_obj = None self.bound_obj = None self.obj_name = '' self.bound_obj_name = '' self.build_ui() self.app.ui.notebook.setTabText(2, _("Isolation Tool")) def set_tool_ui(self): self.units = self.app.defaults['units'].upper() self.old_tool_dia = self.app.defaults["tools_iso_newdia"] # try to select in the Gerber combobox the active object try: current_name = self.app.collection.get_active().options['name'] self.object_combo.set_value(current_name) except Exception: pass app_mode = self.app.defaults["global_app_level"] # Show/Hide Advanced Options if app_mode == 'b': self.level.setText('%s' % _('Basic')) # override the Preferences Value; in Basic mode the Tool Type is always Circular ('C1') self.tool_type_radio.set_value('C1') self.tool_type_label.hide() self.tool_type_radio.hide() self.milling_type_label.hide() self.milling_type_radio.hide() self.iso_type_label.hide() self.iso_type_radio.set_value('full') self.iso_type_radio.hide() self.follow_cb.set_value(False) self.follow_cb.hide() self.follow_label.hide() self.rest_cb.set_value(False) self.rest_cb.hide() self.except_cb.set_value(False) self.except_cb.hide() self.select_combo.setCurrentIndex(0) self.select_combo.hide() self.select_label.hide() else: self.level.setText('%s' % _('Advanced')) self.tool_type_radio.set_value(self.app.defaults["tools_iso_tool_type"]) self.tool_type_label.show() self.tool_type_radio.show() self.milling_type_label.show() self.milling_type_radio.show() self.iso_type_label.show() self.iso_type_radio.set_value(self.app.defaults["tools_iso_isotype"]) self.iso_type_radio.show() self.follow_cb.set_value(self.app.defaults["tools_iso_follow"]) self.follow_cb.show() self.follow_label.show() self.rest_cb.set_value(self.app.defaults["tools_iso_rest"]) self.rest_cb.show() self.except_cb.set_value(self.app.defaults["tools_iso_isoexcept"]) self.except_cb.show() self.select_combo.set_value(self.app.defaults["tools_iso_selection"]) self.select_combo.show() self.select_label.show() if self.app.defaults["gerber_buffering"] == 'no': self.create_buffer_button.show() try: self.create_buffer_button.clicked.disconnect(self.on_generate_buffer) except TypeError: pass self.create_buffer_button.clicked.connect(self.on_generate_buffer) else: self.create_buffer_button.hide() self.tools_frame.show() self.type_excobj_radio.set_value('gerber') # run those once so the obj_type attribute is updated for the FCComboboxes # so the last loaded object is displayed self.on_type_excobj_index_changed(val="gerber") self.on_reference_combo_changed() self.order_radio.set_value(self.app.defaults["tools_iso_order"]) self.passes_entry.set_value(self.app.defaults["tools_iso_passes"]) self.iso_overlap_entry.set_value(self.app.defaults["tools_iso_overlap"]) self.milling_type_radio.set_value(self.app.defaults["tools_iso_milling_type"]) self.combine_passes_cb.set_value(self.app.defaults["tools_iso_combine_passes"]) self.area_shape_radio.set_value(self.app.defaults["tools_iso_area_shape"]) self.cutz_entry.set_value(self.app.defaults["tools_iso_tool_cutz"]) self.tool_type_radio.set_value(self.app.defaults["tools_iso_tool_type"]) self.tipdia_entry.set_value(self.app.defaults["tools_iso_tool_vtipdia"]) self.tipangle_entry.set_value(self.app.defaults["tools_iso_tool_vtipangle"]) self.addtool_entry.set_value(self.app.defaults["tools_iso_newdia"]) self.on_tool_type(val=self.tool_type_radio.get_value()) outname = self.app.collection.get_by_name(self.object_combo.get_value()).options['name'] # init the working variables self.default_data.clear() self.default_data = { "name": outname + '_iso', "plot": self.app.defaults["geometry_plot"], "cutz": float(self.cutz_entry.get_value()), "vtipdia": float(self.tipdia_entry.get_value()), "vtipangle": float(self.tipangle_entry.get_value()), "travelz": self.app.defaults["geometry_travelz"], "feedrate": self.app.defaults["geometry_feedrate"], "feedrate_z": self.app.defaults["geometry_feedrate_z"], "feedrate_rapid": self.app.defaults["geometry_feedrate_rapid"], "dwell": self.app.defaults["geometry_dwell"], "dwelltime": self.app.defaults["geometry_dwelltime"], "multidepth": self.app.defaults["geometry_multidepth"], "ppname_g": self.app.defaults["geometry_ppname_g"], "depthperpass": self.app.defaults["geometry_depthperpass"], "extracut": self.app.defaults["geometry_extracut"], "extracut_length": self.app.defaults["geometry_extracut_length"], "toolchange": self.app.defaults["geometry_toolchange"], "toolchangez": self.app.defaults["geometry_toolchangez"], "endz": self.app.defaults["geometry_endz"], "endxy": self.app.defaults["geometry_endxy"], "spindlespeed": self.app.defaults["geometry_spindlespeed"], "toolchangexy": self.app.defaults["geometry_toolchangexy"], "startz": self.app.defaults["geometry_startz"], "area_exclusion": self.app.defaults["geometry_area_exclusion"], "area_shape": self.app.defaults["geometry_area_shape"], "area_strategy": self.app.defaults["geometry_area_strategy"], "area_overz": float(self.app.defaults["geometry_area_overz"]), "tools_iso_passes": self.app.defaults["tools_iso_passes"], "tools_iso_overlap": self.app.defaults["tools_iso_overlap"], "tools_iso_milling_type": self.app.defaults["tools_iso_milling_type"], "tools_iso_follow": self.app.defaults["tools_iso_follow"], "tools_iso_isotype": self.app.defaults["tools_iso_isotype"], "tools_iso_rest": self.app.defaults["tools_iso_rest"], "tools_iso_combine_passes": self.app.defaults["tools_iso_combine_passes"], "tools_iso_isoexcept": self.app.defaults["tools_iso_isoexcept"], "tools_iso_selection": self.app.defaults["tools_iso_selection"], "tools_iso_area_shape": self.app.defaults["tools_iso_area_shape"] } try: dias = [float(self.app.defaults["tools_iso_tooldia"])] except (ValueError, TypeError): dias = [float(eval(dia)) for dia in self.app.defaults["tools_iso_tooldia"].split(",") if dia != ''] if not dias: log.error("At least one tool diameter needed. Verify in Edit -> Preferences -> TOOLS -> Isolation Tools.") return self.tooluid = 0 self.iso_tools.clear() for tool_dia in dias: self.tooluid += 1 self.iso_tools.update({ int(self.tooluid): { 'tooldia': float('%.*f' % (self.decimals, tool_dia)), 'offset': 'Path', 'offset_value': 0.0, 'type': 'Iso', 'tool_type': self.tool_type_radio.get_value(), 'data': deepcopy(self.default_data), 'solid_geometry': [] } }) self.obj_name = "" self.grb_obj = None self.bound_obj_name = "" self.bound_obj = None self.tool_type_item_options = ["C1", "C2", "C3", "C4", "B", "V"] self.units = self.app.defaults['units'].upper() def build_ui(self): self.ui_disconnect() # updated units self.units = self.app.defaults['units'].upper() sorted_tools = [] for k, v in self.iso_tools.items(): if self.units == "IN": sorted_tools.append(float('%.*f' % (self.decimals, float(v['tooldia'])))) else: sorted_tools.append(float('%.*f' % (self.decimals, float(v['tooldia'])))) order = self.order_radio.get_value() if order == 'fwd': sorted_tools.sort(reverse=False) elif order == 'rev': sorted_tools.sort(reverse=True) else: pass n = len(sorted_tools) self.tools_table.setRowCount(n) tool_id = 0 for tool_sorted in sorted_tools: for tooluid_key, tooluid_value in self.iso_tools.items(): if float('%.*f' % (self.decimals, tooluid_value['tooldia'])) == tool_sorted: tool_id += 1 id_ = QtWidgets.QTableWidgetItem('%d' % int(tool_id)) id_.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) row_no = tool_id - 1 self.tools_table.setItem(row_no, 0, id_) # Tool name/id # Make sure that the drill diameter when in MM is with no more than 2 decimals # There are no drill bits in MM with more than 2 decimals diameter # For INCH the decimals should be no more than 4. There are no drills under 10mils dia = QtWidgets.QTableWidgetItem('%.*f' % (self.decimals, tooluid_value['tooldia'])) dia.setFlags(QtCore.Qt.ItemIsEnabled) tool_type_item = FCComboBox() tool_type_item.addItems(self.tool_type_item_options) # tool_type_item.setStyleSheet('background-color: rgb(255,255,255)') idx = tool_type_item.findText(tooluid_value['tool_type']) tool_type_item.setCurrentIndex(idx) tool_uid_item = QtWidgets.QTableWidgetItem(str(int(tooluid_key))) self.tools_table.setItem(row_no, 1, dia) # Diameter self.tools_table.setCellWidget(row_no, 2, tool_type_item) # ## REMEMBER: THIS COLUMN IS HIDDEN IN OBJECTUI.PY # ## self.tools_table.setItem(row_no, 3, tool_uid_item) # Tool unique ID # make the diameter column editable for row in range(tool_id): self.tools_table.item(row, 1).setFlags( QtCore.Qt.ItemIsEditable | QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) # all the tools are selected by default self.tools_table.selectColumn(0) # self.tools_table.resizeColumnsToContents() self.tools_table.resizeRowsToContents() vertical_header = self.tools_table.verticalHeader() vertical_header.hide() self.tools_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) horizontal_header = self.tools_table.horizontalHeader() horizontal_header.setMinimumSectionSize(10) horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed) horizontal_header.resizeSection(0, 20) horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.Stretch) # self.tools_table.setSortingEnabled(True) # sort by tool diameter # self.tools_table.sortItems(1) self.tools_table.setMinimumHeight(self.tools_table.getHeight()) self.tools_table.setMaximumHeight(self.tools_table.getHeight()) self.ui_connect() # set the text on tool_data_label after loading the object sel_rows = [] sel_items = self.tools_table.selectedItems() for it in sel_items: sel_rows.append(it.row()) if len(sel_rows) > 1: self.tool_data_label.setText( "%s: %s" % (_('Parameters for'), _("Multiple Tools")) ) def ui_connect(self): self.tools_table.itemChanged.connect(self.on_tool_edit) # rows selected self.tools_table.clicked.connect(self.on_row_selection_change) self.tools_table.horizontalHeader().sectionClicked.connect(self.on_row_selection_change) for row in range(self.tools_table.rowCount()): try: self.tools_table.cellWidget(row, 2).currentIndexChanged.connect(self.on_tooltable_cellwidget_change) except AttributeError: pass self.tool_type_radio.activated_custom.connect(self.on_tool_type) for opt in self.form_fields: current_widget = self.form_fields[opt] if isinstance(current_widget, FCCheckBox): current_widget.stateChanged.connect(self.form_to_storage) if isinstance(current_widget, RadioSet): current_widget.activated_custom.connect(self.form_to_storage) elif isinstance(current_widget, FCDoubleSpinner) or isinstance(current_widget, FCSpinner): current_widget.returnPressed.connect(self.form_to_storage) elif isinstance(current_widget, FCComboBox): current_widget.currentIndexChanged.connect(self.form_to_storage) self.rest_cb.stateChanged.connect(self.on_rest_machining_check) self.order_radio.activated_custom[str].connect(self.on_order_changed) def ui_disconnect(self): try: # if connected, disconnect the signal from the slot on item_changed as it creates issues self.tools_table.itemChanged.disconnect() except (TypeError, AttributeError): pass try: # if connected, disconnect the signal from the slot on item_changed as it creates issues self.tool_type_radio.activated_custom.disconnect() except (TypeError, AttributeError): pass for row in range(self.tools_table.rowCount()): try: self.tools_table.cellWidget(row, 2).currentIndexChanged.disconnect() except (TypeError, AttributeError): pass for opt in self.form_fields: current_widget = self.form_fields[opt] if isinstance(current_widget, FCCheckBox): try: current_widget.stateChanged.disconnect(self.form_to_storage) except (TypeError, ValueError): pass if isinstance(current_widget, RadioSet): try: current_widget.activated_custom.disconnect(self.form_to_storage) except (TypeError, ValueError): pass elif isinstance(current_widget, FCDoubleSpinner) or isinstance(current_widget, FCSpinner): try: current_widget.returnPressed.disconnect(self.form_to_storage) except (TypeError, ValueError): pass elif isinstance(current_widget, FCComboBox): try: current_widget.currentIndexChanged.disconnect(self.form_to_storage) except (TypeError, ValueError): pass try: self.rest_cb.stateChanged.disconnect() except (TypeError, ValueError): pass try: self.order_radio.activated_custom[str].disconnect() except (TypeError, ValueError): pass # rows selected try: self.tools_table.clicked.disconnect() except (TypeError, AttributeError): pass try: self.tools_table.horizontalHeader().sectionClicked.disconnect() except (TypeError, AttributeError): pass def on_tooldia_updated(self): if self.tool_type_radio.get_value() == 'C1': self.old_tool_dia = self.addtool_entry.get_value() def on_reference_combo_changed(self): obj_type = self.reference_combo_type.currentIndex() self.reference_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.reference_combo.setCurrentIndex(0) self.reference_combo.obj_type = { _("Gerber"): "Gerber", _("Excellon"): "Excellon", _("Geometry"): "Geometry" }[self.reference_combo_type.get_value()] def on_toggle_reference(self): val = self.select_combo.get_value() if val == _("All"): self.reference_combo.hide() self.reference_combo_label.hide() self.reference_combo_type.hide() self.reference_combo_type_label.hide() self.area_shape_label.hide() self.area_shape_radio.hide() # disable rest-machining for area painting self.rest_cb.setDisabled(False) elif val == _("Area Selection"): self.reference_combo.hide() self.reference_combo_label.hide() self.reference_combo_type.hide() self.reference_combo_type_label.hide() self.area_shape_label.show() self.area_shape_radio.show() # disable rest-machining for area isolation self.rest_cb.set_value(False) self.rest_cb.setDisabled(True) elif val == _("Polygon Selection"): self.reference_combo.hide() self.reference_combo_label.hide() self.reference_combo_type.hide() self.reference_combo_type_label.hide() self.area_shape_label.hide() self.area_shape_radio.hide() else: self.reference_combo.show() self.reference_combo_label.show() self.reference_combo_type.show() self.reference_combo_type_label.show() self.area_shape_label.hide() self.area_shape_radio.hide() # disable rest-machining for area painting self.rest_cb.setDisabled(False) def on_order_changed(self, order): if order != 'no': self.build_ui() def on_rest_machining_check(self, state): if state: self.order_radio.set_value('rev') self.ncc_order_label.setDisabled(True) self.order_radio.setDisabled(True) else: self.ncc_order_label.setDisabled(False) self.order_radio.setDisabled(False) def on_tooltable_cellwidget_change(self): cw = self.sender() assert isinstance(cw, QtWidgets.QComboBox), \ "Expected a QtWidgets.QComboBox, got %s" % isinstance(cw, QtWidgets.QComboBox) cw_index = self.tools_table.indexAt(cw.pos()) cw_row = cw_index.row() cw_col = cw_index.column() current_uid = int(self.tools_table.item(cw_row, 3).text()) # if the sender is in the column with index 2 then we update the tool_type key if cw_col == 2: tt = cw.currentText() typ = 'Iso' if tt == 'V' else "Rough" self.iso_tools[current_uid].update({ 'type': typ, 'tool_type': tt, }) def on_tool_type(self, val): if val == 'V': self.addtool_entry_lbl.setDisabled(True) self.addtool_entry.setDisabled(True) self.tipdialabel.show() self.tipdia_entry.show() self.tipanglelabel.show() self.tipangle_entry.show() self.on_calculate_tooldia() else: self.addtool_entry_lbl.setDisabled(False) self.addtool_entry.setDisabled(False) self.tipdialabel.hide() self.tipdia_entry.hide() self.tipanglelabel.hide() self.tipangle_entry.hide() self.addtool_entry.set_value(self.old_tool_dia) def on_calculate_tooldia(self): if self.tool_type_radio.get_value() == 'V': tip_dia = float(self.tipdia_entry.get_value()) tip_angle = float(self.tipangle_entry.get_value()) / 2.0 cut_z = float(self.cutz_entry.get_value()) cut_z = -cut_z if cut_z < 0 else cut_z # calculated tool diameter so the cut_z parameter is obeyed tool_dia = tip_dia + (2 * cut_z * math.tan(math.radians(tip_angle))) # update the default_data so it is used in the iso_tools dict self.default_data.update({ "vtipdia": tip_dia, "vtipangle": (tip_angle * 2), }) self.addtool_entry.set_value(tool_dia) return tool_dia else: return float(self.addtool_entry.get_value()) def on_tool_add(self, dia=None, muted=None): self.blockSignals(True) self.units = self.app.defaults['units'].upper() if dia: tool_dia = dia else: tool_dia = self.on_calculate_tooldia() if tool_dia is None: self.build_ui() self.app.inform.emit('[WARNING_NOTCL] %s' % _("Please enter a tool diameter to add, in Float format.")) return tool_dia = float('%.*f' % (self.decimals, tool_dia)) if tool_dia == 0: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Please enter a tool diameter with non-zero value, " "in Float format.")) return # construct a list of all 'tooluid' in the self.tools tool_uid_list = [] for tooluid_key in self.iso_tools: tool_uid_item = int(tooluid_key) tool_uid_list.append(tool_uid_item) # find maximum from the temp_uid, add 1 and this is the new 'tooluid' if not tool_uid_list: max_uid = 0 else: max_uid = max(tool_uid_list) self.tooluid = int(max_uid + 1) tool_dias = [] for k, v in self.iso_tools.items(): for tool_v in v.keys(): if tool_v == 'tooldia': tool_dias.append(float('%.*f' % (self.decimals, (v[tool_v])))) if float('%.*f' % (self.decimals, tool_dia)) in tool_dias: if muted is None: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled. Tool already in Tool Table.")) # self.tools_table.itemChanged.connect(self.on_tool_edit) self.blockSignals(False) return else: if muted is None: self.app.inform.emit('[success] %s' % _("New tool added to Tool Table.")) self.iso_tools.update({ int(self.tooluid): { 'tooldia': float('%.*f' % (self.decimals, tool_dia)), 'offset': 'Path', 'offset_value': 0.0, 'type': 'Iso', 'tool_type': self.tool_type_radio.get_value(), 'data': deepcopy(self.default_data), 'solid_geometry': [] } }) self.blockSignals(False) self.build_ui() def on_tool_edit(self): self.blockSignals(True) old_tool_dia = '' tool_dias = [] for k, v in self.iso_tools.items(): for tool_v in v.keys(): if tool_v == 'tooldia': tool_dias.append(float('%.*f' % (self.decimals, v[tool_v]))) for row in range(self.tools_table.rowCount()): try: new_tool_dia = float(self.tools_table.item(row, 1).text()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: new_tool_dia = float(self.tools_table.item(row, 1).text().replace(',', '.')) except ValueError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Wrong value format entered, use a number.")) self.blockSignals(False) return tooluid = int(self.tools_table.item(row, 3).text()) # identify the tool that was edited and get it's tooluid if new_tool_dia not in tool_dias: self.iso_tools[tooluid]['tooldia'] = new_tool_dia self.app.inform.emit('[success] %s' % _("Tool from Tool Table was edited.")) self.blockSignals(False) self.build_ui() return else: # identify the old tool_dia and restore the text in tool table for k, v in self.iso_tools.items(): if k == tooluid: old_tool_dia = v['tooldia'] break restore_dia_item = self.tools_table.item(row, 1) restore_dia_item.setText(str(old_tool_dia)) self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled. " "New diameter value is already in the Tool Table.")) self.blockSignals(False) self.build_ui() def on_tool_delete(self, rows_to_delete=None, all_tools=None): """ Will delete a tool in the tool table :param rows_to_delete: which rows to delete; can be a list :param all_tools: delete all tools in the tool table :return: """ self.blockSignals(True) deleted_tools_list = [] if all_tools: self.iso_tools.clear() self.blockSignals(False) self.build_ui() return if rows_to_delete: try: for row in rows_to_delete: tooluid_del = int(self.tools_table.item(row, 3).text()) deleted_tools_list.append(tooluid_del) except TypeError: tooluid_del = int(self.tools_table.item(rows_to_delete, 3).text()) deleted_tools_list.append(tooluid_del) for t in deleted_tools_list: self.iso_tools.pop(t, None) self.blockSignals(False) self.build_ui() return try: if self.tools_table.selectedItems(): for row_sel in self.tools_table.selectedItems(): row = row_sel.row() if row < 0: continue tooluid_del = int(self.tools_table.item(row, 3).text()) deleted_tools_list.append(tooluid_del) for t in deleted_tools_list: self.iso_tools.pop(t, None) except AttributeError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Delete failed. Select a tool to delete.")) self.blockSignals(False) return except Exception as e: log.debug(str(e)) self.app.inform.emit('[success] %s' % _("Tool(s) deleted from Tool Table.")) self.blockSignals(False) self.build_ui() def on_generate_buffer(self): self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Buffering solid geometry")) self.obj_name = self.object_combo.currentText() # Get source object. try: self.grb_obj = self.app.collection.get_by_name(self.obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), str(self.obj_name))) return "Could not retrieve object: %s with error: %s" % (self.obj_name, str(e)) if self.grb_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), str(self.obj_name))) return def buffer_task(): with self.app.proc_container.new('%s...' % _("Buffering")): if isinstance(self.grb_obj.solid_geometry, list): self.grb_obj.solid_geometry = MultiPolygon(self.grb_obj.solid_geometry) self.grb_obj.solid_geometry = self.grb_obj.solid_geometry.buffer(0.0000001) self.grb_obj.solid_geometry = self.grb_obj.solid_geometry.buffer(-0.0000001) self.app.inform.emit('[success] %s.' % _("Done")) self.grb_obj.plot_single_object.emit() self.app.worker_task.emit({'fcn': buffer_task, 'params': []}) def on_isolate_click(self): """ Slot for clicking signal of the self.generate_iso_button :return: None """ # init values for the next usage self.reset_usage() self.app.defaults.report_usage("on_paint_button_click") self.grb_circle_steps = int(self.app.defaults["gerber_circle_steps"]) self.obj_name = self.object_combo.currentText() # Get source object. try: self.grb_obj = self.app.collection.get_by_name(self.obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), str(self.obj_name))) return "Could not retrieve object: %s with error: %s" % (self.obj_name, str(e)) if self.grb_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), str(self.obj_name))) return # use the selected tools in the tool table; get diameters for isolation self.iso_dia_list = [] # use the selected tools in the tool table; get diameters for non-copper clear self.ncc_dia_list = [] if self.tools_table.selectedItems(): for x in self.tools_table.selectedItems(): try: self.tooldia = float(self.tools_table.item(x.row(), 1).text()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: self.tooldia = float(self.tools_table.item(x.row(), 1).text().replace(',', '.')) except ValueError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Wrong Tool Dia value format entered, " "use a number.")) continue self.iso_dia_list.append(self.tooldia) else: self.app.inform.emit('[ERROR_NOTCL] %s' % _("No selected tools in Tool Table.")) return self.o_name = '%s_ncc' % self.obj_name self.select_method = self.select_combo.get_value() if self.select_method == _('Itself'): self.bound_obj_name = self.object_combo.currentText() # Get source object. try: self.bound_obj = self.app.collection.get_by_name(self.bound_obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), self.bound_obj_name)) return "Could not retrieve object: %s with error: %s" % (self.bound_obj_name, str(e)) self.clear_copper(ncc_obj=self.grb_obj, ncctooldia=self.ncc_dia_list, isotooldia=self.iso_dia_list, outname=self.o_name) elif self.select_method == _("Area Selection"): self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the start point of the area.")) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mp) self.app.plotcanvas.graph_event_disconnect(self.app.mm) self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_mouse_release) self.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.on_mouse_move) self.kp = self.app.plotcanvas.graph_event_connect('key_press', self.on_key_press) elif self.select_method == _("Reference Object"): self.bound_obj_name = self.reference_combo.currentText() # Get source object. try: self.bound_obj = self.app.collection.get_by_name(self.bound_obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), self.bound_obj_name)) return "Could not retrieve object: %s. Error: %s" % (self.bound_obj_name, str(e)) self.clear_copper(ncc_obj=self.grb_obj, sel_obj=self.bound_obj, ncctooldia=self.ncc_dia_list, isotooldia=self.iso_dia_list, outname=self.o_name) # ########################################### # ########################################### # ########################################### # ########################################### def on_iso_button_click(self, *args): self.obj_name = self.object_combo.currentText() # Get source object. try: self.grb_obj = self.app.collection.get_by_name(self.obj_name) except Exception as e: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), str(self.obj_name))) return "Could not retrieve object: %s with error: %s" % (self.obj_name, str(e)) if self.grb_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), str(self.obj_name))) return def worker_task(iso_obj, app_obj): with self.app.proc_container.new(_("Isolating...")): self.isolate_handler(iso_obj) self.app.worker_task.emit({'fcn': worker_task, 'params': [self.grb_obj, self.app]}) def follow_geo(self, followed_obj, outname): """ Creates a geometry object "following" the gerber paths. :param followed_obj: Gerber object for which to generate the follow geometry :type followed_obj: AppObjects.FlatCAMGerber.GerberObject :param outname: Nme of the resulting Geometry object :type outname: str :return: None """ def follow_init(follow_obj, app): # Propagate options follow_obj.options["cnctooldia"] = str(tooldia) follow_obj.solid_geometry = self.grb_obj.follow_geometry # in the end toggle the visibility of the origin object so we can see the generated Geometry followed_obj.ui.plot_cb.set_value(False) follow_name = outname for tool in self.iso_tools: tooldia = self.iso_tools[tool]['tooldia'] new_name = "%s_%.*f" % (follow_name, self.decimals, tooldia) follow_state = self.iso_tools[tool]['data']['tools_iso_follow'] if follow_state: ret = self.app.app_obj.new_object("geometry", new_name, follow_init) if ret == 'fail': self.app.inform.emit("[ERROR_NOTCL] %s: %.*f" % ( _("Failed to create Follow Geometry with tool diameter"), self.decimals, tooldia)) else: self.app.inform.emit("[success] %s: %.*f" % ( _("Follow Geometry was created with tool diameter"), self.decimals, tooldia)) def isolate_handler(self, isolated_obj): """ Creates a geometry object with paths around the gerber features. :param isolated_obj: Gerber object for which to generate the isolating routing geometry :type isolated_obj: AppObjects.FlatCAMGerber.GerberObject :return: None """ selection = self.select_combo.get_value() if selection == _("All"): full_geo = isolated_obj.solid_geometry self.isolate(isolated_obj=isolated_obj, geometry=full_geo) elif selection == _("Area Selection"): self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the start point of the area.")) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mp) self.app.plotcanvas.graph_event_disconnect(self.app.mm) self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_mouse_release) self.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.on_mouse_move) self.kp = self.app.plotcanvas.graph_event_connect('key_press', self.on_key_press) elif selection == _("Polygon Selection"): # disengage the grid snapping since it may be hard to click on polygons with grid snapping on if self.app.ui.grid_snap_btn.isChecked(): self.grid_status_memory = True self.app.ui.grid_snap_btn.trigger() else: self.grid_status_memory = False self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_mouse_click_release) self.kp = self.app.plotcanvas.graph_event_connect('key_press', self.on_key_press) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click on a polygon to isolate it.")) elif selection == _("Reference Object"): ref_obj = self.app.collection.get_by_name(self.reference_combo.get_value()) ref_geo = cascaded_union(ref_obj.solid_geometry) use_geo = cascaded_union(isolated_obj.solid_geometry).difference(ref_geo) self.isolate(isolated_obj=isolated_obj, geometry=use_geo) def isolate(self, isolated_obj, geometry=None, limited_area=None, plot=True): """ Creates an isolation routing geometry object in the project. :param isolated_obj: Gerber object for which to generate the isolating routing geometry :type isolated_obj: AppObjects.FlatCAMGerber.GerberObject :param geometry: specific geometry to isolate :type geometry: List of Shapely polygon :param limited_area: if not None clear only this area :type limited_area: Shapely Polygon or a list of them :param plot: if to plot the resulting geometry object :type plot: bool :return: None """ iso_name = isolated_obj.options["name"] combine = self.combine_passes_cb.get_value() tools_storage = self.iso_tools if combine: total_solid_geometry = [] for tool in tools_storage: tool_dia = tools_storage[tool]['tooldia'] tool_type = tools_storage[tool]['tool_type'] tool_data = tools_storage[tool]['data'] to_follow = tool_data['tools_iso_follow'] work_geo = geometry if work_geo is None: work_geo = isolated_obj.follow_geometry if to_follow else isolated_obj.solid_geometry iso_t = { 'ext': 0, 'int': 1, 'full': 2 }[tool_data['tools_iso_isotype']] passes = tool_data['tools_iso_passes'] overlap = tool_data['tools_iso_overlap'] overlap /= 100.0 milling_type = tool_data['tools_iso_milling_type'] iso_except = tool_data['tools_iso_isoexcept'] outname = "%s_%.*f" % (isolated_obj.options["name"], self.decimals, float(tool_dia)) iso_name = outname + "_iso" if iso_t == 0: iso_name = outname + "_ext_iso" elif iso_t == 1: iso_name = outname + "_int_iso" # transfer the Cut Z and Vtip and VAngle values in case that we use the V-Shape tool in Gerber UI if tool_type.lower() == 'v': new_cutz = self.ui.cutz_spinner.get_value() new_vtipdia = self.ui.tipdia_spinner.get_value() new_vtipangle = self.ui.tipangle_spinner.get_value() tool_type = 'V' tool_data.update({ "name": iso_name, "cutz": new_cutz, "vtipdia": new_vtipdia, "vtipangle": new_vtipangle, }) else: tool_data.update({ "name": iso_name, }) tool_type = 'C1' solid_geo = [] for nr_pass in range(passes): iso_offset = tool_dia * ((2 * nr_pass + 1) / 2.0000001) - (nr_pass * overlap * tool_dia) # if milling type is climb then the move is counter-clockwise around features mill_dir = 1 if milling_type == 'cl' else 0 iso_geo = self.generate_envelope(iso_offset, mill_dir, geometry=work_geo, env_iso_type=iso_t, follow=to_follow, nr_passes=nr_pass) if iso_geo == 'fail': self.app.inform.emit('[ERROR_NOTCL] %s' % _("Isolation geometry could not be generated.")) continue try: for geo in iso_geo: solid_geo.append(geo) except TypeError: solid_geo.append(iso_geo) # ############################################################ # ########## AREA SUBTRACTION ################################ # ############################################################ if iso_except: self.app.proc_container.update_view_text(' %s' % _("Subtracting Geo")) solid_geo = self.area_subtraction(solid_geo) if limited_area: self.app.proc_container.update_view_text(' %s' % _("Intersecting Geo")) solid_geo = self.area_intersection(solid_geo, intersection_geo=limited_area) tools_storage.update({ tool: { 'tooldia': float(tool_dia), 'offset': 'Path', 'offset_value': 0.0, 'type': _('Rough'), 'tool_type': tool_type, 'data': tool_data, 'solid_geometry': deepcopy(solid_geo) } }) total_solid_geometry += solid_geo def iso_init(geo_obj, app_obj): geo_obj.options["cnctooldia"] = str(tool_dia) geo_obj.tools = dict(tools_storage) geo_obj.solid_geometry = total_solid_geometry # even if combine is checked, one pass is still single-geo if len(self.iso_tools) > 1: geo_obj.multigeo = True else: passes = float(self.iso_tools[0]['data']['tools_iso_passes']) geo_obj.multigeo = True if passes > 1 else False # detect if solid_geometry is empty and this require list flattening which is "heavy" # or just looking in the lists (they are one level depth) and if any is not empty # proceed with object creation, if there are empty and the number of them is the length # of the list then we have an empty solid_geometry which should raise a Custom Exception empty_cnt = 0 if not isinstance(geo_obj.solid_geometry, list) and \ not isinstance(geo_obj.solid_geometry, MultiPolygon): geo_obj.solid_geometry = [geo_obj.solid_geometry] for g in geo_obj.solid_geometry: if g: break else: empty_cnt += 1 if empty_cnt == len(geo_obj.solid_geometry): app_obj.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Empty Geometry in"), geo_obj.options["name"])) return 'fail' else: app_obj.inform.emit('[success] %s: %s' % (_("Isolation geometry created"), geo_obj.options["name"])) self.app.app_obj.new_object("geometry", iso_name, iso_init, plot=plot) else: for tool in tools_storage: tool_data = tools_storage[tool]['data'] to_follow = tool_data['tools_iso_follow'] work_geo = geometry if work_geo is None: work_geo = isolated_obj.follow_geometry if to_follow else isolated_obj.solid_geometry iso_t = { 'ext': 0, 'int': 1, 'full': 2 }[tool_data['tools_iso_isotype']] passes = tool_data['tools_iso_passes'] overlap = tool_data['tools_iso_overlap'] overlap /= 100.0 milling_type = tool_data['tools_iso_milling_type'] iso_except = tool_data['tools_iso_isoexcept'] for i in range(passes): tool_dia = tools_storage[tool]['tooldia'] tool_type = tools_storage[tool]['tool_type'] iso_offset = tool_dia * ((2 * i + 1) / 2.0000001) - (i * overlap * tool_dia) outname = "%s_%.*f" % (isolated_obj.options["name"], self.decimals, float(tool_dia)) if passes > 1: iso_name = outname + "_iso" + str(i + 1) if iso_t == 0: iso_name = outname + "_ext_iso" + str(i + 1) elif iso_t == 1: iso_name = outname + "_int_iso" + str(i + 1) else: iso_name = outname + "_iso" if iso_t == 0: iso_name = outname + "_ext_iso" elif iso_t == 1: iso_name = outname + "_int_iso" # if milling type is climb then the move is counter-clockwise around features mill_dir = 1 if milling_type == 'cl' else 0 iso_geo = self.generate_envelope(iso_offset, mill_dir, geometry=work_geo, env_iso_type=iso_t, follow=to_follow, nr_passes=i) if iso_geo == 'fail': self.app.inform.emit( '[ERROR_NOTCL] %s' % _("Isolation geometry could not be generated.")) continue # ############################################################ # ########## AREA SUBTRACTION ################################ # ############################################################ if iso_except: self.app.proc_container.update_view_text(' %s' % _("Subtracting Geo")) iso_geo = self.area_subtraction(iso_geo) if limited_area: self.app.proc_container.update_view_text(' %s' % _("Intersecting Geo")) iso_geo = self.area_intersection(iso_geo, intersection_geo=limited_area) # transfer the Cut Z and Vtip and VAngle values in case that we use the V-Shape tool in # Gerber UI if tool_type.lower() == 'v': new_cutz = self.ui.cutz_spinner.get_value() new_vtipdia = self.ui.tipdia_spinner.get_value() new_vtipangle = self.ui.tipangle_spinner.get_value() tool_type = 'V' tool_data.update({ "name": iso_name, "cutz": new_cutz, "vtipdia": new_vtipdia, "vtipangle": new_vtipangle, }) else: tool_data.update({ "name": iso_name, }) tool_type = 'C1' def iso_init(geo_obj, fc_obj): # Propagate options geo_obj.options["cnctooldia"] = str(tool_dia) geo_obj.solid_geometry = deepcopy(iso_geo) # ############################################################ # ########## AREA SUBTRACTION ################################ # ############################################################ if self.except_cb.get_value(): self.app.proc_container.update_view_text(' %s' % _("Subtracting Geo")) geo_obj.solid_geometry = self.area_subtraction(geo_obj.solid_geometry) geo_obj.tools = {} geo_obj.tools['1'] = {} geo_obj.tools.update({ '1': { 'tooldia': float(tool_dia), 'offset': 'Path', 'offset_value': 0.0, 'type': _('Rough'), 'tool_type': tool_type, 'data': tool_data, 'solid_geometry': geo_obj.solid_geometry } }) # detect if solid_geometry is empty and this require list flattening which is "heavy" # or just looking in the lists (they are one level depth) and if any is not empty # proceed with object creation, if there are empty and the number of them is the length # of the list then we have an empty solid_geometry which should raise a Custom Exception empty_cnt = 0 if not isinstance(geo_obj.solid_geometry, list): geo_obj.solid_geometry = [geo_obj.solid_geometry] for g in geo_obj.solid_geometry: if g: break else: empty_cnt += 1 if empty_cnt == len(geo_obj.solid_geometry): fc_obj.inform.emit('[ERROR_NOTCL] %s: %s' % ( _("Empty Geometry in"), geo_obj.options["name"])) return 'fail' else: fc_obj.inform.emit('[success] %s: %s' % (_("Isolation geometry created"), geo_obj.options["name"])) geo_obj.multigeo = False # TODO: Do something if this is None. Offer changing name? self.app.app_obj.new_object("geometry", iso_name, iso_init, plot=plot) def area_subtraction(self, geo, subtractor_geo): """ Subtracts the subtractor_geo (if present else self.solid_geometry) from the geo :param geo: target geometry from which to subtract :param subtractor_geo: geometry that acts as subtractor :return: """ new_geometry = [] target_geo = geo if subtractor_geo: sub_union = cascaded_union(subtractor_geo) else: name = self.exc_obj_combo.currentText() subtractor_obj = self.app.collection.get_by_name(name) sub_union = cascaded_union(subtractor_obj.solid_geometry) try: for geo_elem in target_geo: if isinstance(geo_elem, Polygon): for ring in self.poly2rings(geo_elem): new_geo = ring.difference(sub_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiPolygon): for poly in geo_elem: for ring in self.poly2rings(poly): new_geo = ring.difference(sub_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, LineString): new_geo = geo_elem.difference(sub_union) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiLineString): for line_elem in geo_elem: new_geo = line_elem.difference(sub_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) except TypeError: if isinstance(target_geo, Polygon): for ring in self.poly2rings(target_geo): new_geo = ring.difference(sub_union) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(target_geo, LineString): new_geo = target_geo.difference(sub_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(target_geo, MultiLineString): for line_elem in target_geo: new_geo = line_elem.difference(sub_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) return new_geometry def area_intersection(self, geo, intersection_geo=None): """ Return the intersection geometry between geo and intersection_geo :param geo: target geometry :param intersection_geo: second geometry :return: """ new_geometry = [] target_geo = geo intersect_union = cascaded_union(intersection_geo) try: for geo_elem in target_geo: if isinstance(geo_elem, Polygon): for ring in self.poly2rings(geo_elem): new_geo = ring.intersection(intersect_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiPolygon): for poly in geo_elem: for ring in self.poly2rings(poly): new_geo = ring.intersection(intersect_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, LineString): new_geo = geo_elem.intersection(intersect_union) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiLineString): for line_elem in geo_elem: new_geo = line_elem.intersection(intersect_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) except TypeError: if isinstance(target_geo, Polygon): for ring in self.poly2rings(target_geo): new_geo = ring.intersection(intersect_union) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(target_geo, LineString): new_geo = target_geo.intersection(intersect_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(target_geo, MultiLineString): for line_elem in target_geo: new_geo = line_elem.intersection(intersect_union) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) return new_geometry def on_mouse_click_release(self, event): if self.app.is_legacy is False: event_pos = event.pos right_button = 2 self.app.event_is_dragging = self.app.event_is_dragging else: event_pos = (event.xdata, event.ydata) right_button = 3 self.app.event_is_dragging = self.app.ui.popMenu.mouse_is_panning try: x = float(event_pos[0]) y = float(event_pos[1]) except TypeError: return event_pos = (x, y) curr_pos = self.app.plotcanvas.translate_coords(event_pos) if self.app.grid_status(): curr_pos = self.app.geo_editor.snap(curr_pos[0], curr_pos[1]) else: curr_pos = (curr_pos[0], curr_pos[1]) if event.button == 1: clicked_poly = self.find_polygon(point=(curr_pos[0], curr_pos[1]), geoset=self.grb_obj.solid_geometry) if self.app.selection_type is not None: self.selection_area_handler(self.app.pos, curr_pos, self.app.selection_type) self.app.selection_type = None elif clicked_poly: if clicked_poly not in self.poly_dict.values(): shape_id = self.app.tool_shapes.add(tolerance=self.drawing_tolerance, layer=0, shape=clicked_poly, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults['global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = clicked_poly self.app.inform.emit( '%s: %d. %s' % (_("Added polygon"), int(len(self.poly_dict)), _("Click to add next polygon or right click to start isolation.")) ) else: try: for k, v in list(self.poly_dict.items()): if v == clicked_poly: self.app.tool_shapes.remove(k) self.poly_dict.pop(k) break except TypeError: return self.app.inform.emit( '%s. %s' % (_("Removed polygon"), _("Click to add/remove next polygon or right click to start isolation.")) ) self.app.tool_shapes.redraw() else: self.app.inform.emit(_("No polygon detected under click position.")) elif event.button == right_button and self.app.event_is_dragging is False: # restore the Grid snapping if it was active before if self.grid_status_memory is True: self.app.ui.grid_snap_btn.trigger() if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.on_mouse_click_release) self.app.plotcanvas.graph_event_disconnect('key_press', self.on_key_pres) else: self.app.plotcanvas.graph_event_disconnect(self.mr) self.app.plotcanvas.graph_event_disconnect(self.kp) self.app.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) self.app.tool_shapes.clear(update=True) if self.poly_dict: poly_list = deepcopy(list(self.poly_dict.values())) self.isolate(isolated_obj=self.grb_obj, geometry=poly_list) self.poly_dict.clear() else: self.app.inform.emit('[ERROR_NOTCL] %s' % _("List of single polygons is empty. Aborting.")) def selection_area_handler(self, start_pos, end_pos, sel_type): """ :param start_pos: mouse position when the selection LMB click was done :param end_pos: mouse position when the left mouse button is released :param sel_type: if True it's a left to right selection (enclosure), if False it's a 'touch' selection :return: """ poly_selection = Polygon([start_pos, (end_pos[0], start_pos[1]), end_pos, (start_pos[0], end_pos[1])]) # delete previous selection shape self.app.delete_selection_shape() added_poly_count = 0 try: for geo in self.solid_geometry: if geo not in self.poly_dict.values(): if sel_type is True: if geo.within(poly_selection): shape_id = self.app.tool_shapes.add(tolerance=self.drawing_tolerance, layer=0, shape=geo, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults[ 'global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = geo added_poly_count += 1 else: if poly_selection.intersects(geo): shape_id = self.app.tool_shapes.add(tolerance=self.drawing_tolerance, layer=0, shape=geo, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults[ 'global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = geo added_poly_count += 1 except TypeError: if self.solid_geometry not in self.poly_dict.values(): if sel_type is True: if self.solid_geometry.within(poly_selection): shape_id = self.app.tool_shapes.add(tolerance=self.drawing_tolerance, layer=0, shape=self.solid_geometry, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults[ 'global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = self.solid_geometry added_poly_count += 1 else: if poly_selection.intersects(self.solid_geometry): shape_id = self.app.tool_shapes.add(tolerance=self.drawing_tolerance, layer=0, shape=self.solid_geometry, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults[ 'global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = self.solid_geometry added_poly_count += 1 if added_poly_count > 0: self.app.tool_shapes.redraw() self.app.inform.emit( '%s: %d. %s' % (_("Added polygon"), int(added_poly_count), _("Click to add next polygon or right click to start isolation.")) ) else: self.app.inform.emit(_("No polygon in selection.")) # ########################################### # ########################################### # ########################################### # ########################################### # To be called after clicking on the plot. def on_mouse_release(self, event): if self.app.is_legacy is False: event_pos = event.pos # event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) # event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 event_pos = self.app.plotcanvas.translate_coords(event_pos) if self.app.grid_status(): curr_pos = self.app.geo_editor.snap(event_pos[0], event_pos[1]) else: curr_pos = (event_pos[0], event_pos[1]) x1, y1 = curr_pos[0], curr_pos[1] shape_type = self.area_shape_radio.get_value() # do clear area only for left mouse clicks if event.button == 1: if shape_type == "square": if self.first_click is False: self.first_click = True self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the end point of the paint area.")) self.cursor_pos = self.app.plotcanvas.translate_coords(event_pos) if self.app.grid_status(): self.cursor_pos = self.app.geo_editor.snap(event_pos[0], event_pos[1]) else: self.app.inform.emit(_("Zone added. Click to start adding next zone or right click to finish.")) self.app.delete_selection_shape() x0, y0 = self.cursor_pos[0], self.cursor_pos[1] pt1 = (x0, y0) pt2 = (x1, y0) pt3 = (x1, y1) pt4 = (x0, y1) new_rectangle = Polygon([pt1, pt2, pt3, pt4]) self.sel_rect.append(new_rectangle) # add a temporary shape on canvas self.draw_tool_selection_shape(old_coords=(x0, y0), coords=(x1, y1)) self.first_click = False return else: self.points.append((x1, y1)) if len(self.points) > 1: self.poly_drawn = True self.app.inform.emit(_("Click on next Point or click right mouse button to complete ...")) return "" elif event.button == right_button and self.mouse_is_dragging is False: shape_type = self.area_shape_radio.get_value() if shape_type == "square": self.first_click = False else: # if we finish to add a polygon if self.poly_drawn is True: try: # try to add the point where we last clicked if it is not already in the self.points last_pt = (x1, y1) if last_pt != self.points[-1]: self.points.append(last_pt) except IndexError: pass # we need to add a Polygon and a Polygon can be made only from at least 3 points if len(self.points) > 2: self.delete_moving_selection_shape() pol = Polygon(self.points) # do not add invalid polygons even if they are drawn by utility geometry if pol.is_valid: self.sel_rect.append(pol) self.draw_selection_shape_polygon(points=self.points) self.app.inform.emit( _("Zone added. Click to start adding next zone or right click to finish.")) self.points = [] self.poly_drawn = False return self.delete_tool_selection_shape() if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.on_mouse_release) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.on_mouse_move) self.app.plotcanvas.graph_event_disconnect('key_press', self.on_key_press) else: self.app.plotcanvas.graph_event_disconnect(self.mr) self.app.plotcanvas.graph_event_disconnect(self.mm) self.app.plotcanvas.graph_event_disconnect(self.kp) self.app.mp = self.app.plotcanvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot) self.app.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot) self.app.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) if len(self.sel_rect) == 0: return self.sel_rect = cascaded_union(self.sel_rect) self.isolate(isolated_obj=self.grb_obj, limited_area=self.sel_rect, plot=True) self.sel_rect = [] # called on mouse move def on_mouse_move(self, event): shape_type = self.area_shape_radio.get_value() if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging # right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging # right_button = 3 curr_pos = self.app.plotcanvas.translate_coords(event_pos) # detect mouse dragging motion if event_is_dragging is True: self.mouse_is_dragging = True else: self.mouse_is_dragging = False # update the cursor position if self.app.grid_status(): # Update cursor curr_pos = self.app.geo_editor.snap(curr_pos[0], curr_pos[1]) self.app.app_cursor.set_data(np.asarray([(curr_pos[0], curr_pos[1])]), symbol='++', edge_color=self.app.cursor_color_3D, edge_width=self.app.defaults["global_cursor_width"], size=self.app.defaults["global_cursor_size"]) if self.cursor_pos is None: self.cursor_pos = (0, 0) self.app.dx = curr_pos[0] - float(self.cursor_pos[0]) self.app.dy = curr_pos[1] - float(self.cursor_pos[1]) # # update the positions on status bar self.app.ui.position_label.setText(" X: %.4f   " "Y: %.4f " % (curr_pos[0], curr_pos[1])) # self.app.ui.rel_position_label.setText("Dx: %.4f   Dy: " # "%.4f    " % (self.app.dx, self.app.dy)) units = self.app.defaults["units"].lower() self.app.plotcanvas.text_hud.text = \ 'Dx:\t{:<.4f} [{:s}]\nDy:\t{:<.4f} [{:s}]\n\nX: \t{:<.4f} [{:s}]\nY: \t{:<.4f} [{:s}]'.format( self.app.dx, units, self.app.dy, units, curr_pos[0], units, curr_pos[1], units) # draw the utility geometry if shape_type == "square": if self.first_click: self.app.delete_selection_shape() self.app.draw_moving_selection_shape(old_coords=(self.cursor_pos[0], self.cursor_pos[1]), coords=(curr_pos[0], curr_pos[1])) else: self.delete_moving_selection_shape() self.draw_moving_selection_shape_poly(points=self.points, data=(curr_pos[0], curr_pos[1])) def on_key_press(self, event): # modifiers = QtWidgets.QApplication.keyboardModifiers() # matplotlib_key_flag = False # events out of the self.app.collection view (it's about Project Tab) are of type int if type(event) is int: key = event # events from the GUI are of type QKeyEvent elif type(event) == QtGui.QKeyEvent: key = event.key() elif isinstance(event, mpl_key_event): # MatPlotLib key events are trickier to interpret than the rest # matplotlib_key_flag = True key = event.key key = QtGui.QKeySequence(key) # check for modifiers key_string = key.toString().lower() if '+' in key_string: mod, __, key_text = key_string.rpartition('+') if mod.lower() == 'ctrl': # modifiers = QtCore.Qt.ControlModifier pass elif mod.lower() == 'alt': # modifiers = QtCore.Qt.AltModifier pass elif mod.lower() == 'shift': # modifiers = QtCore.Qt.ShiftModifier pass else: # modifiers = QtCore.Qt.NoModifier pass key = QtGui.QKeySequence(key_text) # events from Vispy are of type KeyEvent else: key = event.key if key == QtCore.Qt.Key_Escape or key == 'Escape': if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.on_mouse_release) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.on_mouse_move) self.app.plotcanvas.graph_event_disconnect('key_press', self.on_key_press) else: self.app.plotcanvas.graph_event_disconnect(self.mr) self.app.plotcanvas.graph_event_disconnect(self.mm) self.app.plotcanvas.graph_event_disconnect(self.kp) self.app.mp = self.app.plotcanvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot) self.app.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot) self.app.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) self.points = [] self.poly_drawn = False self.delete_moving_selection_shape() self.delete_tool_selection_shape() def get_tool_empty_area(self, name, ncc_obj, geo_obj, isotooldia, has_offset, ncc_offset, ncc_margin, bounding_box, tools_storage): """ Calculate the empty area by subtracting the solid_geometry from the object bounding box geometry. :param name: :param ncc_obj: :param geo_obj: :param isotooldia: :param has_offset: :param ncc_offset: :param ncc_margin: :param bounding_box: :param tools_storage: :return: """ log.debug("NCC Tool. Calculate 'empty' area.") self.app.inform.emit(_("NCC Tool. Calculate 'empty' area.")) # a flag to signal that the isolation is broken by the bounding box in 'area' and 'box' cases # will store the number of tools for which the isolation is broken warning_flag = 0 if ncc_obj.kind == 'gerber' and isotooldia: isolated_geo = [] # unfortunately for this function to work time efficient, # if the Gerber was loaded without buffering then it require the buffering now. # TODO 'buffering status' should be a property of the object not the project property if self.app.defaults['gerber_buffering'] == 'no': self.solid_geometry = ncc_obj.solid_geometry.buffer(0) else: self.solid_geometry = ncc_obj.solid_geometry # if milling type is climb then the move is counter-clockwise around features milling_type = self.milling_type_radio.get_value() for tool_iso in isotooldia: new_geometry = [] if milling_type == 'cl': isolated_geo = self.generate_envelope(tool_iso / 2, 1) else: isolated_geo = self.generate_envelope(tool_iso / 2, 0) if isolated_geo == 'fail': self.app.inform.emit('[ERROR_NOTCL] %s %s' % (_("Isolation geometry could not be generated."), str(tool_iso))) continue if ncc_margin < tool_iso: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Isolation geometry is broken. Margin is less " "than isolation tool diameter.")) try: for geo_elem in isolated_geo: # provide the app with a way to process the GUI events when in a blocking loop QtWidgets.QApplication.processEvents() if self.app.abort_flag: # graceful abort requested by the user raise grace if isinstance(geo_elem, Polygon): for ring in self.poly2rings(geo_elem): new_geo = ring.intersection(bounding_box) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiPolygon): for poly in geo_elem: for ring in self.poly2rings(poly): new_geo = ring.intersection(bounding_box) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, LineString): new_geo = geo_elem.intersection(bounding_box) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(geo_elem, MultiLineString): for line_elem in geo_elem: new_geo = line_elem.intersection(bounding_box) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) except TypeError: if isinstance(isolated_geo, Polygon): for ring in self.poly2rings(isolated_geo): new_geo = ring.intersection(bounding_box) if new_geo: if not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(isolated_geo, LineString): new_geo = isolated_geo.intersection(bounding_box) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) elif isinstance(isolated_geo, MultiLineString): for line_elem in isolated_geo: new_geo = line_elem.intersection(bounding_box) if new_geo and not new_geo.is_empty: new_geometry.append(new_geo) # a MultiLineString geometry element will show that the isolation is broken for this tool for geo_e in new_geometry: if type(geo_e) == MultiLineString: warning_flag += 1 break current_uid = 0 for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_iso)): current_uid = int(k) # add the solid_geometry to the current too in self.paint_tools dictionary # and then reset the temporary list that stored that solid_geometry v['solid_geometry'] = deepcopy(new_geometry) v['data']['name'] = name break geo_obj.tools[current_uid] = dict(tools_storage[current_uid]) sol_geo = cascaded_union(isolated_geo) if has_offset is True: self.app.inform.emit('[WARNING_NOTCL] %s ...' % _("Buffering")) sol_geo = sol_geo.buffer(distance=ncc_offset) self.app.inform.emit('[success] %s ...' % _("Buffering finished")) empty = self.get_ncc_empty_area(target=sol_geo, boundary=bounding_box) if empty == 'fail': return 'fail' if empty.is_empty: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Isolation geometry is broken. Margin is less than isolation tool diameter.")) return 'fail' else: self.app.inform.emit('[ERROR_NOTCL] %s' % _('The selected object is not suitable for copper clearing.')) return 'fail' if type(empty) is Polygon: empty = MultiPolygon([empty]) log.debug("NCC Tool. Finished calculation of 'empty' area.") self.app.inform.emit(_("NCC Tool. Finished calculation of 'empty' area.")) return empty, warning_flag def clear_copper(self, ncc_obj, sel_obj=None, ncctooldia=None, isotooldia=None, outname=None, order=None, tools_storage=None, run_threaded=True): """ Clear the excess copper from the entire object. :param ncc_obj: ncc cleared object :param sel_obj: :param ncctooldia: a tuple or single element made out of diameters of the tools to be used to ncc clear :param isotooldia: a tuple or single element made out of diameters of the tools to be used for isolation :param outname: name of the resulting object :param order: Tools order :param tools_storage: whether to use the current tools_storage self.iso_tools or a different one. Usage of the different one is related to when this function is called from a TcL command. :param run_threaded: If True the method will be run in a threaded way suitable for GUI usage; if False it will run non-threaded for TclShell usage :return: """ log.debug("Executing the handler ...") if run_threaded: proc = self.app.proc_container.new(_("Non-Copper clearing ...")) else: self.app.proc_container.view.set_busy(_("Non-Copper clearing ...")) QtWidgets.QApplication.processEvents() # ###################################################################################################### # ######################### Read the parameters ######################################################## # ###################################################################################################### units = self.app.defaults['units'] order = order if order else self.order_radio.get_value() ncc_select = self.select_combo.get_value() rest_machining_choice = self.rest_cb.get_value() # determine if to use the progressive plotting prog_plot = True if self.app.defaults["tools_iso_plotting"] == 'progressive' else False tools_storage = tools_storage if tools_storage is not None else self.iso_tools # ###################################################################################################### # # Read the tooldia parameter and create a sorted list out them - they may be more than one diameter ## # ###################################################################################################### sorted_clear_tools = [] if ncctooldia is not None: try: sorted_clear_tools = [float(eval(dia)) for dia in ncctooldia.split(",") if dia != ''] except AttributeError: if not isinstance(ncctooldia, list): sorted_clear_tools = [float(ncctooldia)] else: sorted_clear_tools = ncctooldia else: # for row in range(self.tools_table.rowCount()): # if self.tools_table.cellWidget(row, 1).currentText() == 'clear_op': # sorted_clear_tools.append(float(self.tools_table.item(row, 1).text())) for tooluid in self.iso_tools: if self.iso_tools[tooluid]['data']['tools_nccoperation'] == 'clear': sorted_clear_tools.append(self.iso_tools[tooluid]['tooldia']) # ######################################################################################################## # set the name for the future Geometry object # I do it here because it is also stored inside the gen_clear_area() and gen_clear_area_rest() methods # ######################################################################################################## name = outname if outname is not None else self.obj_name + "_ncc" # ######################################################################################################## # ######### #####Initializes the new geometry object ##################################################### # ######################################################################################################## def gen_clear_area(geo_obj, app_obj): log.debug("NCC Tool. Normal copper clearing task started.") self.app.inform.emit(_("NCC Tool. Finished non-copper polygons. Normal copper clearing task started.")) # provide the app with a way to process the GUI events when in a blocking loop if not run_threaded: QtWidgets.QApplication.processEvents() # a flag to signal that the isolation is broken by the bounding box in 'area' and 'box' cases # will store the number of tools for which the isolation is broken warning_flag = 0 if order == 'fwd': sorted_clear_tools.sort(reverse=False) elif order == 'rev': sorted_clear_tools.sort(reverse=True) else: pass cleared_geo = [] cleared = MultiPolygon() # Already cleared area app_obj.poly_not_cleared = False # flag for polygons not cleared # Generate area for each tool offset = sum(sorted_clear_tools) current_uid = int(1) # try: # tool = eval(self.app.defaults["tools_ncctools"])[0] # except TypeError: # tool = eval(self.app.defaults["tools_ncctools"]) if ncc_select == _("Reference Object"): bbox_geo, bbox_kind = self.calculate_bounding_box( ncc_obj=ncc_obj, box_obj=sel_obj, ncc_select=ncc_select) else: bbox_geo, bbox_kind = self.calculate_bounding_box(ncc_obj=ncc_obj, ncc_select=ncc_select) if bbox_geo is None and bbox_kind is None: self.app.inform.emit("[ERROR_NOTCL] %s" % _("NCC Tool failed creating bounding box.")) return "fail" # COPPER CLEARING with tools marked for CLEAR# for tool in sorted_clear_tools: log.debug("Starting geometry processing for tool: %s" % str(tool)) if self.app.abort_flag: # graceful abort requested by the user raise grace # provide the app with a way to process the GUI events when in a blocking loop if not run_threaded: QtWidgets.QApplication.processEvents() app_obj.inform.emit('[success] %s = %s%s %s' % ( _('NCC Tool clearing with tool diameter'), str(tool), units.lower(), _('started.')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) tool_uid = 0 # find the current tool_uid for k, v in self.iso_tools.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool)): tool_uid = int(k) break # parameters that are particular to the current tool ncc_overlap = float(self.iso_tools[tool_uid]["data"]["tools_nccoverlap"]) / 100.0 ncc_margin = float(self.iso_tools[tool_uid]["data"]["tools_nccmargin"]) ncc_method = self.iso_tools[tool_uid]["data"]["tools_nccmethod"] ncc_connect = self.iso_tools[tool_uid]["data"]["tools_nccconnect"] ncc_contour = self.iso_tools[tool_uid]["data"]["tools_ncccontour"] has_offset = self.iso_tools[tool_uid]["data"]["tools_ncc_offset_choice"] ncc_offset = float(self.iso_tools[tool_uid]["data"]["tools_ncc_offset_value"]) # Get remaining tools offset offset -= (tool - 1e-12) # Bounding box for current tool bbox = self.apply_margin_to_bounding_box(bbox=bbox_geo, box_kind=bbox_kind, ncc_select=ncc_select, ncc_margin=ncc_margin) # Area to clear empty, warning_flag = self.get_tool_empty_area(name=name, ncc_obj=ncc_obj, geo_obj=geo_obj, isotooldia=isotooldia, ncc_margin=ncc_margin, has_offset=has_offset, ncc_offset=ncc_offset, tools_storage=tools_storage, bounding_box=bbox) area = empty.buffer(-offset) try: area = area.difference(cleared) except Exception: continue # Transform area to MultiPolygon if isinstance(area, Polygon): area = MultiPolygon([area]) # variables to display the percentage of work done geo_len = len(area.geoms) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) cleared_geo[:] = [] if area.geoms: if len(area.geoms) > 0: pol_nr = 0 for p in area.geoms: # provide the app with a way to process the GUI events when in a blocking loop if not run_threaded: QtWidgets.QApplication.processEvents() if self.app.abort_flag: # graceful abort requested by the user raise grace # clean the polygon p = p.buffer(0) if p is not None and p.is_valid: poly_failed = 0 try: for pol in p: if pol is not None and isinstance(pol, Polygon): res = self.clear_polygon_worker(pol=pol, tooldia=tool, ncc_method=ncc_method, ncc_overlap=ncc_overlap, ncc_connect=ncc_connect, ncc_contour=ncc_contour, prog_plot=prog_plot) if res is not None: cleared_geo += res else: poly_failed += 1 else: log.warning("Expected geo is a Polygon. Instead got a %s" % str(type(pol))) except TypeError: if isinstance(p, Polygon): res = self.clear_polygon_worker(pol=p, tooldia=tool, ncc_method=ncc_method, ncc_overlap=ncc_overlap, ncc_connect=ncc_connect, ncc_contour=ncc_contour, prog_plot=prog_plot) if res is not None: cleared_geo += res else: poly_failed += 1 else: log.warning("Expected geo is a Polygon. Instead got a %s" % str(type(p))) if poly_failed > 0: app_obj.poly_not_cleared = True pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: self.app.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) # check if there is a geometry at all in the cleared geometry if cleared_geo: cleared = empty.buffer(-offset * (1 + ncc_overlap)) # Overall cleared area cleared = cleared.buffer(-tool / 1.999999).buffer(tool / 1.999999) # clean-up cleared geo cleared = cleared.buffer(0) # find the tooluid associated with the current tool_dia so we know where to add the tool # solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool)): current_uid = int(k) # add the solid_geometry to the current too in self.paint_tools dictionary # and then reset the temporary list that stored that solid_geometry v['solid_geometry'] = deepcopy(cleared_geo) v['data']['name'] = name break geo_obj.tools[current_uid] = dict(tools_storage[current_uid]) else: log.debug("There are no geometries in the cleared polygon.") # clean the progressive plotted shapes if it was used if self.app.defaults["tools_iso_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # delete tools with empty geometry # look for keys in the tools_storage dict that have 'solid_geometry' values empty for uid, uid_val in list(tools_storage.items()): try: # if the solid_geometry (type=list) is empty if not uid_val['solid_geometry']: tools_storage.pop(uid, None) except KeyError: tools_storage.pop(uid, None) geo_obj.options["cnctooldia"] = str(tool) geo_obj.multigeo = True geo_obj.tools.clear() geo_obj.tools = dict(tools_storage) # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tid in geo_obj.tools: if geo_obj.tools[tid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: app_obj.inform.emit('[ERROR] %s' % _("There is no NCC Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return 'fail' # check to see if geo_obj.tools is empty # it will be updated only if there is a solid_geometry for tools if geo_obj.tools: if warning_flag == 0: self.app.inform.emit('[success] %s' % _("NCC Tool clear all done.")) else: self.app.inform.emit('[WARNING] %s: %s %s.' % ( _("NCC Tool clear all done but the copper features isolation is broken for"), str(warning_flag), _("tools"))) return # create the solid_geometry geo_obj.solid_geometry = [] for tool_id in geo_obj.tools: if geo_obj.tools[tool_id]['solid_geometry']: try: for geo in geo_obj.tools[tool_id]['solid_geometry']: geo_obj.solid_geometry.append(geo) except TypeError: geo_obj.solid_geometry.append(geo_obj.tools[tool_id]['solid_geometry']) else: # I will use this variable for this purpose although it was meant for something else # signal that we have no geo in the object therefore don't create it app_obj.poly_not_cleared = False return "fail" # # Experimental... # # print("Indexing...", end=' ') # # geo_obj.make_index() # ########################################################################################### # Initializes the new geometry object for the case of the rest-machining #################### # ########################################################################################### def gen_clear_area_rest(geo_obj, app_obj): assert geo_obj.kind == 'geometry', \ "Initializer expected a GeometryObject, got %s" % type(geo_obj) log.debug("NCC Tool. Rest machining copper clearing task started.") app_obj.inform.emit('_(NCC Tool. Rest machining copper clearing task started.') # provide the app with a way to process the GUI events when in a blocking loop if not run_threaded: QtWidgets.QApplication.processEvents() # a flag to signal that the isolation is broken by the bounding box in 'area' and 'box' cases # will store the number of tools for which the isolation is broken warning_flag = 0 sorted_clear_tools.sort(reverse=True) cleared_geo = [] cleared_by_last_tool = [] rest_geo = [] current_uid = 1 try: tool = eval(self.app.defaults["tools_ncctools"])[0] except TypeError: tool = eval(self.app.defaults["tools_ncctools"]) # repurposed flag for final object, geo_obj. True if it has any solid_geometry, False if not. app_obj.poly_not_cleared = True if ncc_select == _("Reference Object"): env_obj, box_obj_kind = self.calculate_bounding_box( ncc_obj=ncc_obj, box_obj=sel_obj, ncc_select=ncc_select) else: env_obj, box_obj_kind = self.calculate_bounding_box(ncc_obj=ncc_obj, ncc_select=ncc_select) if env_obj is None and box_obj_kind is None: self.app.inform.emit("[ERROR_NOTCL] %s" % _("NCC Tool failed creating bounding box.")) return "fail" log.debug("NCC Tool. Calculate 'empty' area.") app_obj.inform.emit("NCC Tool. Calculate 'empty' area.") # Generate area for each tool while sorted_clear_tools: log.debug("Starting geometry processing for tool: %s" % str(tool)) if self.app.abort_flag: # graceful abort requested by the user raise grace # provide the app with a way to process the GUI events when in a blocking loop QtWidgets.QApplication.processEvents() app_obj.inform.emit('[success] %s = %s%s %s' % ( _('NCC Tool clearing with tool diameter'), str(tool), units.lower(), _('started.')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) tool = sorted_clear_tools.pop(0) tool_uid = 0 for k, v in self.iso_tools.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool)): tool_uid = int(k) break ncc_overlap = float(self.iso_tools[tool_uid]["data"]["tools_nccoverlap"]) / 100.0 ncc_margin = float(self.iso_tools[tool_uid]["data"]["tools_nccmargin"]) ncc_method = self.iso_tools[tool_uid]["data"]["tools_nccmethod"] ncc_connect = self.iso_tools[tool_uid]["data"]["tools_nccconnect"] ncc_contour = self.iso_tools[tool_uid]["data"]["tools_ncccontour"] has_offset = self.iso_tools[tool_uid]["data"]["tools_ncc_offset_choice"] ncc_offset = float(self.iso_tools[tool_uid]["data"]["tools_ncc_offset_value"]) tool_used = tool - 1e-12 cleared_geo[:] = [] # Bounding box for current tool bbox = self.apply_margin_to_bounding_box(bbox=env_obj, box_kind=box_obj_kind, ncc_select=ncc_select, ncc_margin=ncc_margin) # Area to clear empty, warning_flag = self.get_tool_empty_area(name=name, ncc_obj=ncc_obj, geo_obj=geo_obj, isotooldia=isotooldia, has_offset=has_offset, ncc_offset=ncc_offset, ncc_margin=ncc_margin, tools_storage=tools_storage, bounding_box=bbox) area = empty.buffer(0) # Area to clear for poly in cleared_by_last_tool: # provide the app with a way to process the GUI events when in a blocking loop QtWidgets.QApplication.processEvents() if self.app.abort_flag: # graceful abort requested by the user raise grace try: area = area.difference(poly) except Exception: pass cleared_by_last_tool[:] = [] # Transform area to MultiPolygon if type(area) is Polygon: area = MultiPolygon([area]) # add the rest that was not able to be cleared previously; area is a MultyPolygon # and rest_geo it's a list allparts = [p.buffer(0) for p in area.geoms] allparts += deepcopy(rest_geo) rest_geo[:] = [] area = MultiPolygon(deepcopy(allparts)) allparts[:] = [] # variables to display the percentage of work done geo_len = len(area.geoms) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) if area.geoms: if len(area.geoms) > 0: pol_nr = 0 for p in area.geoms: if self.app.abort_flag: # graceful abort requested by the user raise grace # clean the polygon p = p.buffer(0) if p is not None and p.is_valid: # provide the app with a way to process the GUI events when in a blocking loop QtWidgets.QApplication.processEvents() if isinstance(p, Polygon): try: if ncc_method == _("Standard"): cp = self.clear_polygon(p, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) elif ncc_method == _("Seed"): cp = self.clear_polygon2(p, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) else: cp = self.clear_polygon3(p, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) cleared_geo.append(list(cp.get_objects())) except Exception as e: log.warning("Polygon can't be cleared. %s" % str(e)) # this polygon should be added to a list and then try clear it with # a smaller tool rest_geo.append(p) elif isinstance(p, MultiPolygon): for poly in p: if poly is not None: # provide the app with a way to process the GUI events when # in a blocking loop QtWidgets.QApplication.processEvents() try: if ncc_method == _("Standard"): cp = self.clear_polygon(poly, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) elif ncc_method == _("Seed"): cp = self.clear_polygon2(poly, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) else: cp = self.clear_polygon3(poly, tool_used, self.grb_circle_steps, overlap=ncc_overlap, contour=ncc_contour, connect=ncc_connect, prog_plot=prog_plot) cleared_geo.append(list(cp.get_objects())) except Exception as e: log.warning("Polygon can't be cleared. %s" % str(e)) # this polygon should be added to a list and then try clear it with # a smaller tool rest_geo.append(poly) pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: self.app.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) if self.app.abort_flag: # graceful abort requested by the user raise grace # check if there is a geometry at all in the cleared geometry if cleared_geo: # Overall cleared area cleared_area = list(self.flatten_list(cleared_geo)) # cleared = MultiPolygon([p.buffer(tool_used / 2).buffer(-tool_used / 2) # for p in cleared_area]) # here we store the poly's already processed in the original geometry by the current tool # into cleared_by_last_tool list # this will be sutracted from the original geometry_to_be_cleared and make data for # the next tool buffer_value = tool_used / 2 for p in cleared_area: if self.app.abort_flag: # graceful abort requested by the user raise grace poly = p.buffer(buffer_value) cleared_by_last_tool.append(poly) # find the tool uid associated with the current tool_dia so we know # where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool)): current_uid = int(k) # add the solid_geometry to the current too in self.paint_tools dictionary # and then reset the temporary list that stored that solid_geometry v['solid_geometry'] = deepcopy(cleared_area) v['data']['name'] = name cleared_area[:] = [] break geo_obj.tools[current_uid] = dict(tools_storage[current_uid]) else: log.debug("There are no geometries in the cleared polygon.") geo_obj.multigeo = True geo_obj.options["cnctooldia"] = str(tool) # clean the progressive plotted shapes if it was used if self.app.defaults["tools_iso_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # check to see if geo_obj.tools is empty # it will be updated only if there is a solid_geometry for tools if geo_obj.tools: if warning_flag == 0: self.app.inform.emit('[success] %s' % _("NCC Tool Rest Machining clear all done.")) else: self.app.inform.emit( '[WARNING] %s: %s %s.' % (_("NCC Tool Rest Machining clear all done but the copper features " "isolation is broken for"), str(warning_flag), _("tools"))) return # create the solid_geometry geo_obj.solid_geometry = [] for tool_uid in geo_obj.tools: if geo_obj.tools[tool_uid]['solid_geometry']: try: for geo in geo_obj.tools[tool_uid]['solid_geometry']: geo_obj.solid_geometry.append(geo) except TypeError: geo_obj.solid_geometry.append(geo_obj.tools[tool_uid]['solid_geometry']) else: # I will use this variable for this purpose although it was meant for something else # signal that we have no geo in the object therefore don't create it app_obj.poly_not_cleared = False return "fail" # ########################################################################################### # Create the Job function and send it to the worker to be processed in another thread ####### # ########################################################################################### def job_thread(a_obj): try: if rest_machining_choice is True: a_obj.app_obj.new_object("geometry", name, gen_clear_area_rest) else: a_obj.app_obj.new_object("geometry", name, gen_clear_area) except grace: if run_threaded: proc.done() return except Exception: if run_threaded: proc.done() traceback.print_stack() return if run_threaded: proc.done() else: a_obj.proc_container.view.set_idle() # focus on Selected Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) if run_threaded: # Promise object with the new name self.app.collection.promise(name) # Background self.app.worker_task.emit({'fcn': job_thread, 'params': [self.app]}) else: job_thread(app_obj=self.app) @staticmethod def poly2rings(poly): return [poly.exterior] + [interior for interior in poly.interiors] def generate_envelope(self, offset, invert, geometry=None, env_iso_type=2, follow=None, nr_passes=0): """ Isolation_geometry produces an envelope that is going on the left of the geometry (the copper features). To leave the least amount of burrs on the features the tool needs to travel on the right side of the features (this is called conventional milling) the first pass is the one cutting all of the features, so it needs to be reversed the other passes overlap preceding ones and cut the left over copper. It is better for them to cut on the right side of the left over copper i.e on the left side of the features. :param offset: Offset distance to be passed to the obj.isolation_geometry() method :type offset: float :param invert: If to invert the direction of geometry (CW to CCW or reverse) :type invert: int :param geometry: Shapely Geometry for which t ogenerate envelope :type geometry: :param env_iso_type: type of isolation, can be 0 = exteriors or 1 = interiors or 2 = both (complete) :type env_iso_type: int :param follow: If the kind of isolation is a "follow" one :type follow: bool :param nr_passes: Number of passes :type nr_passes: int :return: The buffered geometry :rtype: MultiPolygon or Polygon """ if follow: geom = self.grb_obj.isolation_geometry(offset, geometry=geometry, follow=follow) else: try: geom = self.grb_obj.isolation_geometry(offset, geometry=geometry, iso_type=env_iso_type, passes=nr_passes) except Exception as e: log.debug('ToolIsolation.isolate().generate_envelope() --> %s' % str(e)) return 'fail' if invert: try: pl = [] for p in geom: if p is not None: if isinstance(p, Polygon): pl.append(Polygon(p.exterior.coords[::-1], p.interiors)) elif isinstance(p, LinearRing): pl.append(Polygon(p.coords[::-1])) geom = MultiPolygon(pl) except TypeError: if isinstance(geom, Polygon) and geom is not None: geom = Polygon(geom.exterior.coords[::-1], geom.interiors) elif isinstance(geom, LinearRing) and geom is not None: geom = Polygon(geom.coords[::-1]) else: log.debug("ToolIsolation.generate_envelope() Error --> Unexpected Geometry %s" % type(geom)) except Exception as e: log.debug("ToolIsolation.generate_envelope() Error --> %s" % str(e)) return 'fail' return geom def on_tool_add_from_db_executed(self, tool): """ Here add the tool from DB in the selected geometry object :return: """ tool_from_db = deepcopy(tool) res = self.on_tool_from_db_inserted(tool=tool_from_db) for idx in range(self.app.ui.plot_tab_area.count()): if self.app.ui.plot_tab_area.tabText(idx) == _("Tools Database"): wdg = self.app.ui.plot_tab_area.widget(idx) wdg.deleteLater() self.app.ui.plot_tab_area.removeTab(idx) if res == 'fail': return self.app.inform.emit('[success] %s' % _("Tool from DB added in Tool Table.")) # select last tool added toolid = res for row in range(self.tools_table.rowCount()): if int(self.tools_table.item(row, 3).text()) == toolid: self.tools_table.selectRow(row) self.on_row_selection_change() def on_tool_from_db_inserted(self, tool): """ Called from the Tools DB object through a App method when adding a tool from Tools Database :param tool: a dict with the tool data :return: None """ self.ui_disconnect() self.units = self.app.defaults['units'].upper() tooldia = float(tool['tooldia']) # construct a list of all 'tooluid' in the self.tools tool_uid_list = [] for tooluid_key in self.iso_tools: tool_uid_item = int(tooluid_key) tool_uid_list.append(tool_uid_item) # find maximum from the temp_uid, add 1 and this is the new 'tooluid' if not tool_uid_list: max_uid = 0 else: max_uid = max(tool_uid_list) tooluid = max_uid + 1 tooldia = float('%.*f' % (self.decimals, tooldia)) tool_dias = [] for k, v in self.iso_tools.items(): for tool_v in v.keys(): if tool_v == 'tooldia': tool_dias.append(float('%.*f' % (self.decimals, (v[tool_v])))) if float('%.*f' % (self.decimals, tooldia)) in tool_dias: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Cancelled. Tool already in Tool Table.")) self.ui_connect() return 'fail' self.iso_tools.update({ tooluid: { 'tooldia': float('%.*f' % (self.decimals, tooldia)), 'offset': tool['offset'], 'offset_value': tool['offset_value'], 'type': tool['type'], 'tool_type': tool['tool_type'], 'data': deepcopy(tool['data']), 'solid_geometry': [] } }) self.iso_tools[tooluid]['data']['name'] = '_ncc' self.app.inform.emit('[success] %s' % _("New tool added to Tool Table.")) self.ui_connect() self.build_ui() # if self.tools_table.rowCount() != 0: # self.param_frame.setDisabled(False) def on_tool_add_from_db_clicked(self): """ Called when the user wants to add a new tool from Tools Database. It will create the Tools Database object and display the Tools Database tab in the form needed for the Tool adding :return: None """ # if the Tools Database is already opened focus on it for idx in range(self.app.ui.plot_tab_area.count()): if self.app.ui.plot_tab_area.tabText(idx) == _("Tools Database"): self.app.ui.plot_tab_area.setCurrentWidget(self.app.tools_db_tab) break self.app.on_tools_database(source='ncc') self.app.tools_db_tab.ok_to_add = True self.app.tools_db_tab.buttons_frame.hide() self.app.tools_db_tab.add_tool_from_db.show() self.app.tools_db_tab.cancel_tool_from_db.show() def reset_fields(self): self.object_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) def reset_usage(self): self.obj_name = "" self.grb_obj = None self.bound_obj = None self.first_click = False self.cursor_pos = None self.mouse_is_dragging = False prog_plot = True if self.app.defaults["tools_iso_plotting"] == 'progressive' else False if prog_plot: self.temp_shapes.clear(update=True) self.sel_rect = []