# ########################################################## # FlatCAM: 2D Post-processing for Manufacturing # # File Modified: Marius Adrian Stanciu (c) # # Date: 3/10/2019 # # MIT Licence # # ########################################################## from PyQt5 import QtWidgets, QtGui, QtCore from PyQt5.QtCore import Qt from FlatCAMTool import FlatCAMTool from copy import deepcopy # from ObjectCollection import * from flatcamParsers.ParseGerber import Gerber from FlatCAMObj import FlatCAMGerber, FlatCAMGeometry from camlib import Geometry, FlatCAMRTreeStorage from flatcamGUI.GUIElements import FCTable, FCDoubleSpinner, FCCheckBox, FCInputDialog, RadioSet, FCButton, FCComboBox import FlatCAMApp from shapely.geometry import base, Polygon, MultiPolygon, LinearRing, Point, MultiLineString from shapely.ops import cascaded_union, unary_union, linemerge import numpy as np import math from numpy import Inf import traceback import logging import gettext import FlatCAMTranslation as fcTranslate import builtins fcTranslate.apply_language('strings') if '_' not in builtins.__dict__: _ = gettext.gettext log = logging.getLogger('base') class ToolPaint(FlatCAMTool, Gerber): toolName = _("Paint Tool") def __init__(self, app): self.app = app self.decimals = self.app.decimals FlatCAMTool.__init__(self, app) Geometry.__init__(self, geo_steps_per_circle=self.app.defaults["geometry_circle_steps"]) # ## Title title_label = QtWidgets.QLabel("%s" % self.toolName) title_label.setStyleSheet(""" QLabel { font-size: 16px; font-weight: bold; } """) self.layout.addWidget(title_label) self.tools_frame = QtWidgets.QFrame() self.tools_frame.setContentsMargins(0, 0, 0, 0) self.layout.addWidget(self.tools_frame) self.tools_box = QtWidgets.QVBoxLayout() self.tools_box.setContentsMargins(0, 0, 0, 0) self.tools_frame.setLayout(self.tools_box) # ## Form Layout grid0 = QtWidgets.QGridLayout() grid0.setColumnStretch(0, 0) grid0.setColumnStretch(1, 1) self.tools_box.addLayout(grid0) # ################################################ # ##### Type of object to be painted ############# # ################################################ self.type_obj_combo_label = QtWidgets.QLabel('%s:' % _("Obj Type")) self.type_obj_combo_label.setToolTip( _("Specify the type of object to be painted.\n" "It can be of type: Gerber or Geometry.\n" "What is selected here will dictate the kind\n" "of objects that will populate the 'Object' combobox.") ) self.type_obj_combo_label.setMinimumWidth(60) self.type_obj_combo = RadioSet([{'label': "Geometry", 'value': 'geometry'}, {'label': "Gerber", 'value': 'gerber'}]) grid0.addWidget(self.type_obj_combo_label, 1, 0) grid0.addWidget(self.type_obj_combo, 1, 1) # ################################################ # ##### The object to be painted ################# # ################################################ self.obj_combo = QtWidgets.QComboBox() self.obj_combo.setModel(self.app.collection) self.obj_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.obj_combo.setCurrentIndex(1) self.object_label = QtWidgets.QLabel('%s:' % _("Object")) self.object_label.setToolTip(_("Object to be painted.")) grid0.addWidget(self.object_label, 2, 0) grid0.addWidget(self.obj_combo, 2, 1) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid0.addWidget(separator_line, 5, 0, 1, 2) # ### Tools ## ## self.tools_table_label = QtWidgets.QLabel('%s' % _('Tools Table')) self.tools_table_label.setToolTip( _("Tools pool from which the algorithm\n" "will pick the ones used for painting.") ) self.tools_table = FCTable() grid0.addWidget(self.tools_table_label, 6, 0, 1, 2) grid0.addWidget(self.tools_table, 7, 0, 1, 2) self.tools_table.setColumnCount(4) self.tools_table.setHorizontalHeaderLabels(['#', _('Diameter'), _('TT'), '']) self.tools_table.setColumnHidden(3, True) # self.tools_table.setSortingEnabled(False) # self.tools_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.tools_table.horizontalHeaderItem(0).setToolTip( _("This is the Tool Number.\n" "Painting will start with the tool with the biggest diameter,\n" "continuing until there are no more tools.\n" "Only tools that create painting geometry will still be present\n" "in the resulting geometry. This is because with some tools\n" "this function will not be able to create painting geometry.") ) self.tools_table.horizontalHeaderItem(1).setToolTip( _("Tool Diameter. It's value (in current FlatCAM units) \n" "is the cut width into the material.")) self.tools_table.horizontalHeaderItem(2).setToolTip( _("The Tool Type (TT) can be:
" "- Circular with 1 ... 4 teeth -> it is informative only. Being circular,
" "the cut width in material is exactly the tool diameter.
" "- Ball -> informative only and make reference to the Ball type endmill.
" "- V-Shape -> it will disable de Z-Cut parameter in the resulting geometry UI form " "and enable two additional UI form fields in the resulting geometry: V-Tip Dia and " "V-Tip Angle. Adjusting those two values will adjust the Z-Cut parameter such " "as the cut width into material will be equal with the value in the Tool Diameter " "column of this table.
" "Choosing the V-Shape Tool Type automatically will select the Operation Type " "in the resulting geometry as Isolation.")) self.order_label = QtWidgets.QLabel('%s:' % _('Tool order')) self.order_label.setToolTip(_("This set the way that the tools in the tools table are used.\n" "'No' --> means that the used order is the one in the tool table\n" "'Forward' --> means that the tools will be ordered from small to big\n" "'Reverse' --> menas that the tools will ordered from big to small\n\n" "WARNING: using rest machining will automatically set the order\n" "in reverse and disable this control.")) self.order_radio = RadioSet([{'label': _('No'), 'value': 'no'}, {'label': _('Forward'), 'value': 'fwd'}, {'label': _('Reverse'), 'value': 'rev'}]) self.order_radio.setToolTip(_("This set the way that the tools in the tools table are used.\n" "'No' --> means that the used order is the one in the tool table\n" "'Forward' --> means that the tools will be ordered from small to big\n" "'Reverse' --> menas that the tools will ordered from big to small\n\n" "WARNING: using rest machining will automatically set the order\n" "in reverse and disable this control.")) grid0.addWidget(self.order_label, 9, 0) grid0.addWidget(self.order_radio, 9, 1) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid0.addWidget(separator_line, 10, 0, 1, 2) self.grid3 = QtWidgets.QGridLayout() self.tools_box.addLayout(self.grid3) self.grid3.setColumnStretch(0, 0) self.grid3.setColumnStretch(1, 1) # ############################################################################## # ###################### ADD A NEW TOOL ######################################## # ############################################################################## self.tool_sel_label = QtWidgets.QLabel('%s' % _("New Tool")) self.grid3.addWidget(self.tool_sel_label, 1, 0, 1, 2) # Tool Type Radio Button self.tool_type_label = QtWidgets.QLabel('%s:' % _('Tool Type')) self.tool_type_label.setToolTip( _("Default tool type:\n" "- 'V-shape'\n" "- Circular") ) self.tool_type_radio = RadioSet([{'label': _('V-shape'), 'value': 'V'}, {'label': _('Circular'), 'value': 'C1'}]) self.tool_type_radio.setToolTip( _("Default tool type:\n" "- 'V-shape'\n" "- Circular") ) self.tool_type_radio.setObjectName('p_tool_type') self.grid3.addWidget(self.tool_type_label, 2, 0) self.grid3.addWidget(self.tool_type_radio, 2, 1) # Tip Dia self.tipdialabel = QtWidgets.QLabel('%s:' % _('V-Tip Dia')) self.tipdialabel.setToolTip( _("The tip diameter for V-Shape Tool")) self.tipdia_entry = FCDoubleSpinner(callback=self.confirmation_message) self.tipdia_entry.set_precision(self.decimals) self.tipdia_entry.set_range(0.0000, 9999.9999) self.tipdia_entry.setSingleStep(0.1) self.tipdia_entry.setObjectName('p_vtip_dia') self.grid3.addWidget(self.tipdialabel, 3, 0) self.grid3.addWidget(self.tipdia_entry, 3, 1) # Tip Angle self.tipanglelabel = QtWidgets.QLabel('%s:' % _('V-Tip Angle')) self.tipanglelabel.setToolTip( _("The tip angle for V-Shape Tool.\n" "In degree.")) self.tipangle_entry = FCDoubleSpinner(callback=self.confirmation_message) self.tipangle_entry.set_precision(self.decimals) self.tipangle_entry.set_range(0.0000, 180.0000) self.tipangle_entry.setSingleStep(5) self.tipangle_entry.setObjectName('p_vtip_angle') self.grid3.addWidget(self.tipanglelabel, 4, 0) self.grid3.addWidget(self.tipangle_entry, 4, 1) # Cut Z entry cutzlabel = QtWidgets.QLabel('%s:' % _('Cut Z')) cutzlabel.setToolTip( _("Depth of cut into material. Negative value.\n" "In FlatCAM units.") ) self.cutz_entry = FCDoubleSpinner(callback=self.confirmation_message) self.cutz_entry.set_precision(self.decimals) self.cutz_entry.set_range(-99999.9999, 0.0000) self.cutz_entry.setObjectName('p_cutz') self.cutz_entry.setToolTip( _("Depth of cut into material. Negative value.\n" "In FlatCAM units.") ) self.grid3.addWidget(cutzlabel, 5, 0) self.grid3.addWidget(self.cutz_entry, 5, 1) # ### Tool Diameter #### self.addtool_entry_lbl = QtWidgets.QLabel('%s:' % _('Tool Dia')) self.addtool_entry_lbl.setToolTip( _("Diameter for the new tool to add in the Tool Table.\n" "If the tool is V-shape type then this value is automatically\n" "calculated from the other parameters.") ) self.addtool_entry = FCDoubleSpinner(callback=self.confirmation_message) self.addtool_entry.set_precision(self.decimals) self.addtool_entry.set_range(0.000, 9999.9999) self.addtool_entry.setObjectName('p_tool_dia') self.grid3.addWidget(self.addtool_entry_lbl, 6, 0) self.grid3.addWidget(self.addtool_entry, 6, 1) hlay = QtWidgets.QHBoxLayout() self.addtool_btn = QtWidgets.QPushButton(_('Add')) self.addtool_btn.setToolTip( _("Add a new tool to the Tool Table\n" "with the diameter specified above.") ) self.addtool_from_db_btn = QtWidgets.QPushButton(_('Add from DB')) self.addtool_from_db_btn.setToolTip( _("Add a new tool to the Tool Table\n" "from the Tool DataBase.") ) hlay.addWidget(self.addtool_btn) hlay.addWidget(self.addtool_from_db_btn) self.grid3.addLayout(hlay, 7, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 8, 0, 1, 2) self.deltool_btn = QtWidgets.QPushButton(_('Delete')) self.deltool_btn.setToolTip( _("Delete a selection of tools in the Tool Table\n" "by first selecting a row(s) in the Tool Table.") ) self.grid3.addWidget(self.deltool_btn, 9, 0, 1, 2) self.grid3.addWidget(QtWidgets.QLabel(''), 10, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) self.grid3.addWidget(separator_line, 11, 0, 1, 2) self.tool_data_label = QtWidgets.QLabel( "%s: %s %d" % (_('Parameters for'), _("Tool"), int(1))) self.tool_data_label.setToolTip( _( "The data used for creating GCode.\n" "Each tool store it's own set of such data." ) ) self.grid3.addWidget(self.tool_data_label, 12, 0, 1, 2) grid4 = QtWidgets.QGridLayout() grid4.setColumnStretch(0, 0) grid4.setColumnStretch(1, 1) self.tools_box.addLayout(grid4) # Overlap ovlabel = QtWidgets.QLabel('%s:' % _('Overlap')) ovlabel.setToolTip( _("How much (percentage) of the tool width to overlap each tool pass.\n" "Adjust the value starting with lower values\n" "and increasing it if areas that should be painted are still \n" "not painted.\n" "Lower values = faster processing, faster execution on CNC.\n" "Higher values = slow processing and slow execution on CNC\n" "due of too many paths.") ) self.paintoverlap_entry = FCDoubleSpinner(callback=self.confirmation_message, suffix='%') self.paintoverlap_entry.set_precision(3) self.paintoverlap_entry.setWrapping(True) self.paintoverlap_entry.setRange(0.0000, 99.9999) self.paintoverlap_entry.setSingleStep(0.1) self.paintoverlap_entry.setObjectName('p_overlap') grid4.addWidget(ovlabel, 1, 0) grid4.addWidget(self.paintoverlap_entry, 1, 1) # Margin marginlabel = QtWidgets.QLabel('%s:' % _('Margin')) marginlabel.setToolTip( _("Distance by which to avoid\n" "the edges of the polygon to\n" "be painted.") ) self.paintmargin_entry = FCDoubleSpinner(callback=self.confirmation_message) self.paintmargin_entry.set_precision(self.decimals) self.paintmargin_entry.set_range(-9999.9999, 9999.9999) self.paintmargin_entry.setObjectName('p_margin') grid4.addWidget(marginlabel, 2, 0) grid4.addWidget(self.paintmargin_entry, 2, 1) # Method methodlabel = QtWidgets.QLabel('%s:' % _('Method')) methodlabel.setToolTip( _("Algorithm for painting:\n" "- Standard: Fixed step inwards.\n" "- Seed-based: Outwards from seed.\n" "- Line-based: Parallel lines.\n" "- Laser-lines: Active only for Gerber objects.\n" "Will create lines that follow the traces.\n" "- Combo: In case of failure a new method will be picked from the above\n" "in the order specified.") ) # self.paintmethod_combo = RadioSet([ # {"label": _("Standard"), "value": "standard"}, # {"label": _("Seed-based"), "value": _("Seed")}, # {"label": _("Straight lines"), "value": _("Lines")}, # {"label": _("Laser lines"), "value": _("Laser_lines")}, # {"label": _("Combo"), "value": _("Combo")} # ], orientation='vertical', stretch=False) # for choice in self.paintmethod_combo.choices: # if choice['value'] == _("Laser_lines"): # choice["radio"].setEnabled(False) self.paintmethod_combo = FCComboBox() self.paintmethod_combo.addItems( [_("Standard"), _("Seed"), _("Lines"), _("Laser_lines"), _("Combo")] ) idx = self.paintmethod_combo.findText(_("Laser_lines")) self.paintmethod_combo.model().item(idx).setEnabled(False) self.paintmethod_combo.setObjectName('p_method') grid4.addWidget(methodlabel, 7, 0) grid4.addWidget(self.paintmethod_combo, 7, 1) # Connect lines self.pathconnect_cb = FCCheckBox('%s' % _("Connect")) self.pathconnect_cb.setObjectName('p_connect') self.pathconnect_cb.setToolTip( _("Draw lines between resulting\n" "segments to minimize tool lifts.") ) self.paintcontour_cb = FCCheckBox('%s' % _("Contour")) self.paintcontour_cb.setObjectName('p_contour') self.paintcontour_cb.setToolTip( _("Cut around the perimeter of the polygon\n" "to trim rough edges.") ) grid4.addWidget(self.pathconnect_cb, 10, 0) grid4.addWidget(self.paintcontour_cb, 10, 1) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid4.addWidget(separator_line, 11, 0, 1, 2) self.apply_param_to_all = FCButton(_("Apply parameters to all tools")) self.apply_param_to_all.setToolTip( _("The parameters in the current form will be applied\n" "on all the tools from the Tool Table.") ) grid4.addWidget(self.apply_param_to_all, 12, 0, 1, 2) separator_line = QtWidgets.QFrame() separator_line.setFrameShape(QtWidgets.QFrame.HLine) separator_line.setFrameShadow(QtWidgets.QFrame.Sunken) grid4.addWidget(separator_line, 13, 0, 1, 2) # General Parameters self.gen_param_label = QtWidgets.QLabel('%s' % _("Common Parameters")) self.gen_param_label.setToolTip( _("Parameters that are common for all tools.") ) grid4.addWidget(self.gen_param_label, 15, 0, 1, 2) self.rest_cb = FCCheckBox('%s' % _("Rest Machining")) self.rest_cb.setObjectName('p_rest_machining') self.rest_cb.setToolTip( _("If checked, use 'rest machining'.\n" "Basically it will clear copper outside PCB features,\n" "using the biggest tool and continue with the next tools,\n" "from bigger to smaller, to clear areas of copper that\n" "could not be cleared by previous tool, until there is\n" "no more copper to clear or there are no more tools.\n\n" "If not checked, use the standard algorithm.") ) grid4.addWidget(self.rest_cb, 16, 0, 1, 2) # Polygon selection selectlabel = QtWidgets.QLabel('%s:' % _('Selection')) selectlabel.setToolTip( _("How to select Polygons to be painted.\n" "- 'Polygon Selection' - left mouse click to add/remove polygons to be painted.\n" "- 'Area Selection' - left mouse click to start selection of the area to be painted.\n" "Keeping a modifier key pressed (CTRL or SHIFT) will allow to add multiple areas.\n" "- 'All Polygons' - the Paint will start after click.\n" "- 'Reference Object' - will do non copper clearing within the area\n" "specified by another object.") ) # grid3 = QtWidgets.QGridLayout() # self.selectmethod_combo = RadioSet([ # {"label": _("Polygon Selection"), "value": "single"}, # {"label": _("Area Selection"), "value": "area"}, # {"label": _("All Polygons"), "value": "all"}, # {"label": _("Reference Object"), "value": "ref"} # ], orientation='vertical', stretch=False) # self.selectmethod_combo.setObjectName('p_selection') # self.selectmethod_combo.setToolTip( # _("How to select Polygons to be painted.\n" # "- 'Polygon Selection' - left mouse click to add/remove polygons to be painted.\n" # "- 'Area Selection' - left mouse click to start selection of the area to be painted.\n" # "Keeping a modifier key pressed (CTRL or SHIFT) will allow to add multiple areas.\n" # "- 'All Polygons' - the Paint will start after click.\n" # "- 'Reference Object' - will do non copper clearing within the area\n" # "specified by another object.") # ) self.selectmethod_combo = FCComboBox() self.selectmethod_combo.addItems( [_("Polygon Selection"), _("Area Selection"), _("All Polygons"), _("Reference Object")] ) self.selectmethod_combo.setObjectName('p_selection') grid4.addWidget(selectlabel, 18, 0) grid4.addWidget(self.selectmethod_combo, 18, 1) form1 = QtWidgets.QFormLayout() grid4.addLayout(form1, 20, 0, 1, 2) self.box_combo_type_label = QtWidgets.QLabel('%s:' % _("Ref. Type")) self.box_combo_type_label.setToolTip( _("The type of FlatCAM object to be used as paint reference.\n" "It can be Gerber, Excellon or Geometry.") ) self.box_combo_type = QtWidgets.QComboBox() self.box_combo_type.addItem(_("Reference Gerber")) self.box_combo_type.addItem(_("Reference Excellon")) self.box_combo_type.addItem(_("Reference Geometry")) form1.addRow(self.box_combo_type_label, self.box_combo_type) self.box_combo_label = QtWidgets.QLabel('%s:' % _("Ref. Object")) self.box_combo_label.setToolTip( _("The FlatCAM object to be used as non copper clearing reference.") ) self.box_combo = QtWidgets.QComboBox() self.box_combo.setModel(self.app.collection) self.box_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex())) self.box_combo.setCurrentIndex(1) form1.addRow(self.box_combo_label, self.box_combo) self.box_combo.hide() self.box_combo_label.hide() self.box_combo_type.hide() self.box_combo_type_label.hide() # GO Button self.generate_paint_button = QtWidgets.QPushButton(_('Generate Geometry')) self.generate_paint_button.setToolTip( _("- 'Area Selection' - left mouse click to start selection of the area to be painted.\n" "Keeping a modifier key pressed (CTRL or SHIFT) will allow to add multiple areas.\n" "- 'All Polygons' - the Paint will start after click.\n" "- 'Reference Object' - will do non copper clearing within the area\n" "specified by another object.") ) self.generate_paint_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) self.tools_box.addWidget(self.generate_paint_button) self.tools_box.addStretch() # ## Reset Tool self.reset_button = QtWidgets.QPushButton(_("Reset Tool")) self.reset_button.setToolTip( _("Will reset the tool parameters.") ) self.reset_button.setStyleSheet(""" QPushButton { font-weight: bold; } """) self.tools_box.addWidget(self.reset_button) # #################################### FINSIHED GUI ########################### # ############################################################################# # ############################################################################# # ########################## VARIABLES ######################################## # ############################################################################# self.obj_name = "" self.paint_obj = None self.bound_obj_name = "" self.bound_obj = None self.tooldia_list = list() self.tooldia = None self.sel_rect = None self.o_name = None self.overlap = None self.connect = None self.contour = None self.select_method = None self.units = '' self.paint_tools = dict() self.tooluid = 0 self.first_click = False self.cursor_pos = None self.mouse_is_dragging = False self.mm = None self.mp = None self.mr = None self.sel_rect = list() # store here if the grid snapping is active self.grid_status_memory = False # dict to store the polygons selected for painting; key is the shape added to be plotted and value is the poly self.poly_dict = dict() # store here the default data for Geometry Data self.default_data = dict() self.tool_type_item_options = ["C1", "C2", "C3", "C4", "B", "V"] self.form_fields = { "paintoverlap": self.paintoverlap_entry, "paintmargin": self.paintmargin_entry, "paintmethod": self.paintmethod_combo, "pathconnect": self.pathconnect_cb, "paintcontour": self.paintcontour_cb, } self.name2option = { 'p_overlap': "paintoverlap", 'p_margin': "paintmargin", 'p_method': "paintmethod", 'p_connect': "pathconnect", 'p_contour': "paintcontour", } self.old_tool_dia = None # ############################################################################# # ################################# Signals ################################### # ############################################################################# self.addtool_btn.clicked.connect(self.on_tool_add) self.addtool_entry.returnPressed.connect(self.on_tool_add) self.deltool_btn.clicked.connect(self.on_tool_delete) self.tipdia_entry.returnPressed.connect(self.on_calculate_tooldia) self.tipangle_entry.returnPressed.connect(self.on_calculate_tooldia) self.cutz_entry.returnPressed.connect(self.on_calculate_tooldia) # self.copytool_btn.clicked.connect(lambda: self.on_tool_copy()) # self.tools_table.itemChanged.connect(self.on_tool_edit) self.tools_table.clicked.connect(self.on_row_selection_change) self.generate_paint_button.clicked.connect(self.on_paint_button_click) self.selectmethod_combo.currentIndexChanged.connect(self.on_selection) self.order_radio.activated_custom[str].connect(self.on_order_changed) self.rest_cb.stateChanged.connect(self.on_rest_machining_check) self.box_combo_type.currentIndexChanged.connect(self.on_combo_box_type) self.type_obj_combo.activated_custom.connect(self.on_type_obj_changed) self.apply_param_to_all.clicked.connect(self.on_apply_param_to_all_clicked) self.reset_button.clicked.connect(self.set_tool_ui) # ############################################################################# # ###################### Setup CONTEXT MENU ################################### # ############################################################################# self.tools_table.setupContextMenu() self.tools_table.addContextMenu( _("Add"), self.on_add_tool_by_key, icon=QtGui.QIcon(self.app.resource_location + "/plus16.png") ) self.tools_table.addContextMenu( _("Add from DB"), self.on_add_tool_by_key, icon=QtGui.QIcon(self.app.resource_location + "/plus16.png") ) self.tools_table.addContextMenu( _("Delete"), lambda: self.on_tool_delete(rows_to_delete=None, all_tools=None), icon=QtGui.QIcon(self.app.resource_location + "/delete32.png") ) def on_type_obj_changed(self, val): obj_type = 0 if val == 'gerber' else 2 self.obj_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.obj_combo.setCurrentIndex(0) idx = self.paintmethod_combo.findText(_("Laser_lines")) if self.type_obj_combo.get_value().lower() == 'gerber': self.paintmethod_combo.model().item(idx).setEnabled(True) else: self.paintmethod_combo.model().item(idx).setEnabled(False) if self.paintmethod_combo.get_value() == _("Laser_lines"): self.paintmethod_combo.set_value(_("Lines")) def install(self, icon=None, separator=None, **kwargs): FlatCAMTool.install(self, icon, separator, shortcut='ALT+P', **kwargs) def run(self, toggle=True): self.app.report_usage("ToolPaint()") log.debug("ToolPaint().run() was launched ...") if toggle: # if the splitter is hidden, display it, else hide it but only if the current widget is the same if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) else: try: if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName: # if tab is populated with the tool but it does not have the focus, focus on it if not self.app.ui.notebook.currentWidget() is self.app.ui.tool_tab: # focus on Tool Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.tool_tab) else: self.app.ui.splitter.setSizes([0, 1]) except AttributeError: pass else: if self.app.ui.splitter.sizes()[0] == 0: self.app.ui.splitter.setSizes([1, 1]) FlatCAMTool.run(self) self.set_tool_ui() self.app.ui.notebook.setTabText(2, _("Paint Tool")) def on_row_selection_change(self): self.blockSignals(True) sel_rows = [it.row() for it in self.tools_table.selectedItems()] # sel_rows = sorted(set(index.row() for index in self.tools_table.selectedIndexes())) if not sel_rows: sel_rows = [0] for current_row in sel_rows: # populate the form with the data from the tool associated with the row parameter try: item = self.tools_table.item(current_row, 3) if item is None: return 'fail' tooluid = int(item.text()) except Exception as e: log.debug("Tool missing. Add a tool in the Tool Table. %s" % str(e)) return # update the QLabel that shows for which Tool we have the parameters in the UI form if len(sel_rows) == 1: cr = self.tools_table.item(current_row, 0).text() self.tool_data_label.setText( "%s: %s %s" % (_('Parameters for'), _("Tool"), cr) ) try: # set the form with data from the newly selected tool for tooluid_key, tooluid_value in list(self.paint_tools.items()): if int(tooluid_key) == tooluid: for key, value in tooluid_value.items(): if key == 'data': form_value_storage = tooluid_value[key] self.storage_to_form(form_value_storage) except Exception as e: log.debug("ToolPaint ---> update_ui() " + str(e)) else: self.tool_data_label.setText( "%s: %s" % (_('Parameters for'), _("Multiple Tools")) ) self.blockSignals(False) def storage_to_form(self, dict_storage): for form_key in self.form_fields: for storage_key in dict_storage: if form_key == storage_key: try: self.form_fields[form_key].set_value(dict_storage[form_key]) except Exception: pass def form_to_storage(self): if self.tools_table.rowCount() == 0: # there is no tool in tool table so we can't save the GUI elements values to storage return self.blockSignals(True) widget_changed = self.sender() wdg_objname = widget_changed.objectName() option_changed = self.name2option[wdg_objname] # row = self.tools_table.currentRow() rows = sorted(set(index.row() for index in self.tools_table.selectedIndexes())) for row in rows: if row < 0: row = 0 tooluid_item = int(self.tools_table.item(row, 3).text()) for tooluid_key, tooluid_val in self.paint_tools.items(): if int(tooluid_key) == tooluid_item: new_option_value = self.form_fields[option_changed].get_value() if option_changed in tooluid_val: tooluid_val[option_changed] = new_option_value if option_changed in tooluid_val['data']: tooluid_val['data'][option_changed] = new_option_value self.blockSignals(False) def on_apply_param_to_all_clicked(self): if self.tools_table.rowCount() == 0: # there is no tool in tool table so we can't save the GUI elements values to storage log.debug("NonCopperClear.on_apply_param_to_all_clicked() --> no tool in Tools Table, aborting.") return self.blockSignals(True) row = self.tools_table.currentRow() if row < 0: row = 0 tooluid_item = int(self.tools_table.item(row, 3).text()) temp_tool_data = dict() for tooluid_key, tooluid_val in self.paint_tools.items(): if int(tooluid_key) == tooluid_item: # this will hold the 'data' key of the self.tools[tool] dictionary that corresponds to # the current row in the tool table temp_tool_data = tooluid_val['data'] break for tooluid_key, tooluid_val in self.paint_tools.items(): tooluid_val['data'] = deepcopy(temp_tool_data) self.app.inform.emit('[success] %s' % _("Current Tool parameters were applied to all tools.")) self.blockSignals(False) def on_add_tool_by_key(self): tool_add_popup = FCInputDialog(title='%s...' % _("New Tool"), text='%s:' % _('Enter a Tool Diameter'), min=0.0000, max=99.9999, decimals=4) tool_add_popup.setWindowIcon(QtGui.QIcon(self.app.resource_location + '/letter_t_32.png')) val, ok = tool_add_popup.get_value() if ok: if float(val) == 0: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Please enter a tool diameter with non-zero value, in Float format.")) return self.on_tool_add(dia=float(val)) else: self.app.inform.emit('[WARNING_NOTCL] %s...' % _("Adding Tool cancelled")) def on_tooltable_cellwidget_change(self): cw = self.sender() cw_index = self.tools_table.indexAt(cw.pos()) cw_row = cw_index.row() cw_col = cw_index.column() current_uid = int(self.tools_table.item(cw_row, 3).text()) # if the sender is in the column with index 2 then we update the tool_type key if cw_col == 2: tt = cw.currentText() typ = 'Iso' if tt == 'V' else "Rough" self.paint_tools[current_uid].update({ 'type': typ, 'tool_type': tt, }) def on_tool_type(self, val): if val == 'V': self.addtool_entry_lbl.setDisabled(True) self.addtool_entry.setDisabled(True) self.tipdialabel.show() self.tipdia_entry.show() self.tipanglelabel.show() self.tipangle_entry.show() self.on_calculate_tooldia() else: self.addtool_entry_lbl.setDisabled(False) self.addtool_entry.setDisabled(False) self.tipdialabel.hide() self.tipdia_entry.hide() self.tipanglelabel.hide() self.tipangle_entry.hide() self.addtool_entry.set_value(self.old_tool_dia) def on_calculate_tooldia(self): if self.tool_type_radio.get_value() == 'V': tip_dia = float(self.tipdia_entry.get_value()) tip_angle = float(self.tipangle_entry.get_value()) / 2.0 cut_z = float(self.cutz_entry.get_value()) cut_z = -cut_z if cut_z < 0 else cut_z # calculated tool diameter so the cut_z parameter is obeyed tool_dia = tip_dia + (2 * cut_z * math.tan(math.radians(tip_angle))) # update the default_data so it is used in the ncc_tools dict self.default_data.update({ "vtipdia": tip_dia, "vtipangle": (tip_angle * 2), }) self.addtool_entry.set_value(tool_dia) return tool_dia else: return float(self.addtool_entry.get_value()) def on_selection(self): if self.selectmethod_combo.get_value() == _("Reference Object"): self.box_combo.show() self.box_combo_label.show() self.box_combo_type.show() self.box_combo_type_label.show() else: self.box_combo.hide() self.box_combo_label.hide() self.box_combo_type.hide() self.box_combo_type_label.hide() if self.selectmethod_combo.get_value() == _("Polygon Selection"): # disable rest-machining for single polygon painting self.rest_cb.set_value(False) self.rest_cb.setDisabled(True) if self.selectmethod_combo.get_value() == _("Area Selection"): # disable rest-machining for single polygon painting self.rest_cb.set_value(False) self.rest_cb.setDisabled(True) else: self.rest_cb.setDisabled(False) self.addtool_entry.setDisabled(False) self.addtool_btn.setDisabled(False) self.deltool_btn.setDisabled(False) self.tools_table.setContextMenuPolicy(Qt.ActionsContextMenu) def on_order_changed(self, order): if order != 'no': self.build_ui() def on_rest_machining_check(self, state): if state: self.order_radio.set_value('rev') self.order_label.setDisabled(True) self.order_radio.setDisabled(True) else: self.order_label.setDisabled(False) self.order_radio.setDisabled(False) def set_tool_ui(self): self.tools_frame.show() self.reset_fields() self.old_tool_dia = self.app.defaults["tools_paintnewdia"] # updated units self.units = self.app.defaults['units'].upper() # set the working variables to a known state self.paint_tools.clear() self.tooluid = 0 self.default_data.clear() self.default_data.update({ "name": '_paint', "plot": self.app.defaults["geometry_plot"], "cutz": float(self.cutz_entry.get_value()), "vtipdia": float(self.tipdia_entry.get_value()), "vtipangle": float(self.tipangle_entry.get_value()), "travelz": float(self.app.defaults["geometry_travelz"]), "feedrate": float(self.app.defaults["geometry_feedrate"]), "feedrate_z": float(self.app.defaults["geometry_feedrate_z"]), "feedrate_rapid": float(self.app.defaults["geometry_feedrate_rapid"]), "dwell": self.app.defaults["geometry_dwell"], "dwelltime": float(self.app.defaults["geometry_dwelltime"]), "multidepth": self.app.defaults["geometry_multidepth"], "ppname_g": self.app.defaults["geometry_ppname_g"], "depthperpass": float(self.app.defaults["geometry_depthperpass"]), "extracut": self.app.defaults["geometry_extracut"], "extracut_length": self.app.defaults["geometry_extracut_length"], "toolchange": self.app.defaults["geometry_toolchange"], "toolchangez": float(self.app.defaults["geometry_toolchangez"]), "endz": float(self.app.defaults["geometry_endz"]), "endxy": self.app.defaults["geometry_endxy"], "spindlespeed": self.app.defaults["geometry_spindlespeed"], "toolchangexy": self.app.defaults["geometry_toolchangexy"], "startz": self.app.defaults["geometry_startz"], "tooldia": self.app.defaults["tools_painttooldia"], "paintmargin": self.app.defaults["tools_paintmargin"], "paintmethod": self.app.defaults["tools_paintmethod"], "selectmethod": self.app.defaults["tools_selectmethod"], "pathconnect": self.app.defaults["tools_pathconnect"], "paintcontour": self.app.defaults["tools_paintcontour"], "paintoverlap": self.app.defaults["tools_paintoverlap"], "paintrest": self.app.defaults["tools_paintrest"], }) # ## Init the GUI interface self.order_radio.set_value(self.app.defaults["tools_paintorder"]) self.paintmargin_entry.set_value(self.app.defaults["tools_paintmargin"]) self.paintmethod_combo.set_value(self.app.defaults["tools_paintmethod"]) self.selectmethod_combo.set_value(self.app.defaults["tools_selectmethod"]) self.pathconnect_cb.set_value(self.app.defaults["tools_pathconnect"]) self.paintcontour_cb.set_value(self.app.defaults["tools_paintcontour"]) self.paintoverlap_entry.set_value(self.app.defaults["tools_paintoverlap"]) self.cutz_entry.set_value(self.app.defaults["tools_paintcutz"]) self.tool_type_radio.set_value(self.app.defaults["tools_painttool_type"]) self.tipdia_entry.set_value(self.app.defaults["tools_painttipdia"]) self.tipangle_entry.set_value(self.app.defaults["tools_painttipangle"]) self.addtool_entry.set_value(self.app.defaults["tools_paintnewdia"]) self.rest_cb.set_value(self.app.defaults["tools_paintrest"]) self.on_tool_type(val=self.tool_type_radio.get_value()) # make the default object type, "Geometry" self.type_obj_combo.set_value("geometry") try: diameters = [float(self.app.defaults["tools_painttooldia"])] except (ValueError, TypeError): diameters = [eval(x) for x in self.app.defaults["tools_painttooldia"].split(",") if x != ''] if not diameters: log.error("At least one tool diameter needed. Verify in Edit -> Preferences -> TOOLS -> NCC Tools.") self.build_ui() # if the Paint Method is "Single" disable the tool table context menu if self.default_data["selectmethod"] == "single": self.tools_table.setContextMenuPolicy(Qt.NoContextMenu) return # call on self.on_tool_add() counts as an call to self.build_ui() # through this, we add a initial row / tool in the tool_table for dia in diameters: self.on_tool_add(dia, muted=True) # if the Paint Method is "Single" disable the tool table context menu if self.default_data["selectmethod"] == "single": self.tools_table.setContextMenuPolicy(Qt.NoContextMenu) def build_ui(self): self.ui_disconnect() # updated units self.units = self.app.defaults['units'].upper() sorted_tools = [] for k, v in self.paint_tools.items(): sorted_tools.append(float('%.*f' % (self.decimals, float(v['tooldia'])))) order = self.order_radio.get_value() if order == 'fwd': sorted_tools.sort(reverse=False) elif order == 'rev': sorted_tools.sort(reverse=True) else: pass n = len(sorted_tools) self.tools_table.setRowCount(n) tool_id = 0 for tool_sorted in sorted_tools: for tooluid_key, tooluid_value in self.paint_tools.items(): if float('%.*f' % (self.decimals, tooluid_value['tooldia'])) == tool_sorted: tool_id += 1 id_item = QtWidgets.QTableWidgetItem('%d' % int(tool_id)) id_item.setFlags(QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) row_no = tool_id - 1 self.tools_table.setItem(row_no, 0, id_item) # Tool name/id # Make sure that the drill diameter when in MM is with no more than 2 decimals # There are no drill bits in MM with more than 2 decimals diameter # For INCH the decimals should be no more than 4. There are no drills under 10mils dia = QtWidgets.QTableWidgetItem('%.*f' % (self.decimals, tooluid_value['tooldia'])) dia.setFlags(QtCore.Qt.ItemIsEnabled) tool_type_item = QtWidgets.QComboBox() for item in self.tool_type_item_options: tool_type_item.addItem(item) # tool_type_item.setStyleSheet('background-color: rgb(255,255,255)') idx = tool_type_item.findText(tooluid_value['tool_type']) tool_type_item.setCurrentIndex(idx) tool_uid_item = QtWidgets.QTableWidgetItem(str(int(tooluid_key))) self.tools_table.setItem(row_no, 1, dia) # Diameter self.tools_table.setCellWidget(row_no, 2, tool_type_item) # ## REMEMBER: THIS COLUMN IS HIDDEN IN OBJECTUI.PY # ## self.tools_table.setItem(row_no, 3, tool_uid_item) # Tool unique ID # make the diameter column editable for row in range(tool_id): self.tools_table.item(row, 1).setFlags( QtCore.Qt.ItemIsEditable | QtCore.Qt.ItemIsSelectable | QtCore.Qt.ItemIsEnabled) # all the tools are selected by default self.tools_table.selectColumn(0) # self.tools_table.resizeColumnsToContents() self.tools_table.resizeRowsToContents() vertical_header = self.tools_table.verticalHeader() vertical_header.hide() self.tools_table.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) horizontal_header = self.tools_table.horizontalHeader() horizontal_header.setMinimumSectionSize(10) horizontal_header.setSectionResizeMode(0, QtWidgets.QHeaderView.Fixed) horizontal_header.resizeSection(0, 20) horizontal_header.setSectionResizeMode(1, QtWidgets.QHeaderView.Stretch) # self.tools_table.setSortingEnabled(True) # sort by tool diameter # self.tools_table.sortItems(1) self.tools_table.setMinimumHeight(self.tools_table.getHeight()) self.tools_table.setMaximumHeight(self.tools_table.getHeight()) self.ui_connect() def on_combo_box_type(self): obj_type = self.box_combo_type.currentIndex() self.box_combo.setRootModelIndex(self.app.collection.index(obj_type, 0, QtCore.QModelIndex())) self.box_combo.setCurrentIndex(0) def on_tool_add(self, dia=None, muted=None): self.blockSignals(True) if dia: tool_dia = dia else: tool_dia = self.on_calculate_tooldia() if tool_dia is None: self.build_ui() self.app.inform.emit('[WARNING_NOTCL] %s' % _("Please enter a tool diameter to add, in Float format.")) return # construct a list of all 'tooluid' in the self.tools tool_uid_list = [] for tooluid_key in self.paint_tools: tool_uid_item = int(tooluid_key) tool_uid_list.append(tool_uid_item) # find maximum from the temp_uid, add 1 and this is the new 'tooluid' if not tool_uid_list: max_uid = 0 else: max_uid = max(tool_uid_list) self.tooluid = int(max_uid + 1) tool_dias = [] for k, v in self.paint_tools.items(): for tool_v in v.keys(): if tool_v == 'tooldia': tool_dias.append(float('%.*f' % (self.decimals, v[tool_v]))) if float('%.*f' % (self.decimals, tool_dia)) in tool_dias: if muted is None: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Adding tool cancelled. Tool already in Tool Table.")) self.tools_table.itemChanged.connect(self.on_tool_edit) return else: if muted is None: self.app.inform.emit('[success] %s' % _("New tool added to Tool Table.")) self.paint_tools.update({ int(self.tooluid): { 'tooldia': float('%.*f' % (self.decimals, tool_dia)), 'offset': 'Path', 'offset_value': 0.0, 'type': 'Iso', 'tool_type': self.tool_type_radio.get_value(), 'data': dict(self.default_data), 'solid_geometry': [] } }) self.blockSignals(False) self.build_ui() def on_tool_edit(self): self.blockSignals(True) old_tool_dia = '' tool_dias = [] for k, v in self.paint_tools.items(): for tool_v in v.keys(): if tool_v == 'tooldia': tool_dias.append(float('%.*f' % (self.decimals, v[tool_v]))) for row in range(self.tools_table.rowCount()): try: new_tool_dia = float(self.tools_table.item(row, 1).text()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: new_tool_dia = float(self.tools_table.item(row, 1).text().replace(',', '.')) except ValueError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Wrong value format entered, use a number.")) return tooluid = int(self.tools_table.item(row, 3).text()) # identify the tool that was edited and get it's tooluid if new_tool_dia not in tool_dias: self.paint_tools[tooluid]['tooldia'] = new_tool_dia self.app.inform.emit('[success] %s' % _("Tool from Tool Table was edited.")) self.build_ui() return else: # identify the old tool_dia and restore the text in tool table for k, v in self.paint_tools.items(): if k == tooluid: old_tool_dia = v['tooldia'] break restore_dia_item = self.tools_table.item(row, 1) restore_dia_item.setText(str(old_tool_dia)) self.app.inform.emit('[WARNING_NOTCL] %s' % _("Edit cancelled. New diameter value is already in the Tool Table.")) self.blockSignals(False) self.build_ui() # def on_tool_copy(self, all=None): # try: # self.tools_table.itemChanged.disconnect() # except: # pass # # # find the tool_uid maximum value in the self.tools # uid_list = [] # for key in self.paint_tools: # uid_list.append(int(key)) # try: # max_uid = max(uid_list, key=int) # except ValueError: # max_uid = 0 # # if all is None: # if self.tools_table.selectedItems(): # for current_row in self.tools_table.selectedItems(): # # sometime the header get selected and it has row number -1 # # we don't want to do anything with the header :) # if current_row.row() < 0: # continue # try: # tooluid_copy = int(self.tools_table.item(current_row.row(), 3).text()) # max_uid += 1 # self.paint_tools[int(max_uid)] = dict(self.paint_tools[tooluid_copy]) # for td in self.paint_tools: # print("COPIED", self.paint_tools[td]) # self.build_ui() # except AttributeError: # self.app.inform.emit("[WARNING_NOTCL] Failed. Select a tool to copy.") # self.build_ui() # return # except Exception as e: # log.debug("on_tool_copy() --> " + str(e)) # # deselect the table # # self.ui.geo_tools_table.clearSelection() # else: # self.app.inform.emit("[WARNING_NOTCL] Failed. Select a tool to copy.") # self.build_ui() # return # else: # # we copy all tools in geo_tools_table # try: # temp_tools = dict(self.paint_tools) # max_uid += 1 # for tooluid in temp_tools: # self.paint_tools[int(max_uid)] = dict(temp_tools[tooluid]) # temp_tools.clear() # self.build_ui() # except Exception as e: # log.debug("on_tool_copy() --> " + str(e)) # # self.app.inform.emit("[success] Tool was copied in the Tool Table.") def on_tool_delete(self, rows_to_delete=None, all_tools=None): self.blockSignals(True) deleted_tools_list = [] if all_tools: self.paint_tools.clear() self.blockSignals(False) self.build_ui() return if rows_to_delete: try: for row in rows_to_delete: tooluid_del = int(self.tools_table.item(row, 3).text()) deleted_tools_list.append(tooluid_del) except TypeError: deleted_tools_list.append(rows_to_delete) for t in deleted_tools_list: self.paint_tools.pop(t, None) self.blockSignals(False) self.build_ui() return try: if self.tools_table.selectedItems(): for row_sel in self.tools_table.selectedItems(): row = row_sel.row() if row < 0: continue tooluid_del = int(self.tools_table.item(row, 3).text()) deleted_tools_list.append(tooluid_del) for t in deleted_tools_list: self.paint_tools.pop(t, None) except AttributeError: self.app.inform.emit('[WARNING_NOTCL] %s' % _("Delete failed. Select a tool to delete.")) self.blockSignals(False) return except Exception as e: log.debug(str(e)) self.app.inform.emit('[success] %s' % _("Tool(s) deleted from Tool Table.")) self.blockSignals(False) self.build_ui() def on_paint_button_click(self): # init values for the next usage self.reset_usage() self.app.report_usage("on_paint_button_click") # self.app.call_source = 'paint' # ##################################################### # ######### Reading Parameters ######################## # ##################################################### self.app.inform.emit(_("Paint Tool. Reading parameters.")) self.overlap = float(self.paintoverlap_entry.get_value()) / 100.0 self.connect = self.pathconnect_cb.get_value() self.contour = self.paintcontour_cb.get_value() self.select_method = self.selectmethod_combo.get_value() self.obj_name = self.obj_combo.currentText() # Get source object. try: self.paint_obj = self.app.collection.get_by_name(str(self.obj_name)) except Exception as e: log.debug("ToolPaint.on_paint_button_click() --> %s" % str(e)) self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object: %s"), self.obj_name)) return if self.paint_obj is None: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Object not found"), self.paint_obj)) return # test if the Geometry Object is multigeo and return Fail if True because # for now Paint don't work on MultiGeo if self.paint_obj.multigeo is True: self.app.inform.emit('[ERROR_NOTCL] %s...' % _("Can't do Paint on MultiGeo geometries")) return 'Fail' self.o_name = '%s_mt_paint' % self.obj_name # use the selected tools in the tool table; get diameters self.tooldia_list = list() if self.tools_table.selectedItems(): for x in self.tools_table.selectedItems(): try: self.tooldia = float(self.tools_table.item(x.row(), 1).text()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: self.tooldia = float(self.tools_table.item(x.row(), 1).text().replace(',', '.')) except ValueError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Wrong value format entered, use a number.")) continue self.tooldia_list.append(self.tooldia) else: self.app.inform.emit('[ERROR_NOTCL] %s' % _("No selected tools in Tool Table.")) return if self.select_method == _("All Polygons"): self.paint_poly_all(self.paint_obj, tooldia=self.tooldia_list, outname=self.o_name, overlap=self.overlap, connect=self.connect, contour=self.contour) elif self.select_method == _("Polygon Selection"): self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click on a polygon to paint it.")) # disengage the grid snapping since it may be hard to click on polygons with grid snapping on if self.app.ui.grid_snap_btn.isChecked(): self.grid_status_memory = True self.app.ui.grid_snap_btn.trigger() else: self.grid_status_memory = False self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_single_poly_mouse_release) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.app.plotcanvas.graph_event_disconnect(self.app.mp) elif self.select_method == _("Area Selection"): self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the start point of the paint area.")) if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_press', self.app.on_mouse_click_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.app.on_mouse_move_over_plot) self.app.plotcanvas.graph_event_disconnect('mouse_release', self.app.on_mouse_click_release_over_plot) else: self.app.plotcanvas.graph_event_disconnect(self.app.mp) self.app.plotcanvas.graph_event_disconnect(self.app.mm) self.app.plotcanvas.graph_event_disconnect(self.app.mr) self.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.on_mouse_release) self.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.on_mouse_move) elif self.select_method == _("Reference Object"): self.bound_obj_name = self.box_combo.currentText() # Get source object. try: self.bound_obj = self.app.collection.get_by_name(self.bound_obj_name) except Exception: self.app.inform.emit('[ERROR_NOTCL] %s: %s' % (_("Could not retrieve object"), self.obj_name)) return "Could not retrieve object: %s" % self.obj_name self.paint_poly_ref(obj=self.paint_obj, sel_obj=self.bound_obj, tooldia=self.tooldia_list, overlap=self.overlap, outname=self.o_name, connect=self.connect, contour=self.contour) # To be called after clicking on the plot. def on_single_poly_mouse_release(self, event): if self.app.is_legacy is False: event_pos = event.pos right_button = 2 event_is_dragging = self.app.event_is_dragging else: event_pos = (event.xdata, event.ydata) right_button = 3 event_is_dragging = self.app.ui.popMenu.mouse_is_panning try: x = float(event_pos[0]) y = float(event_pos[1]) except TypeError: return event_pos = (x, y) curr_pos = self.app.plotcanvas.translate_coords(event_pos) # do paint single only for left mouse clicks if event.button == 1: clicked_poly = self.find_polygon(point=(curr_pos[0], curr_pos[1]), geoset=self.paint_obj.solid_geometry) if clicked_poly: if clicked_poly not in self.poly_dict.values(): shape_id = self.app.tool_shapes.add(tolerance=self.paint_obj.drawing_tolerance, layer=0, shape=clicked_poly, color=self.app.defaults['global_sel_draw_color'] + 'AF', face_color=self.app.defaults['global_sel_draw_color'] + 'AF', visible=True) self.poly_dict[shape_id] = clicked_poly self.app.inform.emit( '%s: %d. %s' % (_("Added polygon"), int(len(self.poly_dict)), _("Click to add next polygon or right click to start painting.")) ) else: try: for k, v in list(self.poly_dict.items()): if v == clicked_poly: self.app.tool_shapes.remove(k) self.poly_dict.pop(k) break except TypeError: return self.app.inform.emit( '%s. %s' % (_("Removed polygon"), _("Click to add/remove next polygon or right click to start painting.")) ) self.app.tool_shapes.redraw() else: self.app.inform.emit(_("No polygon detected under click position.")) elif event.button == right_button and event_is_dragging is False: # restore the Grid snapping if it was active before if self.grid_status_memory is True: self.app.ui.grid_snap_btn.trigger() if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.on_single_poly_mouse_release) else: self.app.plotcanvas.graph_event_disconnect(self.mr) self.app.mp = self.app.plotcanvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot) self.app.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) self.app.tool_shapes.clear(update=True) if self.poly_dict: poly_list = deepcopy(list(self.poly_dict.values())) self.paint_poly(self.paint_obj, inside_pt=(curr_pos[0], curr_pos[1]), poly_list=poly_list, tooldia=self.tooldia_list, overlap=self.overlap, connect=self.connect, contour=self.contour) self.poly_dict.clear() else: self.app.inform.emit('[ERROR_NOTCL] %s' % _("List of single polygons is empty. Aborting.")) # To be called after clicking on the plot. def on_mouse_release(self, event): if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 try: x = float(event_pos[0]) y = float(event_pos[1]) except TypeError: return event_pos = (x, y) # do paint single only for left mouse clicks if event.button == 1: if not self.first_click: self.first_click = True self.app.inform.emit('[WARNING_NOTCL] %s' % _("Click the end point of the paint area.")) self.cursor_pos = self.app.plotcanvas.translate_coords(event_pos) if self.app.grid_status(): self.cursor_pos = self.app.geo_editor.snap(self.cursor_pos[0], self.cursor_pos[1]) else: self.app.inform.emit(_("Zone added. Click to start adding next zone or right click to finish.")) self.app.delete_selection_shape() curr_pos = self.app.plotcanvas.translate_coords(event_pos) if self.app.grid_status(): curr_pos = self.app.geo_editor.snap(curr_pos[0], curr_pos[1]) x0, y0 = self.cursor_pos[0], self.cursor_pos[1] x1, y1 = curr_pos[0], curr_pos[1] pt1 = (x0, y0) pt2 = (x1, y0) pt3 = (x1, y1) pt4 = (x0, y1) new_rectangle = Polygon([pt1, pt2, pt3, pt4]) self.sel_rect.append(new_rectangle) # add a temporary shape on canvas self.draw_tool_selection_shape(old_coords=(x0, y0), coords=(x1, y1)) self.first_click = False return elif event.button == right_button and self.mouse_is_dragging is False: self.first_click = False self.delete_tool_selection_shape() if self.app.is_legacy is False: self.app.plotcanvas.graph_event_disconnect('mouse_release', self.on_mouse_release) self.app.plotcanvas.graph_event_disconnect('mouse_move', self.on_mouse_move) else: self.app.plotcanvas.graph_event_disconnect(self.mr) self.app.plotcanvas.graph_event_disconnect(self.mm) self.app.mp = self.app.plotcanvas.graph_event_connect('mouse_press', self.app.on_mouse_click_over_plot) self.app.mm = self.app.plotcanvas.graph_event_connect('mouse_move', self.app.on_mouse_move_over_plot) self.app.mr = self.app.plotcanvas.graph_event_connect('mouse_release', self.app.on_mouse_click_release_over_plot) if len(self.sel_rect) == 0: return self.sel_rect = cascaded_union(self.sel_rect) self.paint_poly_area(obj=self.paint_obj, tooldia=self.tooldia_list, sel_obj=self.sel_rect, outname=self.o_name, overlap=self.overlap, connect=self.connect, contour=self.contour) # called on mouse move def on_mouse_move(self, event): if self.app.is_legacy is False: event_pos = event.pos event_is_dragging = event.is_dragging right_button = 2 else: event_pos = (event.xdata, event.ydata) event_is_dragging = self.app.plotcanvas.is_dragging right_button = 3 try: x = float(event_pos[0]) y = float(event_pos[1]) except TypeError: return curr_pos = self.app.plotcanvas.translate_coords((x, y)) # detect mouse dragging motion if event_is_dragging == 1: self.mouse_is_dragging = True else: self.mouse_is_dragging = False # update the cursor position if self.app.grid_status(): # Update cursor curr_pos = self.app.geo_editor.snap(curr_pos[0], curr_pos[1]) self.app.app_cursor.set_data(np.asarray([(curr_pos[0], curr_pos[1])]), symbol='++', edge_color=self.app.cursor_color_3D, edge_width=self.app.defaults["global_cursor_width"], size=self.app.defaults["global_cursor_size"]) # update the positions on status bar self.app.ui.position_label.setText("    X: %.4f   " "Y: %.4f" % (curr_pos[0], curr_pos[1])) if self.cursor_pos is None: self.cursor_pos = (0, 0) dx = curr_pos[0] - float(self.cursor_pos[0]) dy = curr_pos[1] - float(self.cursor_pos[1]) self.app.ui.rel_position_label.setText("Dx: %.4f   Dy: " "%.4f    " % (dx, dy)) # draw the utility geometry if self.first_click: self.app.delete_selection_shape() self.app.draw_moving_selection_shape(old_coords=(self.cursor_pos[0], self.cursor_pos[1]), coords=(curr_pos[0], curr_pos[1])) def paint_poly(self, obj, inside_pt=None, poly_list=None, tooldia=None, overlap=None, order=None, margin=None, method=None, outname=None, connect=None, contour=None, tools_storage=None, plot=True, run_threaded=True): """ Paints a polygon selected by clicking on its interior or by having a point coordinates given Note: * The margin is taken directly from the form. :param run_threaded: :param plot: :param poly_list: :param obj: painted object :param inside_pt: [x, y] :param tooldia: Diameter of the painting tool :param overlap: Overlap of the tool between passes. :param order: if the tools are ordered and how :param margin: a border around painting area :param outname: Name of the resulting Geometry Object. :param connect: Connect lines to avoid tool lifts. :param contour: Paint around the edges. :param method: choice out of _("Seed"), 'normal', 'lines' :param tools_storage: whether to use the current tools_storage self.paints_tools or a different one. Usage of the different one is related to when this function is called from a TcL command. :return: None """ if isinstance(obj, FlatCAMGerber): if self.app.defaults["gerber_buffering"] == 'no': self.app.inform.emit('%s %s %s' % (_("Paint Tool."), _("Normal painting polygon task started."), _("Buffering geometry..."))) else: self.app.inform.emit('%s %s' % (_("Paint Tool."), _("Normal painting polygon task started."))) else: self.app.inform.emit('%s %s' % (_("Paint Tool."), _("Normal painting polygon task started."))) if isinstance(obj, FlatCAMGerber): if self.app.defaults["tools_paint_plotting"] == 'progressive': if isinstance(obj.solid_geometry, list): obj.solid_geometry = MultiPolygon(obj.solid_geometry).buffer(0) else: obj.solid_geometry = obj.solid_geometry.buffer(0) polygon_list = None if inside_pt and poly_list is None: polygon_list = [self.find_polygon(point=inside_pt, geoset=obj.solid_geometry)] elif (inside_pt is None and poly_list) or (inside_pt and poly_list): polygon_list = poly_list # No polygon? if polygon_list is None: self.app.log.warning('No polygon found.') self.app.inform.emit('[WARNING] %s' % _('No polygon found.')) return paint_method = method if method is not None else self.paintmethod_combo.get_value() paint_margin = float(self.paintmargin_entry.get_value()) if margin is None else margin # determine if to use the progressive plotting prog_plot = True if self.app.defaults["tools_paint_plotting"] == 'progressive' else False name = outname if outname is not None else self.obj_name + "_paint" over = overlap if overlap is not None else float(self.app.defaults["tools_paintoverlap"]) / 100.0 conn = connect if connect is not None else self.app.defaults["tools_pathconnect"] cont = contour if contour is not None else self.app.defaults["tools_paintcontour"] order = order if order is not None else self.order_radio.get_value() tools_storage = self.paint_tools if tools_storage is None else tools_storage sorted_tools = [] if tooldia is not None: try: sorted_tools = [float(eval(dia)) for dia in tooldia.split(",") if dia != ''] except AttributeError: if not isinstance(tooldia, list): sorted_tools = [float(tooldia)] else: sorted_tools = tooldia else: for row in range(self.tools_table.rowCount()): sorted_tools.append(float(self.tools_table.item(row, 1).text())) # sort the tools if we have an order selected in the UI if order == 'fwd': sorted_tools.sort(reverse=False) elif order == 'rev': sorted_tools.sort(reverse=True) proc = self.app.proc_container.new(_("Painting polygon...")) # Initializes the new geometry object def gen_paintarea(geo_obj, app_obj): geo_obj.solid_geometry = list() def paint_p(polyg, tooldiameter): cpoly = None try: if paint_method == _("Standard"): # Type(cp) == FlatCAMRTreeStorage | None cpoly = self.clear_polygon(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Seed"): # Type(cp) == FlatCAMRTreeStorage | None cpoly = self.clear_polygon2(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): # Type(cp) == FlatCAMRTreeStorage | None cpoly = self.clear_polygon3(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements traces_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in traces_el_dict: traces_el_dict[apval["size"]].append(geo_el) else: traces_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(polyg): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in traces_el_dict: traces_el_dict[aperture_size].append(geo_el) else: traces_el_dict[aperture_size] = [geo_el] cpoly = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method for rectangular # flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tooldiameter, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tooldiameter, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tooldiameter, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cpoly.insert(lin) except TypeError: cpoly.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' method, # method which will follow the 'follow' line therefore use the longer path possible for the # laser, therefore the acceleration will play a smaller factor for aperture_size in traces_el_dict: for elem in traces_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tooldiameter, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cpoly.insert(lin) except TypeError: cpoly.insert(lines_union) # # determine the Gerber follow line # for apid, apval in obj.apertures.items(): # for geo_el in apval['geometry']: # if 'solid' in geo_el: # if Point(inside_pt).within(geo_el['solid']): # if not isinstance(geo_el['follow'], Point): # line = geo_el['follow'] # # if apval['type'] == 'C': # aperture_size = apval['size'] # else: # if apval['width'] > apval['height']: # aperture_size = apval['height'] # else: # aperture_size = apval['width'] # # if line: # cpoly = self.fill_with_lines(line, aperture_size, # tooldia=tooldiameter, # steps_per_circle=self.app.defaults["geometry_circle_steps"], # overlap=over, # contour=cont, # connect=conn, # prog_plot=prog_plot) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygon with method: lines.")) cpoly = self.clear_polygon3(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cpoly and cpoly.objects: pass else: self.app.inform.emit(_("Failed. Painting polygon with method: seed.")) cpoly = self.clear_polygon2(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cpoly and cpoly.objects: pass else: self.app.inform.emit(_("Failed. Painting polygon with method: standard.")) cpoly = self.clear_polygon(polyg, tooldia=tooldiameter, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) except FlatCAMApp.GracefulException: return "fail" except Exception as ee: log.debug("ToolPaint.paint_poly().gen_paintarea().paint_p() --> %s" % str(ee)) if cpoly and cpoly.objects: geo_obj.solid_geometry += list(cpoly.get_objects()) return cpoly else: app_obj.inform.emit('[ERROR_NOTCL] %s' % _('Geometry could not be painted completely')) return None current_uid = int(1) tool_dia = None for tool_dia in sorted_tools: # find the tooluid associated with the current tool_dia so we know where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_dia)): current_uid = int(k) break try: poly_buf = [pol.buffer(-paint_margin) for pol in polygon_list] cp = list() try: for pp in poly_buf: cp.append(paint_p(pp, tooldiameter=tool_dia)) except TypeError: cp = paint_p(poly_buf, tooldiameter=tool_dia) total_geometry = list() if cp: try: for x in cp: total_geometry += list(x.get_objects()) except TypeError: total_geometry = list(cp.get_objects()) except FlatCAMApp.GracefulException: return "fail" except Exception as e: log.debug("Could not Paint the polygons. %s" % str(e)) app_obj.inform.emit('[ERROR] %s\n%s' % (_("Could not do Paint. Try a different combination of parameters. " "Or a different strategy of paint"), str(e) ) ) return "fail" # add the solid_geometry to the current too in self.paint_tools (tools_storage) # dictionary and then reset the temporary list that stored that solid_geometry tools_storage[current_uid]['solid_geometry'] = deepcopy(total_geometry) tools_storage[current_uid]['data']['name'] = name # clean the progressive plotted shapes if it was used if self.app.defaults["tools_paint_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # delete tools with empty geometry # look for keys in the tools_storage dict that have 'solid_geometry' values empty for uid in list(tools_storage.keys()): # if the solid_geometry (type=list) is empty if not tools_storage[uid]['solid_geometry']: tools_storage.pop(uid, None) geo_obj.options["cnctooldia"] = str(tool_dia) # this will turn on the FlatCAMCNCJob plot for multiple tools geo_obj.multigeo = True geo_obj.multitool = True geo_obj.tools.clear() geo_obj.tools = dict(tools_storage) geo_obj.solid_geometry = cascaded_union(tools_storage[current_uid]['solid_geometry']) try: if isinstance(geo_obj.solid_geometry, list): a, b, c, d = MultiPolygon(geo_obj.solid_geometry).bounds else: a, b, c, d = geo_obj.solid_geometry.bounds geo_obj.options['xmin'] = a geo_obj.options['ymin'] = b geo_obj.options['xmax'] = c geo_obj.options['ymax'] = d except Exception as e: log.debug("ToolPaint.paint_poly.gen_paintarea() bounds error --> %s" % str(e)) return # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tooluid in geo_obj.tools: if geo_obj.tools[tooluid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: self.app.inform.emit('[ERROR] %s' % _("There is no Painting Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return total_geometry[:] = [] self.app.inform.emit('[success] %s' % _("Paint Single Done.")) # Experimental... # print("Indexing...", end=' ') # geo_obj.make_index() # if errors == 0: # print("[success] Paint single polygon Done") # self.app.inform.emit("[success] Paint single polygon Done") # else: # print("[WARNING] Paint single polygon done with errors") # self.app.inform.emit("[WARNING] Paint single polygon done with errors. " # "%d area(s) could not be painted.\n" # "Use different paint parameters or edit the paint geometry and correct" # "the issue." # % errors) def job_thread(app_obj): try: app_obj.new_object("geometry", name, gen_paintarea, plot=plot) except FlatCAMApp.GracefulException: proc.done() return except Exception as e: proc.done() self.app.inform.emit('[ERROR_NOTCL] %s --> %s' % ('PaintTool.paint_poly()', str(e))) return proc.done() # focus on Selected Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) self.app.inform.emit(_("Polygon Paint started ...")) # Promise object with the new name self.app.collection.promise(name) if run_threaded: # Background self.app.worker_task.emit({'fcn': job_thread, 'params': [self.app]}) else: job_thread(app_obj=self.app) def paint_poly_all(self, obj, tooldia=None, overlap=None, order=None, margin=None, method=None, outname=None, connect=None, contour=None, tools_storage=None, plot=True, run_threaded=True): """ Paints all polygons in this object. :param run_threaded: :param plot: :param obj: painted object :param tooldia: a tuple or single element made out of diameters of the tools to be used :param overlap: value by which the paths will overlap :param order: if the tools are ordered and how :param margin: a border around painting area :param outname: name of the resulting object :param connect: Connect lines to avoid tool lifts. :param contour: Paint around the edges. :param method: choice out of _("Seed"), 'normal', 'lines' :param tools_storage: whether to use the current tools_storage self.paints_tools or a different one. Usage of the different one is related to when this function is called from a TcL command. :return: """ paint_method = method if method is not None else self.paintmethod_combo.get_value() if margin is not None: paint_margin = margin else: paint_margin = float(self.paintmargin_entry.get_value()) # determine if to use the progressive plotting if self.app.defaults["tools_paint_plotting"] == 'progressive': prog_plot = True else: prog_plot = False proc = self.app.proc_container.new(_("Painting polygons...")) name = outname if outname is not None else self.obj_name + "_paint" over = overlap if overlap is not None else float(self.app.defaults["tools_paintoverlap"]) / 100.0 conn = connect if connect is not None else self.app.defaults["tools_pathconnect"] cont = contour if contour is not None else self.app.defaults["tools_paintcontour"] order = order if order is not None else self.order_radio.get_value() sorted_tools = [] if tooldia is not None: try: sorted_tools = [float(eval(dia)) for dia in tooldia.split(",") if dia != ''] except AttributeError: if not isinstance(tooldia, list): sorted_tools = [float(tooldia)] else: sorted_tools = tooldia else: for row in range(self.tools_table.rowCount()): sorted_tools.append(float(self.tools_table.item(row, 1).text())) if tools_storage is not None: tools_storage = tools_storage else: tools_storage = self.paint_tools # This is a recursive generator of individual Polygons. # Note: Double check correct implementation. Might exit # early if it finds something that is not a Polygon? # def recurse(geo): # try: # for subg in geo: # for subsubg in recurse(subg): # yield subsubg # except TypeError: # if isinstance(geo, Polygon): # yield geo # # raise StopIteration def recurse(geometry, reset=True): """ Creates a list of non-iterable linear geometry objects. Results are placed in self.flat_geometry :param geometry: Shapely type or list or list of list of such. :param reset: Clears the contents of self.flat_geometry. """ if self.app.abort_flag: # graceful abort requested by the user raise FlatCAMApp.GracefulException if geometry is None: return if reset: self.flat_geometry = [] # ## If iterable, expand recursively. try: for geo in geometry: if geo is not None: recurse(geometry=geo, reset=False) # ## Not iterable, do the actual indexing and add. except TypeError: if isinstance(geometry, LinearRing): g = Polygon(geometry) self.flat_geometry.append(g) else: self.flat_geometry.append(geometry) return self.flat_geometry # Initializes the new geometry object def gen_paintarea(geo_obj, app_obj): # assert isinstance(geo_obj, FlatCAMGeometry), \ # "Initializer expected a FlatCAMGeometry, got %s" % type(geo_obj) log.debug("Paint Tool. Normal painting all task started.") if isinstance(obj, FlatCAMGerber): if app_obj.defaults["gerber_buffering"] == 'no': app_obj.inform.emit('%s %s' % (_("Paint Tool. Normal painting all task started."), _("Buffering geometry..."))) else: app_obj.inform.emit(_("Paint Tool. Normal painting all task started.")) else: app_obj.inform.emit(_("Paint Tool. Normal painting all task started.")) tool_dia = None if order == 'fwd': sorted_tools.sort(reverse=False) elif order == 'rev': sorted_tools.sort(reverse=True) else: pass if isinstance(obj, FlatCAMGerber): if self.app.defaults["tools_paint_plotting"] == 'progressive': if isinstance(obj.solid_geometry, list): obj.solid_geometry = MultiPolygon(obj.solid_geometry).buffer(0) else: obj.solid_geometry = obj.solid_geometry.buffer(0) try: a, b, c, d = obj.bounds() geo_obj.options['xmin'] = a geo_obj.options['ymin'] = b geo_obj.options['xmax'] = c geo_obj.options['ymax'] = d except Exception as e: log.debug("ToolPaint.paint_poly.gen_paintarea() bounds error --> %s" % str(e)) return total_geometry = [] current_uid = int(1) geo_obj.solid_geometry = [] for tool_dia in sorted_tools: log.debug("Starting geometry processing for tool: %s" % str(tool_dia)) app_obj.inform.emit( '[success] %s %s%s %s' % (_('Painting with tool diameter = '), str(tool_dia), self.units.lower(), _('started')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) # find the tooluid associated with the current tool_dia so we know where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_dia)): current_uid = int(k) break painted_area = recurse(obj.solid_geometry) # variables to display the percentage of work done geo_len = len(painted_area) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) pol_nr = 0 for geo in painted_area: # provide the app with a way to process the GUI events when in a blocking loop QtWidgets.QApplication.processEvents() if self.app.abort_flag: # graceful abort requested by the user raise FlatCAMApp.GracefulException # try to clean the Polygon but it may result into a MultiPolygon geo = geo.buffer(0) poly_buf = geo.buffer(-paint_margin) if geo is not None and geo.is_valid: poly_processed = list() try: for pol in poly_buf: if pol is not None and isinstance(pol, Polygon): cp = None if paint_method == _("Standard"): cp = self.clear_polygon(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Seed"): cp = self.clear_polygon2(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): cp = self.clear_polygon3(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements traces_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store # them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in traces_el_dict: traces_el_dict[apval["size"]].append(geo_el) else: traces_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(pol): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in traces_el_dict: traces_el_dict[aperture_size].append(geo_el) else: traces_el_dict[aperture_size] = [geo_el] cp = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method # for rectangular flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings # with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cp.insert(lin) except TypeError: cp.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' # method, method which will follow the 'follow' line therefore use the longer # path possible for the laser, therefore the acceleration will play # a smaller factor for aperture_size in traces_el_dict: for elem in traces_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few # lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cp.insert(lin) except TypeError: cp.insert(lines_union) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygons with method: lines.")) cp = self.clear_polygon3(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: seed.")) cp = self.clear_polygon2(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit( _("Failed. Painting polygons with method: standard.")) cp = self.clear_polygon(pol, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: total_geometry += list(cp.get_objects()) poly_processed.append(True) else: poly_processed.append(False) log.warning("Polygon in MultiPolygon can not be cleared.") else: log.warning("Geo in Iterable can not be cleared because it is not Polygon. " "It is: %s" % str(type(pol))) except TypeError: if isinstance(poly_buf, Polygon): cp = None if paint_method == _("Standard"): cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Seed"): cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements traces_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store # them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in traces_el_dict: traces_el_dict[apval["size"]].append(geo_el) else: traces_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(poly_buf): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in traces_el_dict: traces_el_dict[aperture_size].append(geo_el) else: traces_el_dict[aperture_size] = [geo_el] cp = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method # for rectangular flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings # with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cp.insert(lin) except TypeError: cp.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' # method, method which will follow the 'follow' line therefore use the longer # path possible for the laser, therefore the acceleration will play # a smaller factor for aperture_size in traces_el_dict: for elem in traces_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few # lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cp.insert(lin) except TypeError: cp.insert(lines_union) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygons with method: lines.")) cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: seed.")) cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: standard.")) cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp: total_geometry += list(cp.get_objects()) poly_processed.append(True) else: poly_processed.append(False) log.warning("Polygon can not be cleared.") else: log.warning("Geo can not be cleared because it is: %s" % str(type(poly_buf))) p_cleared = poly_processed.count(True) p_not_cleared = poly_processed.count(False) if p_not_cleared: app_obj.poly_not_cleared = True if p_cleared == 0: continue # try: # # Polygons are the only really paintable geometries, # # lines in theory have no area to be painted # if not isinstance(geo, Polygon): # continue # poly_buf = geo.buffer(-paint_margin) # # if paint_method == _("Seed"): # # Type(cp) == FlatCAMRTreeStorage | None # cp = self.clear_polygon2(poly_buf, # tooldia=tool_dia, # steps_per_circle=self.app.defaults["geometry_circle_steps"], # overlap=over, # contour=cont, # connect=conn, # prog_plot=prog_plot) # # elif paint_method == _("Lines"): # # Type(cp) == FlatCAMRTreeStorage | None # cp = self.clear_polygon3(poly_buf, # tooldia=tool_dia, # steps_per_circle=self.app.defaults["geometry_circle_steps"], # overlap=over, # contour=cont, # connect=conn, # prog_plot=prog_plot) # # else: # # Type(cp) == FlatCAMRTreeStorage | None # cp = self.clear_polygon(poly_buf, # tooldia=tool_dia, # steps_per_circle=self.app.defaults["geometry_circle_steps"], # overlap=over, # contour=cont, # connect=conn, # prog_plot=prog_plot) # # if cp is not None: # total_geometry += list(cp.get_objects()) # except FlatCAMApp.GracefulException: # return "fail" # except Exception as e: # log.debug("Could not Paint the polygons. %s" % str(e)) # self.app.inform.emit('[ERROR] %s\n%s' % # (_("Could not do Paint All. Try a different combination of parameters. " # "Or a different Method of paint"), # str(e))) # return "fail" pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: app_obj.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) # add the solid_geometry to the current too in self.paint_tools (tools_storage) # dictionary and then reset the temporary list that stored that solid_geometry tools_storage[current_uid]['solid_geometry'] = deepcopy(total_geometry) tools_storage[current_uid]['data']['name'] = name total_geometry[:] = [] # clean the progressive plotted shapes if it was used if self.app.defaults["tools_paint_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # # delete tools with empty geometry # keys_to_delete = [] # # look for keys in the tools_storage dict that have 'solid_geometry' values empty # for uid in tools_storage: # # if the solid_geometry (type=list) is empty # if not tools_storage[uid]['solid_geometry']: # keys_to_delete.append(uid) # # # actual delete of keys from the tools_storage dict # for k in keys_to_delete: # tools_storage.pop(k, None) # delete tools with empty geometry # look for keys in the tools_storage dict that have 'solid_geometry' values empty for uid in list(tools_storage.keys()): # if the solid_geometry (type=list) is empty if not tools_storage[uid]['solid_geometry']: tools_storage.pop(uid, None) geo_obj.options["cnctooldia"] = str(tool_dia) # this turn on the FlatCAMCNCJob plot for multiple tools geo_obj.multigeo = True geo_obj.multitool = True geo_obj.tools.clear() geo_obj.tools = dict(tools_storage) # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tooluid in geo_obj.tools: if geo_obj.tools[tooluid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: self.app.inform.emit('[ERROR] %s' % _("There is no Painting Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return # Experimental... # print("Indexing...", end=' ') # geo_obj.make_index() self.app.inform.emit('[success] %s' % _("Paint All Done.")) # Initializes the new geometry object def gen_paintarea_rest_machining(geo_obj, app_obj): assert isinstance(geo_obj, FlatCAMGeometry), \ "Initializer expected a FlatCAMGeometry, got %s" % type(geo_obj) log.debug("Paint Tool. Rest machining painting all task started.") if isinstance(obj, FlatCAMGerber): if app_obj.defaults["gerber_buffering"] == 'no': app_obj.inform.emit('%s %s %s' % (_("Paint Tool."), _("Rest machining painting all task started."), _("Buffering geometry..."))) else: app_obj.inform.emit('%s %s' % (_("Paint Tool."), _("Rest machining painting all task started."))) else: app_obj.inform.emit('%s %s' % (_("Paint Tool."), _("Rest machining painting all task started."))) tool_dia = None sorted_tools.sort(reverse=True) cleared_geo = [] current_uid = int(1) geo_obj.solid_geometry = [] if isinstance(obj, FlatCAMGerber): if self.app.defaults["tools_paint_plotting"] == 'progressive': if isinstance(obj.solid_geometry, list): obj.solid_geometry = MultiPolygon(obj.solid_geometry).buffer(0) else: obj.solid_geometry = obj.solid_geometry.buffer(0) try: a, b, c, d = obj.bounds() geo_obj.options['xmin'] = a geo_obj.options['ymin'] = b geo_obj.options['xmax'] = c geo_obj.options['ymax'] = d except Exception as e: log.debug("ToolPaint.paint_poly.gen_paintarea() bounds error --> %s" % str(e)) return for tool_dia in sorted_tools: log.debug("Starting geometry processing for tool: %s" % str(tool_dia)) app_obj.inform.emit( '[success] %s %s%s %s' % (_('Painting with tool diameter = '), str(tool_dia), self.units.lower(), _('started')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) painted_area = recurse(obj.solid_geometry) # variables to display the percentage of work done geo_len = int(len(painted_area) / 100) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) pol_nr = 0 for geo in painted_area: try: geo = Polygon(geo) if not isinstance(geo, Polygon) else geo poly_buf = geo.buffer(-paint_margin) cp = None if paint_method == _("Standard"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Seed"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements traces_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store # them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in traces_el_dict: traces_el_dict[apval["size"]].append(geo_el) else: traces_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(poly_buf): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in traces_el_dict: traces_el_dict[aperture_size].append(geo_el) else: traces_el_dict[aperture_size] = [geo_el] cp = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method # for rectangular flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings # with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cp.insert(lin) except TypeError: cp.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' # method, method which will follow the 'follow' line therefore use the longer # path possible for the laser, therefore the acceleration will play # a smaller factor for aperture_size in traces_el_dict: for elem in traces_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few # lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cp.insert(lin) except TypeError: cp.insert(lines_union) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygons with method: lines.")) cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: seed.")) cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: standard.")) cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp is not None: cleared_geo += list(cp.get_objects()) except FlatCAMApp.GracefulException: return "fail" except Exception as e: log.debug("Could not Paint the polygons. %s" % str(e)) self.app.inform.emit('[ERROR] %s\n%s' % (_("Could not do Paint All. Try a different combination of parameters. " "Or a different Method of paint"), str(e))) return "fail" pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: app_obj.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) # find the tooluid associated with the current tool_dia so we know where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_dia)): current_uid = int(k) break # add the solid_geometry to the current too in self.paint_tools (or tools_storage) dictionary and # then reset the temporary list that stored that solid_geometry tools_storage[current_uid]['solid_geometry'] = deepcopy(cleared_geo) tools_storage[current_uid]['data']['name'] = name cleared_geo[:] = [] geo_obj.options["cnctooldia"] = str(tool_dia) # this turn on the FlatCAMCNCJob plot for multiple tools geo_obj.multigeo = True geo_obj.multitool = True geo_obj.tools.clear() geo_obj.tools = dict(tools_storage) # clean the progressive plotted shapes if it was used if self.app.defaults["tools_paint_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tooluid in geo_obj.tools: if geo_obj.tools[tooluid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: self.app.inform.emit('[ERROR_NOTCL] %s' % _("There is no Painting Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return # Experimental... # print("Indexing...", end=' ') # geo_obj.make_index() self.app.inform.emit('[success] %s' % _("Paint All with Rest-Machining done.")) def job_thread(app_obj): try: if self.rest_cb.isChecked(): app_obj.new_object("geometry", name, gen_paintarea_rest_machining, plot=plot) else: app_obj.new_object("geometry", name, gen_paintarea, plot=plot) except FlatCAMApp.GracefulException: proc.done() return except Exception: proc.done() traceback.print_stack() return proc.done() # focus on Selected Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) self.app.inform.emit(_("Polygon Paint started ...")) # Promise object with the new name self.app.collection.promise(name) if run_threaded: # Background self.app.worker_task.emit({'fcn': job_thread, 'params': [self.app]}) else: job_thread(app_obj=self.app) def paint_poly_area(self, obj, sel_obj, tooldia=None, overlap=None, order=None, margin=None, method=None, outname=None, connect=None, contour=None, tools_storage=None, plot=True, run_threaded=True): """ Paints all polygons in this object that are within the sel_obj object :param run_threaded: :param plot: :param obj: painted object :param sel_obj: paint only what is inside this object bounds :param tooldia: a tuple or single element made out of diameters of the tools to be used :param overlap: value by which the paths will overlap :param order: if the tools are ordered and how :param margin: a border around painting area :param outname: name of the resulting object :param connect: Connect lines to avoid tool lifts. :param contour: Paint around the edges. :param method: choice out of _("Seed"), 'normal', 'lines' :param tools_storage: whether to use the current tools_storage self.paints_tools or a different one. Usage of the different one is related to when this function is called from a TcL command. :return: """ paint_method = method if method is not None else self.paintmethod_combo.get_value() if margin is not None: paint_margin = margin else: try: paint_margin = float(self.paintmargin_entry.get_value()) except ValueError: # try to convert comma to decimal point. if it's still not working error message and return try: paint_margin = float(self.paintmargin_entry.get_value().replace(',', '.')) except ValueError: self.app.inform.emit('[ERROR_NOTCL] %s' % _("Wrong value format entered, use a number.")) return # determine if to use the progressive plotting if self.app.defaults["tools_paint_plotting"] == 'progressive': prog_plot = True else: prog_plot = False proc = self.app.proc_container.new(_("Painting polygons...")) name = outname if outname is not None else self.obj_name + "_paint" over = overlap if overlap is not None else float(self.app.defaults["tools_paintoverlap"]) / 100.0 conn = connect if connect is not None else self.app.defaults["tools_pathconnect"] cont = contour if contour is not None else self.app.defaults["tools_paintcontour"] order = order if order is not None else self.order_radio.get_value() sorted_tools = [] if tooldia is not None: try: sorted_tools = [float(eval(dia)) for dia in tooldia.split(",") if dia != ''] except AttributeError: if not isinstance(tooldia, list): sorted_tools = [float(tooldia)] else: sorted_tools = tooldia else: for row in range(self.tools_table.rowCount()): sorted_tools.append(float(self.tools_table.item(row, 1).text())) if tools_storage is not None: tools_storage = tools_storage else: tools_storage = self.paint_tools def recurse(geometry, reset=True): """ Creates a list of non-iterable linear geometry objects. Results are placed in self.flat_geometry :param geometry: Shapely type or list or list of list of such. :param reset: Clears the contents of self.flat_geometry. """ if self.app.abort_flag: # graceful abort requested by the user raise FlatCAMApp.GracefulException if geometry is None: return if reset: self.flat_geometry = [] # ## If iterable, expand recursively. try: for geo in geometry: if geo is not None: recurse(geometry=geo, reset=False) # ## Not iterable, do the actual indexing and add. except TypeError: if isinstance(geometry, LinearRing): g = Polygon(geometry) self.flat_geometry.append(g) else: self.flat_geometry.append(geometry) return self.flat_geometry # Initializes the new geometry object def gen_paintarea(geo_obj, app_obj): # assert isinstance(geo_obj, FlatCAMGeometry), \ # "Initializer expected a FlatCAMGeometry, got %s" % type(geo_obj) log.debug("Paint Tool. Normal painting area task started.") if isinstance(obj, FlatCAMGerber): if app_obj.defaults["gerber_buffering"] == 'no': app_obj.inform.emit('%s %s %s' % (_("Paint Tool."), _("Normal painting area task started."), _("Buffering geometry..."))) else: app_obj.inform.emit('%s %s' % (_("Paint Tool."), _("Normal painting area task started."))) else: app_obj.inform.emit('%s %s' % (_("Paint Tool."), _("Normal painting area task started."))) tool_dia = None if order == 'fwd': sorted_tools.sort(reverse=False) elif order == 'rev': sorted_tools.sort(reverse=True) else: pass # this is were heavy lifting is done and creating the geometry to be painted target_geo = MultiPolygon(obj.solid_geometry) if isinstance(obj, FlatCAMGerber): if self.app.defaults["tools_paint_plotting"] == 'progressive': if isinstance(target_geo, list): target_geo = MultiPolygon(target_geo).buffer(0) else: target_geo = target_geo.buffer(0) geo_to_paint = target_geo.intersection(sel_obj) painted_area = recurse(geo_to_paint) try: a, b, c, d = self.paint_bounds(geo_to_paint) geo_obj.options['xmin'] = a geo_obj.options['ymin'] = b geo_obj.options['xmax'] = c geo_obj.options['ymax'] = d except Exception as e: log.debug("ToolPaint.paint_poly.gen_paintarea() bounds error --> %s" % str(e)) return total_geometry = [] current_uid = int(1) geo_obj.solid_geometry = [] for tool_dia in sorted_tools: log.debug("Starting geometry processing for tool: %s" % str(tool_dia)) app_obj.inform.emit( '[success] %s %s%s %s' % (_('Painting with tool diameter = '), str(tool_dia), self.units.lower(), _('started')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) # find the tooluid associated with the current tool_dia so we know where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_dia)): current_uid = int(k) break # variables to display the percentage of work done geo_len = len(painted_area) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) pol_nr = 0 for geo in painted_area: try: # Polygons are the only really paintable geometries, lines in theory have no area to be painted if not isinstance(geo, Polygon): continue poly_buf = geo.buffer(-paint_margin) cp = None if paint_method == _("Seed"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Standard"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements traces_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store # them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in traces_el_dict: traces_el_dict[apval["size"]].append(geo_el) else: traces_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(poly_buf): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in traces_el_dict: traces_el_dict[aperture_size].append(geo_el) else: traces_el_dict[aperture_size] = [geo_el] cp = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method # for rectangular flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings # with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cp.insert(lin) except TypeError: cp.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' # method, method which will follow the 'follow' line therefore use the longer # path possible for the laser, therefore the acceleration will play # a smaller factor for aperture_size in traces_el_dict: for elem in traces_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few # lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cp.insert(lin) except TypeError: cp.insert(lines_union) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygons with method: lines.")) cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: seed.")) cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: standard.")) cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: total_geometry += list(cp.get_objects()) except FlatCAMApp.GracefulException: return "fail" except Exception as e: log.debug("Could not Paint the polygons. %s" % str(e)) self.app.inform.emit('[ERROR] %s\n%s' % (_("Could not do Paint All. Try a different combination of parameters. " "Or a different Method of paint"), str(e))) return pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: app_obj.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) # add the solid_geometry to the current too in self.paint_tools (tools_storage) # dictionary and then reset the temporary list that stored that solid_geometry tools_storage[current_uid]['solid_geometry'] = deepcopy(total_geometry) tools_storage[current_uid]['data']['name'] = name total_geometry[:] = [] # clean the progressive plotted shapes if it was used if self.app.defaults["tools_paint_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # delete tools with empty geometry keys_to_delete = [] # look for keys in the tools_storage dict that have 'solid_geometry' values empty for uid in tools_storage: # if the solid_geometry (type=list) is empty if not tools_storage[uid]['solid_geometry']: keys_to_delete.append(uid) # actual delete of keys from the tools_storage dict for k in keys_to_delete: tools_storage.pop(k, None) geo_obj.options["cnctooldia"] = str(tool_dia) # this turn on the FlatCAMCNCJob plot for multiple tools geo_obj.multigeo = True geo_obj.multitool = True geo_obj.tools.clear() geo_obj.tools = dict(tools_storage) # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tooluid in geo_obj.tools: if geo_obj.tools[tooluid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: self.app.inform.emit('[ERROR] %s' % _("There is no Painting Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return # Experimental... # print("Indexing...", end=' ') # geo_obj.make_index() self.app.inform.emit('[success] %s' % _("Paint Area Done.")) # Initializes the new geometry object def gen_paintarea_rest_machining(geo_obj, app_obj): assert isinstance(geo_obj, FlatCAMGeometry), \ "Initializer expected a FlatCAMGeometry, got %s" % type(geo_obj) log.debug("Paint Tool. Rest machining painting area task started.") if isinstance(obj, FlatCAMGerber): if app_obj.defaults["gerber_buffering"] == 'no': app_obj.inform.emit('%s %s %s' % (_("Paint Tool."), _("Rest machining painting area task started."), _("Buffering geometry..."))) else: app_obj.inform.emit(_("Paint Tool. Rest machining painting area task started.")) else: app_obj.inform.emit('%s %s' % (_("Paint Tool."), _("Rest machining painting area task started."))) tool_dia = None sorted_tools.sort(reverse=True) cleared_geo = [] current_uid = int(1) geo_obj.solid_geometry = [] # this is were heavy lifting is done and creating the geometry to be painted target_geo = obj.solid_geometry if isinstance(obj, FlatCAMGerber): if self.app.defaults["tools_paint_plotting"] == 'progressive': if isinstance(target_geo, list): target_geo = MultiPolygon(target_geo).buffer(0) else: target_geo = target_geo.buffer(0) geo_to_paint = target_geo.intersection(sel_obj) painted_area = recurse(geo_to_paint) try: a, b, c, d = obj.bounds() geo_obj.options['xmin'] = a geo_obj.options['ymin'] = b geo_obj.options['xmax'] = c geo_obj.options['ymax'] = d except Exception as e: log.debug("ToolPaint.paint_poly.gen_paintarea() bounds error --> %s" % str(e)) return for tool_dia in sorted_tools: log.debug("Starting geometry processing for tool: %s" % str(tool_dia)) app_obj.inform.emit( '[success] %s %s%s %s' % (_('Painting with tool diameter = '), str(tool_dia), self.units.lower(), _('started')) ) app_obj.proc_container.update_view_text(' %d%%' % 0) # variables to display the percentage of work done geo_len = len(painted_area) old_disp_number = 0 log.warning("Total number of polygons to be cleared. %s" % str(geo_len)) pol_nr = 0 for geo in painted_area: try: geo = Polygon(geo) if not isinstance(geo, Polygon) else geo poly_buf = geo.buffer(-paint_margin) cp = None if paint_method == _("Standard"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Seed"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Lines"): # Type(cp) == FlatCAMRTreeStorage | None cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) elif paint_method == _("Laser_lines"): # line = None # aperture_size = None # the key is the aperture type and the val is a list of geo elements flash_el_dict = dict() # the key is the aperture size, the val is a list of geo elements copper_el_dict = dict() # find the flashes and the lines that are in the selected polygon and store # them separately for apid, apval in obj.apertures.items(): for geo_el in apval['geometry']: if apval["size"] == 0.0: if apval["size"] in copper_el_dict: copper_el_dict[apval["size"]].append(geo_el) else: copper_el_dict[apval["size"]] = [geo_el] if 'follow' in geo_el and geo_el['follow'].within(poly_buf): if isinstance(geo_el['follow'], Point): if apval["type"] == 'C': if 'C' in flash_el_dict: flash_el_dict['C'].append(geo_el) else: flash_el_dict['C'] = [geo_el] elif apval["type"] == 'O': if 'O' in flash_el_dict: flash_el_dict['O'].append(geo_el) else: flash_el_dict['O'] = [geo_el] elif apval["type"] == 'R': if 'R' in flash_el_dict: flash_el_dict['R'].append(geo_el) else: flash_el_dict['R'] = [geo_el] else: aperture_size = apval['size'] if aperture_size in copper_el_dict: copper_el_dict[aperture_size].append(geo_el) else: copper_el_dict[aperture_size] = [geo_el] cp = FlatCAMRTreeStorage() pads_lines_list = list() # process the flashes found in the selected polygon with the 'lines' method # for rectangular flashes and with _("Seed") for oblong and circular flashes # and pads (flahes) need the contour therefore I override the GUI settings # with always True for ap_type in flash_el_dict: for elem in flash_el_dict[ap_type]: if 'solid' in elem: if ap_type == 'C': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'O': f_o = self.clear_polygon2(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] elif ap_type == 'R': f_o = self.clear_polygon3(elem['solid'], tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=True, connect=conn, prog_plot=prog_plot) pads_lines_list += [p for p in f_o.get_objects() if p] # add the lines from pads to the storage try: for lin in pads_lines_list: if lin: cp.insert(lin) except TypeError: cp.insert(pads_lines_list) copper_lines_list = list() # process the traces found in the selected polygon using the 'laser_lines' # method, method which will follow the 'follow' line therefore use the longer # path possible for the laser, therefore the acceleration will play # a smaller factor for aperture_size in copper_el_dict: for elem in copper_el_dict[aperture_size]: line = elem['follow'] if line: t_o = self.fill_with_lines(line, aperture_size, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) copper_lines_list += [p for p in t_o.get_objects() if p] # add the lines from copper features to storage but first try to make as few # lines as possible # by trying to fuse them lines_union = linemerge(unary_union(copper_lines_list)) try: for lin in lines_union: if lin: cp.insert(lin) except TypeError: cp.insert(lines_union) elif paint_method == _("Combo"): self.app.inform.emit(_("Painting polygons with method: lines.")) cp = self.clear_polygon3(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults["geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: seed.")) cp = self.clear_polygon2(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: pass else: self.app.inform.emit(_("Failed. Painting polygons with method: standard.")) cp = self.clear_polygon(poly_buf, tooldia=tool_dia, steps_per_circle=self.app.defaults[ "geometry_circle_steps"], overlap=over, contour=cont, connect=conn, prog_plot=prog_plot) if cp and cp.objects: cleared_geo += list(cp.get_objects()) except FlatCAMApp.GracefulException: return "fail" except Exception as e: log.debug("Could not Paint the polygons. %s" % str(e)) self.app.inform.emit('[ERROR] %s\n%s' % (_("Could not do Paint All. Try a different combination of parameters. " "Or a different Method of paint"), str(e))) return pol_nr += 1 disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100])) # log.debug("Polygons cleared: %d" % pol_nr) if old_disp_number < disp_number <= 100: app_obj.proc_container.update_view_text(' %d%%' % disp_number) old_disp_number = disp_number # log.debug("Polygons cleared: %d. Percentage done: %d%%" % (pol_nr, disp_number)) # find the tooluid associated with the current tool_dia so we know where to add the tool solid_geometry for k, v in tools_storage.items(): if float('%.*f' % (self.decimals, v['tooldia'])) == float('%.*f' % (self.decimals, tool_dia)): current_uid = int(k) break # add the solid_geometry to the current too in self.paint_tools (or tools_storage) dictionary and # then reset the temporary list that stored that solid_geometry tools_storage[current_uid]['solid_geometry'] = deepcopy(cleared_geo) tools_storage[current_uid]['data']['name'] = name cleared_geo[:] = [] geo_obj.options["cnctooldia"] = str(tool_dia) # this turn on the FlatCAMCNCJob plot for multiple tools geo_obj.multigeo = True geo_obj.multitool = True geo_obj.tools.clear() geo_obj.tools = dict(self.paint_tools) # clean the progressive plotted shapes if it was used if self.app.defaults["tools_paint_plotting"] == 'progressive': self.temp_shapes.clear(update=True) # test if at least one tool has solid_geometry. If no tool has solid_geometry we raise an Exception has_solid_geo = 0 for tooluid in geo_obj.tools: if geo_obj.tools[tooluid]['solid_geometry']: has_solid_geo += 1 if has_solid_geo == 0: self.app.inform.emit('[ERROR_NOTCL] %s' % _("There is no Painting Geometry in the file.\n" "Usually it means that the tool diameter is too big for the painted geometry.\n" "Change the painting parameters and try again.")) return # Experimental... # print("Indexing...", end=' ') # geo_obj.make_index() self.app.inform.emit('[success] %s' % _("Paint All with Rest-Machining done.")) def job_thread(app_obj): try: if self.rest_cb.isChecked(): app_obj.new_object("geometry", name, gen_paintarea_rest_machining, plot=plot) else: app_obj.new_object("geometry", name, gen_paintarea, plot=plot) except FlatCAMApp.GracefulException: proc.done() return except Exception: proc.done() traceback.print_stack() return proc.done() # focus on Selected Tab self.app.ui.notebook.setCurrentWidget(self.app.ui.selected_tab) self.app.inform.emit(_("Polygon Paint started ...")) # Promise object with the new name self.app.collection.promise(name) if run_threaded: # Background self.app.worker_task.emit({'fcn': job_thread, 'params': [self.app]}) else: job_thread(app_obj=self.app) def paint_poly_ref(self, obj, sel_obj, tooldia=None, overlap=None, order=None, margin=None, method=None, outname=None, connect=None, contour=None, tools_storage=None, plot=True, run_threaded=True): """ Paints all polygons in this object that are within the sel_obj object :param run_threaded: :param plot: :param obj: painted object :param sel_obj: paint only what is inside this object bounds :param tooldia: a tuple or single element made out of diameters of the tools to be used :param overlap: value by which the paths will overlap :param order: if the tools are ordered and how :param margin: a border around painting area :param outname: name of the resulting object :param connect: Connect lines to avoid tool lifts. :param contour: Paint around the edges. :param method: choice out of _("Seed"), 'normal', 'lines' :param tools_storage: whether to use the current tools_storage self.paints_tools or a different one. Usage of the different one is related to when this function is called from a TcL command. :return: """ geo = sel_obj.solid_geometry try: if isinstance(geo, MultiPolygon): env_obj = geo.convex_hull elif (isinstance(geo, MultiPolygon) and len(geo) == 1) or \ (isinstance(geo, list) and len(geo) == 1) and isinstance(geo[0], Polygon): env_obj = cascaded_union(self.bound_obj.solid_geometry) else: env_obj = cascaded_union(self.bound_obj.solid_geometry) env_obj = env_obj.convex_hull sel_rect = env_obj.buffer(distance=0.0000001, join_style=base.JOIN_STYLE.mitre) except Exception as e: log.debug("ToolPaint.on_paint_button_click() --> %s" % str(e)) self.app.inform.emit('[ERROR_NOTCL] %s' % _("No object available.")) return self.paint_poly_area(obj=obj, sel_obj=sel_rect, tooldia=tooldia, overlap=overlap, order=order, margin=margin, method=method, outname=outname, connect=connect, contour=contour, tools_storage=tools_storage, plot=plot, run_threaded=run_threaded) def ui_connect(self): self.tools_table.itemChanged.connect(self.on_tool_edit) # rows selected self.tools_table.clicked.connect(self.on_row_selection_change) self.tools_table.horizontalHeader().sectionClicked.connect(self.on_row_selection_change) for row in range(self.tools_table.rowCount()): try: self.tools_table.cellWidget(row, 2).currentIndexChanged.connect(self.on_tooltable_cellwidget_change) except AttributeError: pass try: self.tools_table.cellWidget(row, 4).currentIndexChanged.connect(self.on_tooltable_cellwidget_change) except AttributeError: pass self.tool_type_radio.activated_custom.connect(self.on_tool_type) # first disconnect for opt in self.form_fields: current_widget = self.form_fields[opt] if isinstance(current_widget, FCCheckBox): try: current_widget.stateChanged.disconnect() except (TypeError, ValueError): pass if isinstance(current_widget, RadioSet): try: current_widget.activated_custom.disconnect() except (TypeError, ValueError): pass elif isinstance(current_widget, FCDoubleSpinner): try: current_widget.returnPressed.disconnect() except (TypeError, ValueError): pass # then reconnect for opt in self.form_fields: current_widget = self.form_fields[opt] if isinstance(current_widget, FCCheckBox): current_widget.stateChanged.connect(self.form_to_storage) if isinstance(current_widget, RadioSet): current_widget.activated_custom.connect(self.form_to_storage) elif isinstance(current_widget, FCDoubleSpinner): current_widget.returnPressed.connect(self.form_to_storage) elif isinstance(current_widget, FCComboBox): current_widget.currentIndexChanged.connect(self.form_to_storage) self.rest_cb.stateChanged.connect(self.on_rest_machining_check) self.order_radio.activated_custom[str].connect(self.on_order_changed) def ui_disconnect(self): try: # if connected, disconnect the signal from the slot on item_changed as it creates issues self.tools_table.itemChanged.disconnect() except (TypeError, AttributeError): pass # rows selected try: self.tools_table.clicked.disconnect(self.on_row_selection_change) except (TypeError, AttributeError): pass try: self.tools_table.horizontalHeader().sectionClicked.disconnect(self.on_row_selection_change) except (TypeError, AttributeError): pass try: # if connected, disconnect the signal from the slot on item_changed as it creates issues self.tool_type_radio.activated_custom.disconnect() except (TypeError, AttributeError): pass for row in range(self.tools_table.rowCount()): for col in [2, 4]: try: self.ui.geo_tools_table.cellWidget(row, col).currentIndexChanged.disconnect() except (TypeError, AttributeError): pass for opt in self.form_fields: current_widget = self.form_fields[opt] if isinstance(current_widget, FCCheckBox): try: current_widget.stateChanged.disconnect(self.form_to_storage) except (TypeError, ValueError): pass if isinstance(current_widget, RadioSet): try: current_widget.activated_custom.disconnect(self.form_to_storage) except (TypeError, ValueError): pass elif isinstance(current_widget, FCDoubleSpinner): try: current_widget.returnPressed.disconnect(self.form_to_storage) except (TypeError, ValueError): pass elif isinstance(current_widget, FCComboBox): try: current_widget.currentIndexChanged.connect(self.form_to_storage) except (TypeError, ValueError): pass def reset_usage(self): self.obj_name = "" self.paint_obj = None self.bound_obj = None self.first_click = False self.cursor_pos = None self.mouse_is_dragging = False self.sel_rect = [] @staticmethod def paint_bounds(geometry): def bounds_rec(o): if type(o) is list: minx = Inf miny = Inf maxx = -Inf maxy = -Inf for k in o: try: minx_, miny_, maxx_, maxy_ = bounds_rec(k) except Exception as e: log.debug("ToolPaint.bounds() --> %s" % str(e)) return minx = min(minx, minx_) miny = min(miny, miny_) maxx = max(maxx, maxx_) maxy = max(maxy, maxy_) return minx, miny, maxx, maxy else: # it's a Shapely object, return it's bounds return o.bounds return bounds_rec(geometry) def reset_fields(self): self.obj_combo.setRootModelIndex(self.app.collection.index(0, 0, QtCore.QModelIndex()))